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A B S T R A C T

Moment–curvature–thrust relationships (M–κ–N) are a useful resource for the solution of a variety of inelastic
and geometrically non-linear structural problems involving elements under combined axial load and bending. A
numerical discretised cross-section method is used in this research to generate such relationships for I-sections,
rectangular box-sections and circular or elliptical hollow sections. The method is strain driven, with the
maximum strain limited by an a priori defined local buckling strain, which can occur above or below the yield
strain depending on the local slenderness of the cross-section. The relationship between the limiting strain and
the local slenderness has been given for aluminium, mild steel and stainless steel cross-sections through the base
curve of the Continuous Strength Method. Moment-curvature-thrust curves are derived from axial force and
bending moment interaction curves by pairing the curvatures and moments for a given axial load level. These
moment–curvature–thrust curves can be transformed into various formats to solve a variety of structural
problems. The gradient of the curves is used to find the materially and geometrically non-linear solution of an
example beam-column, by solving numerically the moment–curvature ordinary differential equations. The
results capture the importance of the second order effects, particularly with regard to the plastic hinge formation
at mid-height and the post-peak unloading response.

1. Introduction

For a given cross-section, such as an open or closed metal I-section
or tubular section, moment–curvature (M–κ) curves can be created.
Such curves can be used to describe the behaviour of each cross-section
and subsequently the entire length of a structural member, subjected to
a given applied load. Generating the M–κ curve is straightforward when
there is no applied axial load, since the strains throughout the cross-
section are exclusive to flexure, which can be described as linearly
varying with depth, with the highest strains at the outer fibres. This is
based on the assumption that plane sections remain plane during
bending, which has been shown to be valid for practical structural
steel cross-sections in bending, as determined from strain gauge read-
ings on I-sections up to and beyond the plastic moment [1]. This also
stems from the fact that cross-section dimensions are generally con-
siderably smaller than beam lengths, permitting the neglect of shear
deformations [2]. Combining this assumed strain profile with a
particular material model, M–κ curves can be generated analytically.

The determination of M–κ curves in the presence of a given axial
load is more challenging, due to the interaction between the axial and
bending strains and material non-linearity. Expressions for solid
rectangular sections with an elastic-perfectly plastic material model

can be found in [2], which also describes other approximations for
different cross-section shapes. Finding accurate analytical curves for
cross-section shapes typically used in structural applications and with
more realistic material stress–strain curves is significantly more chal-
lenging as a continuous function is needed in the entire M–κ–N domain,
that is initially straight in the elastic region and then transitions
through to a curved shape in the inelastic regime. The calculation
and application of moment–curvature–thrust relationships in the lit-
erature include: steel reinforced rectangular masonry sections using
non-linear constitutive models [3]; moment–curvature relationships for
various tubular cross-sections with residual stresses, geometric imper-
fections and hydrostatic pressures via the tangent stiffness Newmark
method in [4]; using M–κ–N curves to analyse the ultimate strength of
dented tubular members by [5]; creating curves by results from finite
element analyses as in [6]; non-linear analyses of reinforced concrete
beams considering tension softening and bond slip using moment–cur-
vature curves from a section analysis in [7]; moment–curvature curves
and comparisons with experimental results of CFRP-strengthened steel
circular hollow section beams by [8] and with concrete-filled hollow
section tubes [9]. Fibre based models, where the cross-section is
discretised into a finite number of thin strips, have been used to model
concrete-filled steel tubes [10], as well as the static and dynamic
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response of reinforced concrete columns and beam-columns in
frames [11,12].

In the present study, a numerical procedure is employed in which
cross-section interaction curves are first formed and then used to find
all possible strain distributions that correspond to the same axial load
level, leading to the required M–κ–N curves. The approach is demon-
strated for cross-sections with at least one line of symmetry, such as I-
sections and tubular sections and for a bi-linear material model, but the
method can be used for any cross-section geometry. Key features of the
method are that: 1) it is not specific to a particular material model, as
any stress–strain curve can be used with the strain driven approach, 2)
local buckling of thin-walled elements can be explicitly included
through a limiting strain ratio due to the integration with the
Continuous Strength Method, 3) any cross-section shape that can be
discretised into discrete elements may be analysed, and 4) the
procedure allows for efficient calculation of the inelastic flexural
stiffness and plastic hinge regions of a member, subjected to given
axial load levels.

2. Cross-section model

The central aspects of the cross-section model are described in this
section. The cross-section strain and stress distributions are presented in
Section 2.1 and a limiting strain is set-out in Section 2.2 to define cross-
section failure through local buckling.

2.1. Strain and stress distributions

The strain and stress distributions for a cross-section under axial
compression, uni-axial bending and combined axial compression and
uni-axial bending are shown in Fig. 1 for the case of a material with a
rounded stress–strain relationship.

For the pure axial load state (Fig. 1a), the strains are uniform
throughout the cross-section at ϵA. When the uniform strain is less than
the material yield strain, ϵA< ϵy, the cross-section stresses are below fy,
and when ϵA ≥ ϵy the cross-section is deforming inelastically according
to the chosen material stress–strain curve, up to limiting ultimate values
for the cross-section of ϵu and fu.

For the case of simple bending (Fig. 1b), there is no uniform strain
present, only linearly-varying flexural strains with a maximum value of
ϵB. The strain and stress profiles are antisymmetric about the zero strain
neutral axis (which is located at mid-depth for symmetric sections), and
the upper and lower outer-fibres reach± ϵu and± fu.

The combination of an axial load and bending moment is illustrated
in Fig. 1c, where the compressive outer-fibre strain is limited to ϵu. The
interaction of axial strains and bending strains is taken as the summa-
tion of the uniform strains ϵA and the linearly varying strains with
maximum magnitude ϵB. This combination leads to strain and stress
profiles between the axial and flexural states. Although strains ϵA and ϵB
are linearly superimposed, the stresses are based on the given material
model. Therefore ϵA is not solely responsible for defining the axial force
and neither is ϵB exclusive to bending; it is the combination of ϵA and ϵB
that defines the axial and bending capacity.

The approach adopted herein follows the principles laid-out in
research by the first two authors on the deformation-based Continuous
Strength Method (CSM) [13,14]. In the CSM, the limiting strain
distribution is first established and the stresses and hence capacity
follow; this is in contrast to traditional design [15]. The approach
described has been used previously to analyse the combined loading (N,
My, Mz) of cross-sections to produce interaction surfaces and design
curves [16].

Since a strain driven approach makes no assumptions on the
material model, the same method can be used for a variety of structural
materials. This includes metallic construction materials such as struc-
tural steel, stainless steel and aluminium, as well as composite
construction materials such as reinforced concrete or fibre-reinforced
polymers. For cross-sections consisting of two or more materials, the
key condition to satisfy for the proposed method, is that there is a
compatibility of strains at the interfaces between materials (such as
providing full bond to rebar for reinforced concrete cross-sections).

In this research, a simplified bi-linear stress-strain model (Fig. 2) is
used based on that recommended for use in numerical models of
structural steel elements in [17]. This consists of a linear region with
the Young's modulus E up to the yield point fy, followed by a second
linear region with a reduced strain-hardening modulus Esh; the curve is
terminated at a specified limiting stress fu and strain ϵu, as described
below. Note that Esh=E/100 is used throughout this study. This bi-
linear material model has been shown to be able to capture the essence
of strain hardening in a range of metallic materials, including alumi-
nium and stainless steel, and is used herein for demonstration purposes;
this model may however be replaced with a more complex one such as
tri-linear, multiple piecewise linear, continuous non-linear or Ramberg-
Osgood model, should greater accuracy be sought.

2.2. Strain limits

In strain driven cross-section models, an upper bound must be
applied to the strain distribution. This was taken herein as the CSM
limiting strain ϵcsm (i.e. ϵu=ϵcsm). The CSM limiting strain ϵcsm is
defined as a function of the slenderness of the cross-section λp, where
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Fig. 1. Cross-section strain and stress distributions under axial compression, uni-axial
bending and combined axial compression and uni-axial bending.
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Fig. 2. Bi-linear structural steel material model adopted in this study.
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with σcr being the elastic buckling stress of the cross-section. The
relationship between ϵcsm/ϵy and λp is given by a base curve, described
by the following equations for plated sections, from which the
maximum strain that the cross-section can endure prior to failure by
local buckling ϵcsm may be determined.
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This base curve was derived [13,14,18,19] on the basis of a regression
fit to compression and bending test data for a range of metallic
materials, including austenitic, duplex and ferritic stainless steels [20],
carbon steel [13,18], high strength steel and aluminium [21,22]. An
equivalent base curve for circular hollow sections has also been
derived [23].

3. Numerical implementation

Although it is possible to derive exact expressions for the combined
axial load and uni-axial bending capacity of a cross-section, the results
are lengthy for typical cross-sections used in construction and are not
generally suitable for practical use. A numerical method is therefore
developed to overcome the difficulties in obtaining simple analytical
solutions to the interaction of an axial load and bending moment.

The numerical model presented is based on normalising the linearly-
varying strain distribution by the limiting cross-section strain ϵu. For a
given cross-section, all strain interactions are found for which the sum
of the uniform strain ϵA and the maximum linearly-varying strain ϵB
equals ϵu. To use the same method for axial load and bi-axial bending
(N, My, Mz), with ϵA, ϵB and ϵC, the reader is directed to [16]. This
defines the failure criterion of Eq. (4), which is normalised by the
limiting strain as

ϵ
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+ ϵ
ϵ

= 1.A

u

B

u (4)

The normalised uniform strain ϵA/ϵu is varied from 0 to 1, indicating
pure bending and pure axial loading respectively, and leaving ϵB/
ϵu=1−ϵA/ϵu. This is given by Eq. (5) for major axis bending, where h
is the overall cross-section depth and Eq. (6) for minor axis bending
where b is the overall cross-section width.
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With the elemental strains defined, the element stresses are determined
from the material model, and hence the cross-section resistances are
calculated, as explained in Sections 3.1 and 3.2.

3.1. Discretisation

The cross-section to be investigated must first be divided into finite
elements, to convert the continuous cross-section into the discrete
approximation; the greater the number of discrete elements, the closer
the numerical approximation is to the exact solution. Once the cross-
section has been discretised into small elements and assigned co-
ordinates (yi,zi) and an area Ai, the contribution for each can be
summed to give the total cross-section response. Such a method is
sometimes called a fibre analysis and has been used to analyse the

cross-section behaviour of steel sections [16], concrete-filled steel
tubes [9,24] and reinforced concrete sections.

For I-sections and rectangular hollow sections the definition of the
elemental area Ai is straightforward, as the cross-section can be
conveniently discretised into small rectangles. This can either be
performed in strips that span the cross-section width or height, or by
small elements that are organised across both the y and z directions of
the cross-section, as shown in Fig. 3. Here, the root radii r are also
explicitly included in the discretisation, as their effect can be signifi-
cant.

Circular and elliptical hollow sections need to be treated in a
different manner, since dividing either shape into small rectangular
elements is not as ideal, as an error will arise at the curved edges of the
cross-section. Circular hollow sections may be considered as a subset of
elliptical hollow sections, and so the latter forms the basis of the
necessary derivations. For the elliptical hollow section in Fig. 4, which
has inner and outer dimensions a1,a2 and b1,b2 in the z and y directions
respectively, an elemental area is not of constant shape as the inner and
outer radii r1 and r2 are functions of angle θ. The area of an element Ai,
contained by the rays at θ−θi/2 and θ+θi/2 either side of r (which is
at an angle θ), and by the inner and outer radii ra and rb, is determined
below.

The equation of an ellipse in polar co-ordinate form is that of Eq.
(7), where a and b are the radii in the z and y directions respectively,

r ab
b θ a θ

=
cos + sin

.
2 2 2 2 (7)

The general area of a sector bounded by rays at angles θ1 and θ2
with curve r is

Fig. 3. Discretisation of rectangular hollow sections and I-sections.

Fig. 4. Discretisation of an elliptical hollow section.
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Introducing the function F simplifies the subsequent formulae
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By defining the elemental angle θi=2π/m for m divisions around the
ellipse, then θ1=θ−θi/2 and θ2=θ+θi/2. For the elemental length ri
in the radial direction, it is important to note that ri= rb− ra is not
constant across θi as r= f(θ,a,b). With the thickness of the cross-section
t=a2−a1=b2−b1 split into n strips of length r t n= / , the area Ai may
be found by subtracting the area of the sector for ra= r− ri/2 from the
area formed by rb= r+ ri/2 to give
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The general elliptical hollow section result for Ai may be preserved in
this form. However for the case of a circular hollow section with
a=b= r it may be simplified further, as the function F can be simplified
to give Fc as

F r θ r θ=
2

arctan (tan ) =
2

,c
2 2

(11)

which is the standard result of the sector area of a circle. For a circular
hollow section, expanding and simplifying the general result for Ai gives
A rrθ=i i.

3.2. Cross-section capacities

For the calculation of the axial load, major axis moment and minor
axis bending moment acting on the cross-section, the following
integration-to-discrete summed numerical approximations are used,
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where yi and zi are the distances of the element centroid from the
neutral axis of the cross-section in the y and z directions, fi is the stress
at the element, and Ai the elemental area. For major axis and minor axis
bending, the strain at position yi or zi is
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The stress fi can then be determined from the material stress–strain
curve that has been chosen.

For circular and elliptical hollow sections, it is convenient instead to
use polar co-ordinates and evaluate the integral from the inner to outer
radii and through an angle 2π when evaluating the bending moments.
For a circular hollow section with dA= r dθ dr and y= rsinθ, the
moment integral can be converted to a numerical approximation using i
as the index of the elements, and r1, r2 and r as the inner, outer and
element radii respectively,
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For an elliptical hollow section, r is no longer constant (as it is in the

case of the circular hollow section case), and so the full Ai expression
must be used. For the major axis moment
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For bending about the major and minor axes of an elliptical hollow
section, the strain at element i is defined as

r θ
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r θ
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2

u
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and for a circular hollow section the elemental strain is

r θ
D

ϵ = 2 sin ϵ .i
u

(19)

For either the I-sections or tubular sections, it is important that a
sufficient number of elements are used to represent the cross-section,
such that the error in the approximations for the axial load and bending
moment capacities is small. These approximation errors arise from a
coarse representation of the geometry affecting yi, zi and Ai, particularly
with regard to curved edges, leading to errors in ϵi or by using too few
elements that assuming a constant strain and stress for an element is
unreasonable. For this research, the flat plated elements are discretised
in both the width and thickness directions, and for the circular and
elliptical hollow sections through its thickness and around θ, until the
values are accurate to within 0.1%. The accuracy can be determined by
increasing the number of elements until a specified accuracy is
achieved, or by comparing areas and second moment of areas to
analytical solutions for the cross-section shapes.

4. M–κ–N curves

The first step needed to establish the moment–curvature–thrust
curves is to create a suite of axial-bending interaction curves and record
the curvature at points along each curve. The numerical model
developed in Section 3 can be used to plot every discrete interaction
of axial load and bending moment for any limiting strain, from pure
bending to pure compression. The input data required to run each
numerical step are the cross-section geometry, strain ratio (i.e. the ratio
of the limiting strain to the yield strain) and stress–strain curve.

Two examples of M–κ–N curves, both employing the bi-linear
material model for steel have been prepared: an I-section (a universal
column with shape factors, defined as the ratio of the plastic to the
elastic section moduli, of 1.18 and 1.51, about the major and minor
axis, respectively) in bending about its minor axis is shown in Fig. 5 and
a circular-hollow-section (with a shape factor of 1.41) is shown in
Fig. 6. The strain ratio of 15 corresponds to the outer green line in both
cases, and the moments and axial loads are normalised by the elastic
values Mel (elastic moment) and Ny (yield load). For both suites of
interaction curves, straight red lines indicate the axial–moment inter-
actions when the cross-sections have not yielded, while the curves are
more rounded with increasing deformation (increasing strain). The
horizontal lines for a fixed axial load value of N/Ny=0.4 are plotted,
and gives a set of moment resistances at the intersections with each
interaction curve. Not all interaction curves will be intersected by this
line, since as the yield normalised axial load N/Ny increases, fewer
associated partner moment possibilities occur.

The intersection moment values can be read from the interaction
curves and plotted against the curvature; this curvature relates to the
linearly varying strain components ϵB/ϵu in the numerical model. This
procedure creates M–κ curves for a fixed axial load N/Ny, as plotted in
Figs. 7 and 8 for the cross-sections of Figs. 5 and 6 and for a maximum
curvature ratio κ/κy of 15, where κy is the curvature corresponding to
the first yielding under bending alone. The curvature ratio κ/κy will
always be less than the strain ratio when there is a coexistent, uniform
strain ϵA, recalling that ϵA + ϵB = ϵu at failure. For both cross-section
types, the gradient of the curves (which corresponds to the effective
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flexural rigidity E′I) starts from EI and reduces to EshI (for the bi-linear
material model) as curvatures increase. This transition occurs more
slowly for cross-sections with higher shape factors due to the rate of
stress redistribution throughout the cross-section. For N/Ny ≤ 0.2, the
effect on the moment–curvature curves of the I-section is very modest
and remains small for N/Ny ≤ 0.4 since the axial loads can be carried
by the web, which is contributing relatively little to bending. There-
after, increasing the axial load rapidly reduces the moment carrying
capacity and the curves straighten. The circular hollow section shows
similar behaviour, but is influenced more strongly by the rise in axial
load.

5. Application

In this section the curves generated in Section 4 are applied to

determine the equilibrium path, subject to presented assumptions, of a
simply-supported (pin and roller) imperfect prismatic column subjected
to an axial load. Note that the presence of an imperfection means that
bending moments arise from the onset of loading - the member may
therefore be considered to be a beam-column.

5.1. Structural system

A pin-ended prismatic column of length L is depicted in Fig. 9
which, in its unloaded state, has an imperfection v0(x) with maximum
mid-height magnitude d0. This function is an equivalent geometric
imperfection distribution for the element, representing residual stresses
and out-of-straightness. After the application of a concentric axial load
N, a new total deflected shape vt=v+v0 (initial v0 plus additional
displacements v), which is in equilibrium with the applied axial load,
has a maximum displacement at x=L/2 of dt=d+d0.

For a perfectly straight column where d0=v0=0, the lowest elastic
critical buckling load Ncr is given [25] by Eq. (20), where Iz is the minor
axis second moment of area and Lz is the effective length. The
corresponding deformed shape is a half sine wave with v=dsin(πx/L).

N
π EI

L
= .z

z
cr

2

2 (20)

This elastic critical buckling load value is shown in Fig. 10 as the
horizontal line Euler for a column with global slenderness
λ N N= / = 1y cr . This figure also depicts the other key curves in a
normalised load–total lateral deflection format, as described below.

Assuming that the initial imperfect shape takes the form v0=d0 sin
(πx/L), the relationship between the axial load and the mid-height
lateral deflection, can be written in the form of Eq. (21) [26]. This

Fig. 5. Axial load and minor axis moment interaction curves for an I-section, with
normalised outer fibre strain limits ϵu/ϵy=0.5,0.8,1,2,3,4,5,6,15.

Fig. 6. Axial load and major axis moment interaction curves for a circular hollow section,
with normalised outer fibre strain limits ϵu/ϵy=0.5,0.8,1,2,3,4,5,6,15.

Fig. 7. Moment–curvature–thrust curves for an I-section, in minor axis bending.

Fig. 8. Moment–curvature–thrust curves for a circular hollow section.
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equation describes the elastic load–mid-height lateral deflection rela-
tionship, which is asymptotic to the Euler buckling load for d0> 0. This
is plotted in Fig. 10 as curve Elastic for a given initial imperfection d0/
L=0.002 at x=L/2.

N
N

d
d

= 1 − z

zcr

0,

t, (21)

This Elastic curve in Fig. 10 highlights a fundamental characteristic of
the imperfect column system, which is the amplification of lateral
deflections due to geometric effects. This is because on the application
of the concentric axial load N, a bending moment distribution M(x)
=Nvt(x) is formed throughout the column height. This creates further

lateral deflections, which in turn creates additional bending moments,
and the process continues until equilibrium is achieved. These geo-
metric second order effects mean that the flexural rigidity which
provides the stiffness to oppose the lateral deflections, becomes an
important variable, as the deformed geometry provides feedback into
the system.

Further complicating the response of the column is that the
elastically derived equations are only valid while the material stresses
and strains are below the yield values (f ≤ fy and ϵ ≤ ϵy), while in
practice the inelastic behaviour of the material, such as its strain
hardening potential and failure strains are also important. A yield
limited approach which offers an estimate of the axial load-carrying
capacity, assuming that the cross-section will not buckle locally before
first yield, is found by tracing the elastic path of Eq. (21) until f= fy is
reached at the most stressed outer-fibres. This occurs when axial
compressive stresses combine with the bending compressive stresses
on the concave side of the column, and is commonly represented by the
Perry–Robertson formula given by Eq. (22),

⎡
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y
e

cr

y

2
cr

y (22)

with ηe=Ad0/Wel. This is plotted in Fig. 10 as the Yield limit curve, for a
suite of d0 (initial imperfection) values.

An upper bound N–dt curve can be found based on the cross-section
limiting strain ϵu by using dt=M/N and dividing each moment on the
N–M interaction curves by the axial loads N. This represents the
ultimate cross-section capacity with no influence from global effects.
This upper bound curve is plotted in Fig. 10 for a strain ratio of 15 as
Ultimate limit.

The actual response (within the assumptions of the problem setup),
is plotted in Fig. 10 as the curve Inelastic, and begins at N=0 and
dt=d0, and initially follows the Elastic curve until the Yield limit curve
is reached, indicating first yielding at x=L/2. After the first yield point,
the flexural rigidity will quickly deteriorate at x=L/2 as the material
plastically deforms, but some additional load up until the peak load Nu

can still be carried. After this inelastic peak load, which is plotted in
Fig. 10 as Peak, the column can no longer be in equilibrium for an
increase in axial load N, and so an unloading path is followed and
associated with further lateral deflections. This unloading continues
until the Ultimate limit curve is reached, when the strains at the critical
mid-height cross-section reach the limiting strain ϵu and the cross-
section fails locally. The difficulty in finding the peak load Nu, is that
beyond the first yield point a combination of geometric effects and
material non-linearity combine to deteriorate the flexural stiffness of
the column. It is here that the cross-section flexural stiffness can be
introduced from the curves generated in Section 4 to help solve the
problem.

5.2. Numerical solution

A variety of numerical solutions exist in finding the load-deflection
behaviour of members subject to compression and first or second order
bending [2,27]; here, the fundamental static-equilibrium equation will
be paired with the M-κ-N curves to form a solution. It is important to
outlay some of the assumptions utilised in this approach: 1) pinned
boundary conditions at the column ends; 2) shear deformations are not
influential in the lateral deformations, and so the method is not
applicable to short members; 3) load reversal is not considered and
the solution for a given applied load does not depend on the stress states
at the previous applied loading level; 4) deformations are not excessive
such that the inclination of the internal axial load meets the supports far
from vertical (which for the example problem is satisfied at peak load
and soon after), 5) residual stresses are not explicitly included but may
be represented by an enhanced initial imperfection amplitude, and 6)
axial strains are not significant such that the member can be considered

(a) Initial imperfection (b) Response under load

Fig. 9. Pin-ended and concentrically loaded imperfect column.

Fig. 10. Normalised load–lateral displacement curve for an imperfect column.
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inextensible at length L.
The differential equation given by Eq. (23) describes the equili-

brium between an external applied moment M, and the internal
resisting moment ĒIκ , where ĒI represents the elastic or inelastic
flexural stiffness, through an effective Young's modulus Ē , and curva-
ture κ adopts its large deflection definition.

⎡
⎣⎢

⎤
⎦⎥( )

ĒIκ ĒI M=

1+

= − .
v

x

v
x

d
d

d
d

2
3
2

2

2

(23)

For a pin-ended compression member of length L there exists boundary
conditions v(0)=0 and v(L)=0. Eq. (23) is a boundary valued, non-
linear, second order, ordinary differential equation that can be for-
matted into two first order, ordinary differential equations with
M=Nvt=N(v0+v) and for a given axial load and initial mid-height
deflection d0. This gives Eqs. (24) to (26):

v v=1 (24)

v v
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2
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2
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2
(26)

The key complication in this formulation is that ĒI is itself a function of
curvature, which includes the highest derivative d2v/dx2 and also
varies with x. Recall that the gradient of a cross-section's moment–cur-
vature curve gives the effective flexural rigidity; this is the first
derivative of the moment–curvature function with respect to curvature.
The effective flexural rigidity provides information on the ability of the
cross-section to carry additional bending based on its current elastic or
inelastic state. For every (M,κ,N) point on the moment–curvature–thrust
curves, the gradient ĒI is calculated. ĒI can be posed as a function of
the total deflection so that ĒI f v= ( )t as deflections will be solved for in
the ODE. Therefore we can plot ĒI against vt=M/N, as M and N are
known for all positions on a given curve. This is a powerful feature of
using moment–curvature–thrust curves, in that they can be transformed
readily into the format needed for the particular analysis. This gives the
effective flexural rigidity–total deflection curves of Fig. 11.

The effective flexural rigidity starts at the elastic value ĒI EI= and
stays constant while the cross-section is elastic, before dropping sharply
as the cross-section yields and more material switches from a stiffness of

Ē E= to Ē E= sh. This transition between two stiffness values is a
consequence of using a bi-linear material model; material models with
different characteristics will give different curves, so for example, a
rounded stress–strain curve will give a smoother degradation of
stiffness ĒI . The generated ĒI–vt plots allow ĒI in Eq. (26) to be
replaced with the function f(vt)= f(d0 sin(πx/L)+v1), which gives Eq.
(27). The function f(vt) is formed by linearly interpolating between the
discrete data points from Fig. 11, with many datapoints used along the
curve for improved interpolation accuracy.

v
x

N d πx L v
f d πx L v

vd
d

= − [ sin ( / )+ ]
( sin ( / )+ )

(1+ ) .2 0 1

0 1
2
2 3

2
(27)

The differential equation is now in a format to be solved, with the
solution presented here derived using MATLAB [28] with the boundary
valued ordinary differential equation solver function BVP4C.m. The
resulting accuracy of the solutions is set to a relative error of 0.1%. The
results are for a universal column cross-section buckling about the
minor axis, with d0/L=1/250 and λ N N= / = 1y cr and giving a peak
load (marked with a dashed red line in the following figures) of
Nu=0.557Ny. The direct results from the solution of the ODE are v1
and v2, which are the lateral displacements v and the slopes θ at each
point along the member height.

The normalised lateral displacements v along the member length are
plotted in Fig. 12. It can be seen that, as a consequence of the linear
elastic material response up to fy, the member assumes a sinusoidal
deflected shape until first yield and also a close approximation to a sine
shape at the peak load (highlighted with the dashed line). The
deformed shape then becomes more pointed during the post-peak
unloading phase as the mid-height cross-section loses its flexural
rigidity due to material yielding and lateral deflections increasing
rapidly.

For the slope θ in Fig. 13, a cosine function as the derivative of the
sine displacements is observed for the elastic region until a sharp
change of slope is witnessed at mid-height as the cross-section yields. As
the second derivative, the curvature appears again as a sine function for
the elastic case in Fig. 14. Since curvature κ is not a direct result of the
ODE analysis, it is found by calculating the slope of the θ—x/L plot. The
presence of a yielding zone between approximately x/L=0.4 and x/
L=0.6 is apparent in this plot as a spike of curvature values.

Fig. 11. Curves for ĒI–vt–N derived from M–κ–N curves, for minor axis bending of an I-
section with a bi-linear material model.

Fig. 12. Displacements from the BVP4C solution of an I-section UC under increasing axial
load (dashed line indicates N=Nu). (For interpretation of the references to colour in this
figure, the reader is referred to the web version of this article.)
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Fig. 15 shows the distribution of yielding at the peak load
(N=0.557Ny) and during the unloading phase for N=0.50Ny,
N=0.45Ny, N=0.40Ny. The plots illustrate the stress magnitude
distribution throughout the member, with the areas of lower stress in
black and the areas that have yielded displayed in white. The concave
side of the member is on the right-hand-side; this is where the
compressive stresses from the axial load and the bending moment
combine to cause first yielding on the inner-face.

The stress distribution at peak load shows that the majority of the
member is still elastic, with yielding confined to the inner surface at
mid-height. Yielding expands to cover a wide hinge region between x/
L=0.4 and x/L=0.6, with the distribution of yielding becoming closer
to symmetric about the cross-section as flexure in the unloading stages
becomes increasingly dominant due to the greater (M=Nvt) second

order effects.

6. Conclusions

Moment-curvature-thrust curves provide useful data to assist in the
solution of a variety of inelastic and geometrically non-linear structural
problems involving beam-columns. Information on deflections, curva-
tures and stress or strain distributions can be found by discretising the
beam-column and, using the M–κ–N curves, integrating over the
member length. The M–κ–N curves are generated numerically in this
paper.

The method involves defining a linear strain distribution throughout
the cross-section, based on the superposition of a uniform strain and a
linearly varying strain representing pure compression and flexure,
respectively. The strain distribution is limited by a local buckling strain
based on the Continuous Strength Method, which designates a com-
pressive ultimate strain to signal the attainment of the ultimate strength
of the cross-section by elastic or inelastic local buckling. The local
buckling strain can be predicted from CSM base curves derived from
experimental observations. The cross-section to be analysed must be

Fig. 13. Rotations from the BVP4C solution of an I-section UC under increasing axial load
(dashed line indicates N=Nu). (For interpretation of the references to colour in this
figure, the reader is referred to the web version of this article.)

Fig. 14. Curvatures from the BVP4C solution of an I-section UC under increasing axial
load (dashed line indicates N=Nu). (For interpretation of the references to colour in this
figure, the reader is referred to the web version of this article.)

Fig. 15. Stress distribution at the peak load and during unloading for a member showing
a distinct yield zone or plastic hinge (compression side to the right).
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first discretised and the strength then calculated by appropriate
integration/summations over the elements from the stress and strain
profiles, where the stresses are determined from the driving strain
distribution and the chosen material model.

The pairing of axial load and bending moment values leads to cross-
section interaction curves, for the given limiting failure strain. These
are shown herein for steel I-sections bending about either the major or
minor axis and circular hollow sections, but the general strain driven
approach can to applied to a far wider variety of cross-section shapes
and materials. By drawing a constant axial load line intersecting these
curves, all of the moment and curvature data can be extracted, giving
the information to produce the M–κ–N curves. These curves show how
the moment that the cross-section can endure, varies with the axial load
level, and the curvature (deformation) that is needed. The gradient of
the curves gives the inelastic effective flexural stiffness ĒI , which is an
important parameter in numerical methods and used to calculate
deflections. A unique characteristic of the method, is that by defining
the limiting cross-section strain with the Continuous Strength Method,
local buckling can be captured and hence the moment-curvature-curves
implicitly include a termination point related to the strength of the
cross-section. Application of the moment–curvature–thrust curves to
the solution of a beam-column problem is demonstrated by means of an
example, in which the full load–deformation history of the member
could be successfully traced.
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