Given is the form diagram of a cable made out of steel S 235 under the live point load $\mathrm{Q}_{\mathrm{k}}=30 \mathrm{kN}$. The required diameter of this cable is to be found.
First the characteristic value $\left({ }_{k}\right)$ of the acting force Q must be brought to the design level $\left({ }_{d}\right)$. This is achieved by multiplying with the safety factor. Since the magnitude of a load over the lifetime of a structure cannot always be exactly predicted, a safety factor γ is calculated for each load. For dead loads the safety factor is $\gamma_{G}=1.35$ and for live loads $\gamma_{\mathrm{Q}}=1.5$. With the found force Q_{d} the force diagram can be drawn.

To calculate the cable diameter, the relevant force $\mathrm{N}_{\mathrm{dmax}}$ in the structure is determined. The relevant force is understood to be the largest internal force. In this case, this is element 1 with a length of 4 cm , and therefore a magnitude of 40 kN .

If the relevant force $N_{d \max }$ is divided by the material strength f_{d}, the required cross-sectional area $A_{\text {req }}$ is obtained.

The strength of the given material can be taken from the formulary. Since 1 is a tensile element, the allowable tensile stress f_{tk} is relevant. A material safety factor γ_{M} is also included in the values of the material's strength to consider errors in the material. In contrast to the safety factor of the load, however, f_{tk} is divided by γ_{M}. γ_{M} is material-specific and can therefore also be taken from the formulary.

Finally, the diameter is found using the formula for the circular area. Important: The result is always rounded up, as rounding off would result in a diameter smaller than the minimum requirement.

Stress proof

A cable cross-section of steel S 355 with a diameter $\mathrm{D}=20 \mathrm{~mm}$ under a relevant tensile force $\mathrm{N}_{\mathrm{d}}=80 \mathrm{kN}$ is given. The proof is sought whether the cross-section of the cable can withstand the given load.

First, the maximum allowed force $\mathrm{N}_{\text {allow }}$ of the cable is to be found. This is calculated by multiplying the designed allowable tensile stress f_{td} with the effective cross-sectional area A_{ef} based on the given diameter of the cable.

Second, the found force $\mathrm{N}_{\text {allow }}$ is then compared with the relevant force N_{d}. If $\mathrm{N}_{\text {allow }}$ is equal to or larger than N_{d}, the proof is provided and the given cross-section withstands the applied load. If the proof is not fulfilled, the cable must be re-dimensioned.

$$
\begin{aligned}
& N_{1}=40 \mathrm{kN}=\mathrm{N}_{\mathrm{dmax}} \\
& \mathrm{~N}_{2}=20 \mathrm{kN} \\
& \mathrm{~A}=40 \mathrm{kN} \\
& \mathrm{~B}=20 \mathrm{kN}
\end{aligned}
$$

$$
A_{r e q}=N_{d} / f_{t d}
$$

$$
\mathrm{f}_{\mathrm{td}}=\mathrm{f}_{\mathrm{tk}} / \mathrm{y}_{\mathrm{M}}
$$

$$
=235 \mathrm{~N} / \mathrm{mm}^{2} / 1.05=223.81 \mathrm{~N} / \mathrm{mm}^{2}
$$

$$
\begin{aligned}
A_{\text {req }} & =N_{d} / f_{t d} \\
& =40 \mathrm{kN} / 223.81 \mathrm{~N} / \mathrm{mm}^{2}=178.7 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
A=r^{2} \cdot \pi=(D / 2)^{2} \cdot \pi
$$

$$
\mathrm{D}=2 \cdot \sqrt{ } \mathrm{~A} / \pi
$$

$$
=2 \cdot \sqrt{ } 178.7 \mathrm{~mm}^{2} / \pi=15.08 \mathrm{~mm} \approx 16 \mathrm{~mm}
$$

$$
N_{d} \leq N_{\text {allow }}=f_{t d} \cdot A_{\text {ef }}
$$

$$
\begin{aligned}
A_{e f} & =r^{2} \cdot \pi=(D / 2)^{2} \cdot \pi \\
& =(20 \mathrm{~mm} / 2)^{2} \cdot \pi=314.16 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
N_{\text {allow }}=f_{\text {td }} \cdot A_{\text {ef }}
$$

$$
N_{\text {allow }}=338.1 \mathrm{~N} / \mathrm{mm2} \cdot 314.16 \mathrm{~mm}^{2}=\underline{106.2 \mathrm{kN}}
$$

$$
\mathrm{N}_{\mathrm{d}}=80 \mathrm{kN} \quad \mathrm{~N}_{\mathrm{d}} \leq \mathrm{N}_{\text {allow }} \checkmark
$$

