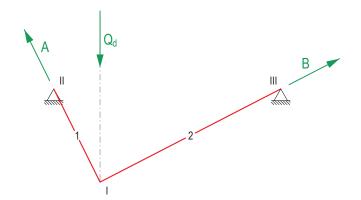
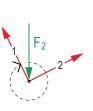
Dimensioning

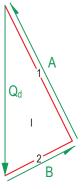
Given is the form diagram of a cable made out of steel S235 under the live point load $Q_k = 30$ kN. The required diameter of this cable is to be found.

First the characteristic value ($_k$) of the acting force Q must be brought to the design level ($_d$). This is achieved by multiplying with the safety factor. Since the magnitude of a load over the lifetime of a structure cannot always be exactly predicted, a safety factor γ is calculated for each load. For dead loads the safety factor is γ_G =1.35 and for live loads γ_Q =1.5. With the found force Q_d the force diagram can be drawn.



 $Q_d = Q_k \cdot \gamma_Q$ $= 30 \text{ kN} \cdot 1.5$ = 45 kN





To calculate the cable diameter, the relevant force N_{dmax} in the structure is determined. The relevant force is understood to be the largest internal force. In this case, this is element 1 with a length of 4 cm, and therefore a magnitude of 40 kN.

If the relevant force $N_{\tiny dmax}$ is divided by the material strength $f_{\tiny d}$, the required cross-sectional area $A_{\tiny req}$ is obtained.

The strength of the given material can be taken from the formulary. Since 1 is a tensile element, the allowable tensile stress f_{tk} is relevant. A material safety factor γ_M is also included in the values of the material's strength to consider errors in the material. In contrast to the safety factor of the load, however, f_{tk} is divided by γ_M . γ_M is material-specific and can therefore also be taken from the formulary.

Finally, the diameter is found using the formula for the circular area. Important: The result is always rounded up, as rounding off would result in a diameter smaller than the minimum requirement.

$$N_1 = 40 \text{ kN} = N_{\text{dmax}}$$

 $N_2 = 20 \text{ kN}$
 $A = 40 \text{ kN}$
 $B = 20 \text{ kN}$

$$A_{req} = N_d / f_{td}$$

$$f_{td} = f_{tk} / \gamma_M$$

= 235 N/mm² / 1.05 = 223.81 N/mm²

$$A_{req} = N_d / f_{td}$$

= 40 kN / 223.81 N/mm² = 178.7 mm²

A =
$$r^2 \cdot \pi = (D/2)^2 \cdot \pi$$

D = 2 · $\sqrt{A/\pi}$
= 2 · $\sqrt{178.7}$ mm² / π = 15.08 mm ≈ 16 mm

Stress proof

A cable cross-section of steel S355 with a diameter D=20mm under a relevant tensile force N_d = 80kN is given. The proof is sought whether the cross-section of the cable can withstand the given load.

First, the maximum allowed force N_{allow} of the cable is to be found. This is calculated by multiplying the designed allowable tensile stress f_{td} with the effective cross-sectional area A_{rf} based on the given diameter of the cable.

Second, the found force N_{allow} is then compared with the relevant force N_{d} . If N_{allow} is equal to or larger than N_{d} , the proof is provided and the given cross-section withstands the applied load. If the proof is not fulfilled, the cable must be re-dimensioned.

$$N_d \leq N_{allow} = f_{td} \cdot A_{ef}$$

$$A_{ef} = r^2 \cdot \pi = (D/2)^2 \cdot \pi$$

= (20 mm/2)² · \pi = 314.16 mm²

$$N_{allow} = f_{td} \cdot A_{ef}$$

 $N_{allow} = 338.1 \text{ N/mm2} \cdot 314.16 \text{ mm}^2 = \underline{106.2 \text{ kN}}$

$$N_d = 80 \text{ kN}$$
 $N_d \leq N_{allow}$