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Abstract

This dissertation presents a computational framework for structural design
applications based on 3D graphic statics using polyhedral force diagrams.
At the core of this framework is the development of a generalised theoretical
foundation for 3D graphic statics, underpinned by the formulation of three
datastructures for addressing a wide range of equilibrium problems involv-
ing spatial systems of forces: a polyhedral cell, the multi-cell polyhedron, and
generalised cell networks. The three datastructures along with the relevant
operations and geometric algorithms are implemented in an open-source
library with interactive user interfaces to common computational design
environments targeting both architects and structural engineers.

The framework is developed with the goal of maximising the inherent
benefits of computational graphic statics, which diminish with increasing
complexity of spatial structures: legible visualisation of force equilibrium,
intuitive designer interactivity in real time, and provision of new structural
design insights. In contrast to conventional numerical approaches to struc-
tural design that are dependent on predefined forms before any analysis can
be executed, the presented framework enables new design methodologies
that explore the geometry of forces as the catalyst for design, analysis, and
refinement of spatial structures.

These new potentials are illustrated through numerous examples, showcas-
ing how the framework could be used to address structural design problems
in a variety of new ways that are simply not possible with existing, form-
dependent tools. Beyond equilibrium design and analysis, the practical
relevance of this research in architectural fabrication and construction is
demonstrated through the MycoTree project, a 1-to-1 built prototype of a
spatially branching structure made of load-bearing mycelium components.
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Zusammenfassung

Die vorliegende Dissertation stellt rechnergestützte Methoden und Grund-
lagen für den Entwurf von Tragwerken auf Basis der dreidimensionalen
graphischen Statik unter Verwendung polyedrischer Kraftdiagramme vor.
Im Mittelpunkt der Arbeit steht die Entwicklung einer verallgemeinerten,
theoretischen Grundlage für die dreidimensionale graphische Statik, die
durch die Formulierung von drei verschiedenen Datenstrukturen zur
Bewältigung einer Vielzahl von Gleichgewichtsproblemen räumlicher Trag-
werke gestützt wird. Die drei Datenstrukturen basieren auf einzelnen
Polyedern, mehrzelligen, zusammengesetzten Polyedern und verallgemein-
erten Polyedernetzwerken. Zusammen mit entsprechenden Operationen
und geometrischen Algorithmen sind sie Teil einer Open-Source-Bibliothek,
die mittels interaktiven Benutzeroberflächen für gängige CAD Anwendun-
gen auf die Bedürfnisse von Architekten und Ingenieuren zugeschnitten ist.

Die Programmbibliothek wurde mit dem Ziel entwickelt, die inhärenten
Vorteile der rechnergestützten grafischen Statik zu maximieren, die mit
zunehmender Komplexität der räumlichen Strukturen abnehmen. Hierzu
gehört die Lesbarkeit der Visualisierung des Kräftegleichgewichts, eine
intuitive Entwurfsumgebung mit Echtzeitinteraktivität und der Erkenntnis-
gewinn beim Entwerfen von Tragwerken. Im Gegensatz zu herkömmlichen,
numerischen Ansätzen zur Entwicklung von Tragsystemen, die vor jeder
Analyse eine vordefinierte Form benötigen, ermöglicht der vorgestellte
Ansatz neue Entwurfsmethoden, für welche die geometrische Lesbarkeit der
Kräfte als Katalysator für den Entwurf, die Analyse und die Optimierung
räumlicher Strukturen dient.

Diese neuen Potenziale werden an zahlreichen Beispielen veranschaulicht
und zeigen, wie mit der vorgestellten Herangehensweise tragstrukturelle
Gestaltungsprobleme auf vielfältige und neue Weise angegangen werden
können, die mit bestehenden Methoden nicht oder nur mit erheblichem
Aufwand lösbar sind. Neben neuen Ansätzen zum Entwurf und zur Analyse
von Tragwerken wird die praktische Anwendung der Forschungsarbeit
am Beispiel der Herstellung und Konstruktion des MycoTree Projekts
demonstriert. Der architektonische Prototyp im Massstab 1:1 besteht aus
einer verzweigten Struktur bestehend aus tragenden Mycelelementen.
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Part I

Introduction
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1 Research Statement

This chapter introduces the research topic, the motivation and the thesis
statement. Also presented in this chapter is the summary of the original
contributions that will be made by this dissertation. Finally, the importance
and relevance of this research endeavour within the context of contemporary
design culture in architecture and structural engineering are discussed.

1.1 Introduction

Graphic statics is a design and analysis method for two-dimensional (2D)
discrete structures, that relies on geometrical rather than analytical or
numerical representations of the relation between a structure’s geometry
and the equilibrium of its internal forces (Maxwell, 1864; Culmann, 1864;
Cremona, 1890). Graphical representation of equilibrium using reciprocal
form and force diagrams provides invaluable insight for designers and
improves intuitive understanding of a structure’s behaviour through a visual
medium that is easier to digest and more transparent than conventional,
arithmetic or numerical methods (Allen and Zalewski, 2009).

Graphic statics gradually disappeared from structural engineering practice
over the 20th century due to the advancement of computers and powerful
numerical software. However, there has been a recent revival of graphic stat-
ics through computational implementations, which have enabled dynamic
interaction between form and force diagrams with real-time, visual feedback
(Van Mele et al., 2012). These interactive implementations of graphic statics
allow users to directly control the geometry of forces, which enable force-
driven design approaches with high formal freedom to explore structurally
informed geometries during early stages of design.

More recently, graphic statics has been extended into the third dimension
(3D) (Akbarzadeh et al., 2015b; McRobie, 2017a), where the equilibrium of
spatial systems of forces can be represented by closed force polyhedrons
(Rankine, 1864). It has also been shown that the reciprocal diagrams used in
graphic statics, are planar projections or sections of polyhedral frames and
its reciprocal force polyhedrons; 2D graphic statics is a special case of a more
general 3D graphic statics (Crapo and Whiteley, 1993; Mitchell et al., 2016;
McRobie and Williams, 2018). Therefore, 3D graphic statics not only provides
the possibility to model and analyse equilibrium of spatial structures in
an interactive manner, but also offers a profoundly new perspective and
approach to 2D problems and applications.

7



8 Chapter 1. Research Statement

One of the the most unique properties of computational graphic statics is
that the form of the structure can be modified or controlled through the
geometry of the force diagrams. Whereas most conventional structural de-
sign or analysis software are dependent on predefined forms, computational
graphic statics provides drastically different ways of approaching structural
design problems by using the geometry of the force diagrams as the catalyst
for design, analysis and optimisation. Exploration of structural forms by
constraining, optimising, manipulating and designing the geometry of
the force diagrams has the potential to significantly broaden the design
space. Computational implementations of graphic statics through interactive
platforms enable uninhibited exploration of these new force-driven design
spaces, and discovery of unforeseen structural possibilities freed from any
institutionalised biases or prejudices.

1.2 Thesis statement

1.2.1 Open design problems in 3D graphic statics

This dissertation presents a computational framework for structural design
applications based on 3D graphic statics using polyhedral force diagrams. It
identifies key open problems in 3D graphic statics and addresses them from
the perspective of a designer in practice, with particular focus on maximising
applicability and usability of the mathematical theories behind the reciprocal
relationship of form and force diagrams in three dimensions. The research
objectives are defined based on these open problems, and they are are
contextualised in a proposed design workflow using 3D graphic statics
(Figure 1.1): 1) addressing realistic boundary conditions; 2) discovering
new methods of generating spatial topologies; 3) exploring non-polyhedral
forms; and 4) materialising spatial structures generated with 3D graphic
statics. The ultimate goal of this research is to explore and understand the
pragmatic design potential of 3D graphic statics in real-world applications.

Figure 1.1: Proposed design workflow using 3D graphic statics and the four research objectives.
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1.2.2 Lack of computational framework for 3D graphic stat-
ics

Despite its benefits for both academic research and professional architecture
and structural engineering practices, there currently exists no general
computational design framework for 3D graphic statics. New publications
of graphic statics are often stand-alone implementations with their own set
of conventions, computational languages and software dependencies, which
make them incompatible or unusable by other researchers. New knowledge
is often shared through papers in physical or digital formats that describe the
computational implementations with text and static images without actually
delivering any computational means to the readers. A new researcher who
is interested in 3D graphic statics must start his or her implementation
from scratch, unless he or she joins a research group with an established
computational framework. The lack of a unifying platform or computational
environment for graphic statics makes it difficult to start new strands of
research or continue existing ones.

This dissertation seeks to address this issue by developing a generalised
computational framework for 3D graphic statics based on polyhedral
reciprocal diagrams. First, a theoretical foundation will be developed with
different datastructures geared towards various types of problems involving
the equilibrium of spatial systems of forces. Then, a wide range of operations

Figure 1.2: Exchange of knowledge and implementations of computational graphic statics
remain largely based on text-based paper formats, with no unifying computational framework
that is openly available to the research community.
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and algorithms will be developed that enable these datastructures to be used
in a computational design environment. Integration of the framework with
CAD software through interactive user interfaces enables exploration of new
structural design applications using 3D graphic statics. Most importantly, the
presented framework will be made available to the public through an open-
source library, which is intended to be an evolving repository and platform
for future research in computational geometry and graphic statics.

1.3 Originality

This dissertation makes original and unique contributions to the field of
graphic statics in the following ways:

• New datastructures for 3D graphic statics
Three datastructures are developed for addressing a wide range of
equilibrium problems involving spatial systems of forces: a polyhedral
cell, the multi-cell polyhedron, and general cell networks.

• Generalisation of polyhedral force diagrams
The cell network datastructure is introduced as a generalisation of
polyhedral reciprocal diagrams. While a polyhedral force diagram
represents the static equilibrium of a form diagram that is also
polyhedral in its geometry, a generalised cell network can represent
the static equilibrium of either polyhedral and non-polyhedral spatial
trusses, which are nodally loaded and comprised of straight bars. Cell
networks expand the typologies of structures that can be explored
with 3D graphic statics, and enable more explicit force-driven design
investigations.

• Iterative geometric approach
The operations and algorithms designed for these datastructures are
developed with iterative geometric solvers. The more traditional,
procedural construction of form and force diagrams is useful for
teaching and understanding the principles of graphic statics. How-
ever, they are not ideal for interactive design environments where
the reciprocal diagrams may require constant updates and repeated
reconstructions. Especially for spatial structures, an algorithmic non-
procedural approach to the construction, transformation and visuali-
sation of polyhedral force diagrams is necessary.

• Improving the visualisation of reciprocal diagrams
Techniques for enhancing the visual representation and legibility
of polyhedral reciprocal diagrams are investigated. While the focus
of graphic statics research is typically on the geometric properties
of the diagrams, the user’s ability to visually decipher, understand
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and manipulate the complex polyhedral reciprocal diagram is critical
in improving the overall usability of 3D graphic statics in design
applications.

• Linking graphic statics to fabrication
This dissertation investigates how the inherent geometric properties of
polyhedral reciprocal diagrams can be exploited for the materialisation
and fabrication of spatial structures. It is shown that complex spatial
structures can be fabricated and assembled using flat sheet materials
that are cut with relatively inexpensive 2-axis CNC processes.

• Open-source library
The presented computational framework is implemented in an open-
source library that can be freely downloaded by the public, making
computational graphic statics available to all. Every line of code is
accessible, which is necessary for understanding the implemented
concepts, collaboration with other researchers and customisation of the
computational methodologies. The open nature of the framework is
intended to encourage users to constantly test and make contributions
that improve upon the preceding releases of the framework, and
thereby collectively help it grow and evolve.

1.4 Relevance

This section discusses the importance and relevance of this research, and
research in graphic statics in general, within the context of contemporary
design culture and practice.

1.4.1 Advent of research in graphic statics

In recent years, there has been a rise of interest and research within the
field of graphic statics. This is mainly due to the new design and research
possibilities that arise when graphic statics is combined with advanced
parametric and computer-aided design (CAD) software, which are readily
available today. The three-dimensional modelling capabilities of most CAD
software used in architectural design allows structural design explorations
using 3D graphic statics based on polyhedral reciprocal diagrams, which was
challenging with 2D drafting tools or software.

Over the past three decades, the annual number of publications written
in English on graphic statics have increased at an almost exponential rate
(Figure 1.3). Although the origins of graphic statics date back to the 18th

century, computational graphic statics and 3D graphic statics in particular,
are new emerging areas of research with countless design and research
opportunities yet to be discovered.
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Figure 1.3: History of graphic statics related publications in English by year, where “graphic
statics” or “graphical statics” is included in either the title or within the document. Some of the
notable publications on Goolge Scholar (2018) that are relevant to the content of this dissertation
from the past three decades are highlighted.
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1.4.2 Towards a new design paradigm

Research in graphic statics continues to be relevant and important in today’s
“design-by-analysis" paradigm. While powerful finite element (FE) software
can analyse almost any geometry and output significant amount of data,
colour gradients and pages of numerical feedback do not provide nearly
as much immediate insight compared to graphic statics through visible,
geometric relationship between form and forces. More importantly, the
visualisation of the structure’s internal forces is also the mechanism for
the user to interact with both the form and the forces of the structure,
which is uniquely exclusive to graphic statics. The relevance of further
research in graphic statics lies in describing increasingly more complex
things in simpler ways, as opposed to an accumulation of simple procedures
to describe complex things. New computational tools should distil and
communicate large amounts of complex information in a meaningful and
insightful manner, making designers smarter and better decision-makers.

1.4.3 Discovery of new structural forms

In addition to the intuitive, geometric representation of form and forces,
there is relevance in investigating another powerful design potential of
graphic statics: discovering new structures and design strategies through
manipulations of the geometry of force diagrams. Force-driven structural
design allows designers to discover new structural typologies and design
possibilities that are not only spatially complex and always constrained to be
in static equilibrium, but also freed from any previous biases towards known
geometries or typologies. In order to overcome the predefined typologies,
the computational logic of the tools that allow designers to generate and
analyse such structures need to be reassessed, as pointed out by Laurent Ney
(Adriaenssens et al., 2010, p. 41):

“A choice is made from an extensive structural vocabulary
built up over the last two centuries. ... A typology has a name,
and the form and the relationship between the elements is
described. The advantage of this is that it is easy to talk about
structure, but the disadvantage is that how the structure looks
is predetermined. ... the vocabulary freezes the object, and the
objects thus frozen assume a sort of inviolable legitimacy. In order
to arrive at new forms and concepts we have to free ourselves
from such pre-defined typologies.”

Unbiased exploration of unconventional structures are challenging to im-
plement with conventional software and workflow, where an FE analysis
software requires an input shape before it can run any analysis. Relevance
lies in being able to discover and explore new structures while providing
just as much control and freedom as with known typologies.
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1.4.4 Practical relevance to digital fabrication

The institutionalised separation of form (architecture), forces (structure),
and material (fabrication/construction) has resulted in a geometry-driven
contemporary design culture (Oxman, 2010). The development and logic
of CAD software used by the architects and FE software used by the
structural engineers are also based on this separation of form and forces.
This gap between form and forces can be bridged through use of the
built-in geometric properties of the reciprocal diagrams to graphically
represent the relationship between the geometry of the form and forces
of a structure. However, as it is often the case with free-form geometries
that are computationally generated, materiality is typically conceptualised
as a passive property assigned to a finalised geometry during later stages
of design (Menges, 2012). The inherent geometric properties of polyhedral
force diagrams have numerous benefits that can be exploited to optimise and
simplify the fabrication process of complex spatial structures. As graphic
statics provides a geometry-based understanding of structures, geometry-
based materialisation is an important topic of research for fabricating,
assembling and constructing computational design models more efficiently,
economically and sustainably.

1.5 Thesis structure and outline

This section summarises the structure and organisation of the dissertation.
The dissertation is divided into four main parts. The first part, titled
“Introduction,” presents the research topic, the motivation and the thesis
statement. It also outlines the originality and the relevance of the pre-
sented research. The second part, “Framework,” presents the theoretical
background and the technical implementation details of the computational
framework. With illustrations and annotated diagrams, various components
of the framework are described in detail. In the third part, “Applications,”
research results are presented, demonstrating the new force-driven design
potentials of 3D graphic statics enabled by the framework. Finally, in the
fourth part, “Conclusions,” concluding remarks and possible directions for
future research are discussed. The following synopses of each of the chapters
provide a detailed overview of the contents of this dissertation.

Part I: Introduction

Chapter 1: Research statements

This chapter introduces the topic, the motivation, the originality and the
relevance of the research conducted in this dissertation. It provides a brief
contextualisation and preview of the entire dissertation. A much more in-
depth literature review and scope of work are presented in the following
chapters.
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Chapter 2: Literature review

This chapter provides an in-depth review of the current state of the art
on the relevant topics and previous research. First, a brief summary of the
evolution of graphic statics is provided. Then, the recent developments of
computational graphic statics and 3D graphic statics are surveyed and re-
viewed. Relevant computational implementations for polyhedral geometries
are also reviewed and analysed. Finally, an overview of existing methods for
materialisation and fabrication of spatial structures are presented.

Chapter 3: Scope of work

Based on the literature review, this chapter presents the scope of work for this
dissertation. The problem statements are clearly identified and the specific
challenges that will be addressed, are described. Research objectives are then
defined, outlining the detailed goals that will be pursued.

Part II: Framework

Chapter 4: Theoretical background

This chapter presents the theoretical background of the computational
framework. The described concepts are developed in response to the
shortcomings and limitations of 3D graphic statics outlined in Chapter 3.
At the core of the presented theoretical background is the establishment
of three datastructures that can be used to address different types of
equilibrium problems using 3D graphic statics: a polyhedral cell, the multi-
cell polyhedron, and general cell networks.

In the section “Polyhedral cell,” a datastructure is presented that can be used
to represent the equilibrium of a single node of a structure, or to describe the
global equilibrium of the external forces acting on a structure. This section
also highlights and addresses numerous unresolved issues in the current
state of the art in order to construct a generalised computational framework
that can sufficiently handle both convex and non-convex polyhedrons. Much
of the new theoretical foundation is formulated using the Extended Gaussian
Image (Horn, 1984), which is a spherical representation of a polyhedron
that has numerous benefits with regards to the topological visualisation,
understanding and transformations of the polyhedron.

In the section “Multi-cell polyhedron,” a datastructure is presented for
representing the equilibrium of a multi-node structure that is polyhedral
in its geometry. The topological structure, the interpretation of the corre-
sponding forces in the form diagram and the cellular hierarchy of multi-cell
polyhedrons are explained in detail.

In the section “Cell network,” a datastructure is presented for representing
the equilibrium of nodally-loaded spatial trusses comprised of straight bars.
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A cell network is the generalisation of all polyhedral force diagrams. The
theoretical background for cell networks is developed and its relevance
to 3D graphic statics is discussed. A cell network is a hybrid of multiple
datastructures, and the organisation of the different layers of datastructures
is explained in detail.

Chapter 5: compas_3gs

This chapter presents compas_3gs, a computational implementation of
the concepts presented in the previous chapter. This chapter provides an
overview of the general approach and the organisational structure of the
library. The main datastructures of the COMPAS framework (Van Mele
et al., 2017) are introduced, and how they are used to represent the 3D
form and force diagrams are explained. Some of the key algorithms of the
compas_3gs are also presented. Finally, in the section “CAD integration,”
strategies for the integration of the presented framework with a CAD
software is presented. Although the framework is not dependent on any
specific CAD software, Rhinoceros (Robert Mcneel & Associates, 1993) was
used as the “canvas” and the user interface for this dissertation. As such,
various visualisation and built-in interactive functions of Rhinoceros that
were used for the implementation are described.

Part III: Applications

Chapter 6: Addressing boundary conditions

This chapter demonstrates how the Extended Gaussian Image and arearisa-
tion algorithm presented in Chapters 4 and 5, respectively, can be used for
constructing global force polyhedrons. It is shown how the magnitudes and
orientations of the external forces can be constrained during the construction
process to address various boundary condition scenarios.

Chapter 7: Generating new topologies

This chapter presents form-finding and shape explorations through geo-
metric transformations and modifications of polyhedral cells and multi-
cell polyhedrons. Utilising various geometric transformation functionalities
of compas_3gs, cells of the polyhedral force diagrams can be repeatedly
manipulated to generate, modify and refine the geometry of the form
diagram. The workflow and the computational setup of this application are
presented and described in detail.

The design examples in this chapter will demonstrate how the presented
method can be used to discover new three-dimensional structural topologies
without the biases towards conventional solutions. In addition, the method-
ology presented in this chapter provide an alternative design strategy for
two-dimensional problems using prismatic polyhedral cells. This chapter
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concludes by identifying directions for further research, and how the
generative aspect of this method can potentially be combined with other
data-driven design and machine learning techniques.

Chapter 8: Exploring non-polyhedral structures

This chapter presents how cell networks can be used to explore equilibrated
spatial structures that are not polyhedral in its geometry. Additionally,
cell networks enable a more force-driven design applications using 3D
graphic statics through more precise control of the face areas of individual
polyhedral cells. Whereas the shape explorations focused more on the
control and manipulations of the geometry of the polyhedral force diagram,
this chapter demonstrates how more quantitative, force-driven constraints
can be incorporated during the design process.

The examples presented in this chapter showcase new structural typologies
that are not realisable with previous implementations of polyhedral 3D
graphic statics. The concept behind the workflow and the computational
setup of this application is explained in detail with flowcharts and illustra-
tions. Finally, this chapter concludes by discussing potential future research
and applications particularly within the context of structural engineering.

Chapter 9: Materialising 3D graphic statics

This chapter presents fabrication-related applications of 3D graphic statics.
These applications are demonstrated through the form finding and fabrica-
tion design of the MycoTree project, exhibited at the 2017 Seoul Biennale
of Architecture and Urbanism. In addition to the general form finding and
equilibrium analysis of the structural geometry, this chapter demonstrates
how the polyhedral functionalities and transformations can facilitate in
formulating logical and feasible fabrication and construction pipelines.
The design methodology, form-finding process and the development of
the fabrication geometry are all presented in detail with diagrams and
photographs. This chapter concludes by discussing key issues that have
room for improvements in future research.

Part IV: Conclusions

Chapter 10: Conclusion

The final chapter summarises the key contributions of this dissertation and
discusses how the research objectives were met. The relevance and potential
impact of the contributions within the fields of architecture, structural
engineering, digital fabrication and computational geometry are briefly
discussed. Finally, the limitations of the presented framework and methods
are explained, and directions for future work are discussed. This chapter
concludes by stating the final reflections.





2 Literature Review

This chapter provides an in-depth review of the relevant literature and
previous work. First, a brief overview of the evolution of graphic statics
is presented. The causes of its rise and decline over the course of the
20th century are discussed. The recent revival and research developments
of graphic statics using computational tools is reviewed. Ranging from
algebraic formulations of graphic statics, structural optimisation using
reciprocal diagrams to 3D graphic statics, the latest state of the art in
computational graphic statics is reviewed and discussed. Additionally,
existing force-driven design methods, computational tools for polyhedral
geometries and methods for materialising spatial structures are surveyed.
This chapter concludes by providing a summary of the literature review
and identifying key research gaps which will be used to define the problem
statements and research objectives in the next chapter.

2.1 Graphic statics
This section provides a brief history of graphic statics. A thorough historical
summary of graphic statics can be found in The History of the Theory of
Structures by Karl-Eugen Kurrer (2008) and Symmetrie Gruppe Dualität by
Erhard Scholz (1989).

Origins of graphical analysis of forces dates back to as early as the 16th

century. Simon Stevin (1586) graphically showed the balance of forces on
inclined planes using diagrams of weighted ropes. Pierre Varignon’s Nouvelle
Mécanique ou Statique (1725) is one of the first evidence of the use of funicular
polygons or polygons of forces to describe the static equilibrium of internal
forces of simple structures and systems of tensioned ropes (Figure 2.1).

By early 19th century, the concepts of funicular polygons are used by
mathematicians, scientists and engineers to visualise, analyse and under-
stand the equilibrium of a system of forces (Poncelet, 1822; Lamé and
Clapeyron, 1828). William John Macquorn Rankine (1858) demonstrated
how funicular polygons can be used to compute the internal forces of
statically determinate trusses. James Clerk Maxwell’s publications (1864;
1870) established the theory of the reciprocal relationship between the form
and force diagrams of structures. Graphical methods of analysing static
equilibrium was formally introduced to the field of structural engineering
as “graphic statics,” through Karl Culmann’s seminal book, Die Graphische
Statik (1864). Based on Culmman’s graphical methods and Maxwell’s theory
of reciprocal diagrams, Luigi Cremona introduced a procedural method

19
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Figure 2.1: Drawings of funicular polygons in Nouvelle Mécanique ou Statique (Varignon, 1725)
that graphically represent the static equilibrium of a system of ropes, which are assumed to be
not extensible, under various loading conditions.

for constructing reciprocal diagrams (1872). It is not until Thomas Hudson
Beare’s English translation of Cremona’s book (1890) that graphic statics
spreads to English-speaking markets.
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Figure 2.2: Notable cast-iron structure built in the late 19th century: a) Royal Albert Bridge by
Isambard Kingdom Brunel in 1859; b) Garabit Viaduct by Gustav Eiffel and Maurice Koechlin
in 1884; c) The Eiffel Tower by Eiffel and his apprentices, Maurice Koechlin and Emile Nouguier
in 1887; and d) Forth Bridge by Sir John Fowler and Sir Benjamin Baker in 1890. (Image credit:
a) Norman Lockett; b) rochagneux – Fotolia; c) Wiki Commons; and d) Ray Devlin)

During the late 19th century, the rise of the popularity of graphic statics was
due to the fact that it was the perfect, complementary analysis technique
for emerging discrete and pin-jointed cast-iron structures (Kurrer, 2008).
Compared to more traditional stone and timber structures, pin-jointd cast-
iron structures are made of a series of linear elements that carry axial
forces only. The rapid change in the use of building materials, especially
in bridge construction, introduced drastically new structural typologies
such as trusses, suspended structures and lattice systems (Ewert, 2002).
Because the equilibrium of force can be graphically resolved, these new
complex structural forms could be designed and analysed without the need
of complicated numerical methods or tedious manual calculations. Notable
structural engineers of the 19th century are known to have used graphic
statics to varying degrees, to design and analyse some of the world’s most
recognisable structures that are still standing today (Figure 2.2).

At the turn of the 20th century, the building industry witnessed a growth in
reinforced concrete construction. Graphic statics, which is appropriate for
structures with linear members carrying axial forces only, was no longer
adequate for analysing structures made of solid and indeterminate materials
like concrete. As a result, the methods of designing and analysing structures
gradually became more dependent on numerical methods based on linear
algebra. Additionally, the increasing computational power of computers
gave birth to FE modelling and analysis, which was much faster and efficient
than manually drafting form and force diagrams by hand on paper.

The emergence and decline of graphic statics in the field of structural
engineering is clearly reflected by the rise and fall of the use of the
phrase “graphic statics“ in literature over the course of the 20th century.
Figure 2.3 shows Ngram Viewer (Schmidt and Heckendorf, 2017) results
for: “graphische Statik” (Figure 2.3-a); and “graphic statics” and “graphical
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Figure 2.3: Google Ngram Viewer (Schmidt and Heckendorf, 2017) results recreated by the
author for: a) “graphische Statik”; and b) “graphic statics” and “graphical statics.”

statics” (Figure 2.3-b). These graphs are showing yearly count of these
phrases in printed sources between 1850 and 2008. As evident in these
graphs, the use of these phrases peaked around the years of the notable
publications mentioned previously in this section.

In German, the term “graphische Statik” was coined by Culmann in his
1st edition of Die Graphische Statik (1864). Expectedly, there is a steady
increase of n-grams around this time, with a sharp increase just before the
publication of the 2nd edition of Die Graphische Statik in 1875. In English,
the initial spike can perhaps be attributed to Robert H. Bow’s Economics of
Construction in Relation to Framed Structures (1873), which was one of the
first notable English publications that applied graphic statics with regards
to efficiency of structures. As graphic statics travelled across the Atlantic
Ocean into the American market, numerous publications including Jerome
Sondericker’s Graphic Statics with Applications to Trusses, Beams and Arches
(1903) popularised graphic statics in the United States. In both German and
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English, there is a drastic decline at the turn of the 20th century, and is almost
non-existent over the latter half of the century and into the 2000s. Karl-Eugen
Kurrer writes in The History of the Theory of Structures, that with the decline
of graphic statics (2008, p. 330):

“... [the structural engineering community] lost an extremely
compact form of rendering visually the play of forces in the
analysis and synthesis of load-bearing systems in the conception
and design activities of the civil and structural engineer.”

2.2 Computational graphic statics

This section gives an overview of research and previous work related to
computational applications of graphic statics, and force-driven structural
design methodologies.

2.2.1 Interactive Graphic Statics Tools

Recent revival of graphic statics is mainly due to its amplified potential
when combined with modern computational design tools. When drawn
by hand, the construction of reciprocal diagrams is a tedious process,
and freely manipulating the diagrams after they have been drawn is not
possible. With computers, however, the drawing process can be automated
and users can manipulate the structure in real time by modifying the force
diagrams, or vice versa. Inherent parametric qualities of graphic statics can
be exploited with CAD tools to exploit its new design potentials. The merits
of computational graphic statics for the conceptual design of structures are
gradually becoming recognised in the industry.

The power of computational graphic statics has been demonstrated through
the development of applications such as ActiveStatics (Greenwold and Allen,
2003), InteractiveTHRUST (Block, 2005) and eQuilibrium (Block Research
Group, 2010). The interactive graphic statics drawings of eQuilibrium are
constructed using GeoGebra (Hohenwarter et al., 2002), an interactive
geometry and mathematics application. Alternatively, parametric CAD
software can also be used to construct interactive drawings. While interactive
graphic statics drawings provide real-time interaction and visualisation, they
require tedious pre-programming and need to be drawn by a user with
previous knowledge of graphic statics. Any major design modifications, such
as change in topology, to a pre-made drawing are difficult to implement,
and exploring new shapes require a complete reconstruction of the entire
interactive drawing.
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Figure 2.4: a) ActiveStatics developed by Greenwold and Allen (2003), a web implementation
of graphic statics for preset structural typologies, where the coordinates of the form diagram
can be interactively changed in real time based on techniques described in Zalewski and Allen
(1998); and b) eQuilibrium, a website developed by the Block Research Group (2010), on which
the relationship between structural forms and forces are taught using interactive graphic statics
drawings.

Figure 2.5: a) Thrust Network Analysis (Block and Ochsendorf, 2007); and b) RhinoVAULT, a
funicular shell design plug-in for Rhinoceros (Rippmann et al., 2012).

Tools like RhinoVAULT (Rippmann et al., 2012), a plug-in for Rhinoceros
based on Thrust Network Analysis (TNA) (Block and Ochsendorf, 2007),
is an interactive tool for form finding of free-form shell structures using
reciprocal force diagrams. RhinoVAULT extended graphic statics to “2.5”
dimensions, by using horizontal projections of discretised shell structures
to construct interactive 2D form and force diagrams on a plane. While it
provides a significant amount of control of both form and forces during early
stages of design, the loading conditions can only be vertical and the plug-in
is ultimately limited to a very specific structural typology: funicular surface
structures.
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2.2.2 Algebraic Graph Statics

Algebraic Graph Statics (AGS) introduced a non-procedural approach to
2D graphic statics, by algebraically formulating the geometrical relationship
between the form and force diagrams (Van Mele and Block, 2014). AGS
not only automated the drawing process for complicated 2D structures,
but it also illustrated a clear algebraic relationship between graphic statics
and more conventional equilibrium equations used in matrix analysis. AGS
also demonstrated that the construction of reciprocal diagrams used in
graphic statics is possible only for structures that satisfy a specific topological
condition; the form diagram must be a graph that is re-arrangeable without
crossing edges, from which a a topological dual graph can be constructed,
and subsequently the reciprocal force diagram.

Bi-directional AGS extended AGS such that interactive manipulations of
both the form or the force diagrams are possible (Alic and Åkesson, 2017).
It demonstrated how various geometric constraints can be imposed on the
force diagram to enable various force-driven design explorations. Due to the
algebraic construction of the reciprocal diagrams, any manipulation of either
the form or the force diagram results in a real-time update of the other.

In addition to 2D graphic statics, the algebraic formulation for construct-
ing polyhedral reciprocal diagrams used in 3D graphic statics has been
introduced by Hablicsek et al. (2019). These implementations of graphic
statics have demonstrated how the computational formulations of AGS
are equivalent to the equilibrium equations used in matrix analysis of
planar, pin-jointed trusses (Van Mele and Block, 2014). AGS also provides
a robust back-end for a real-time, interactive and flexible computational
implementation of graphic statics.

Figure 2.6: Algebraic Graph Statics, a method for non-procedural construction of force diagrams
(Van Mele and Block, 2014): a) the graph interpretation of the form diagram of a fink truss with
crossing edges; b) planar re-drawing of the form graph; and c) the reciprocal force graph.
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2.3 3D graphic statics
The three-dimensional modelling capabilities of most CAD software avail-
able today have enabled structural design explorations using computational
graphic statics in three dimensions. This section provides a brief overview
of the theoretical background behind 3D graphic statics, and a review of
previous work and the latest developments in the field.

2.3.1 From 2D to 3D

Although graphic statics is widely known as a graphical method of analysis
for 2D structures, the reciprocal form and force diagrams on a plane is
based on three-dimensional relationships. Maxwell’s 1864 and 1870 papers
provided the foundation of graphic statics and principles of reciprocal
diagrams. In the 1864 paper, On reciprocal figures and diagrams of forces,
Maxwell observed that a 2D form diagram is the projection of a 3D plane-
faced polyhedron, and the projection of its reciprocal polyhedron is the
2D force diagram. Within the context of structural engineering, a “plane-
faced polyhedron” can be interpreted as a linear or continuous Airy stress
function, as clarified by Mitchell et al. (2016) and McRobie et al. (2016). As a
corollary, any n-dimensional reciprocal diagrams are projections of (n + 1)-
dimensional Airy stress functions (Crapo and Whiteley, 1994; Konstantatou
and McRobie, 2016). Using projective geometry and polarity, a generalised
method for constructing 2D and 3D reciprocal diagrams through higher
dimension stress functions was presented by Konstantatou et al. (2018).
These contributions have provided important insights in establishing a
generalised theoretical framework for reciprocal diagrams in any dimension.
However, the examples of 3D structures in this context largely remain as
abstract and small self-stressed objects with specific topologies predefined
by the user.

2.3.2 Vectorial 3D graphic statics

The equilibrium of spatial forces can be resolved using weighted vectors
(Föppl, 1892; Schrems and Kotnik, 2013). Vector-based resolution of spatial
equilibrium is also referred to as “Cremona reciprocals” (Crapo, 1979) or
“3D Cremona diagrams” (McRobie, 2016b; Konstantatou and McRobie,
2016). While the resolution of equilibrated force vectors at a single node is
straightforward, assembling a “complete” force diagram for an entire, fully
3D structure is not possible without having duplicate or “non-overlapping”
edges (Jasienski et al., 2016). The resulting force diagram is neither dual
or reciprocal to the form diagram. Therefore, additional numerical solvers
are required to enforce the parallel relationship between the form and the
force diagram (D’Acunto et al., 2017), failing to preserve the intuitive and
transparent aspects of graphic statics. The main argument for vector-based
3D graphic statics is that the method stays true to the original 2D graphic



2.3. 3D graphic statics 27

statics techniques by using lengths of vectors to represent force magnitudes.
However, if the weighted vectors are not oriented on the same plane, the
foreshortening makes the dense clutter of lines in space challenging to
discern in a quantitative manner.

2.3.3 Polyhedral 3D graphic statics

Another branch of 3D graphic statics is based on polyhedral representations
of force equilibrium. Rankine generalised Maxwell’s principles for 2D
reciprocal diagrams to 3D reciprocal diagrams in his 1864 paper, Principle of
the Equilibrium of Polyhedral Frames. As McRobie (2017a) points out, although
both Maxwell and Rankine used the term “frame” in their seminal texts,
they were referring to pin-jointed trusses carrying axial forces only. It is
important to note that this differs from the modern use of the term “frame” in
structural engineering, which typically refers to structures with rigid joints
that may transmit moments. Since this dissertation is not based on vector-
based 3D graphic statics, “3D graphic statics” will henceforth refer to 3D
graphic statics based on polyhedral representation of equilibrium.

Rankine’s seminal text on 3D graphic statics is one half-page long with
only three short paragraphs and no figures. By combining the features
and advantages of modern CAD software that were unavailable to Rank-
ine, Akbarzadeh (Akbarzadeh et al., 2015b; Akbarzadeh, 2016) clarified
Rankine’s propositions graphically through three-dimensional diagrams and
visualisations. In 2D graphic statics, the magnitude of the internal axial force
of a member is represented by the length of the corresponding edge in the
force diagram. In 3D graphic statics, the areas and orientations of the faces
in the polyhedral force diagram represent the directions and the magnitudes
of the forces in the corresponding members in the polyhedral form diagram.
Polyhedral reciprocal diagrams are also referred to as “Rankine reciprocals”
or “Rankine 3D diagrams” in the literature (McRobie, 2016a; Konstantatou
and McRobie, 2016).

Figure 2.7: Convex polyhedral reciprocal diagrams for compression-only spatial structures
(Akbarzadeh et al., 2015b).
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The full reciprocal relationship between polyhedral form and force diagrams
provides significant amount of control in modelling, designing and form
finding of spatial structures. Over the past few years, there have been
numerous design applications using 3D graphic statics, such as form-finding
explorations through iterative subdivisions of force polyhedra (Akbarzadeh
et al., 2015c; Ghomi et al., 2018), scale-model testing of compression-only
spatial structures (Bolhassani et al., 2018) and a full-scale materialisation of a
structure designed with 3D graphic statics (Bolhassani et al., 2018).

Beyond design and form-finding explorations, recent contributions from
McRobie and Konstantatou have established a generalised theoretical foun-
dation for 3D graphic statics by relating it to some of the most fundamental
principles of structural engineering. Some of the notable contributions are:
n-dimensional reciprocal construction methods using projective geometry
(Konstantatou and McRobie, 2016; Konstantatou et al., 2018); Minkowski
sum diagrams in relation to Maxwell’s load path theorem (McRobie, 2016a);
addressing incompleteness of Rankine reciprocals and the generalisation
of 3D graphic statics for any three-dimensional frames (McRobie, 2016b,
2017a); incorporating shear and moment forces through discontinuous Airy
stress functions (McRobie and Williams, 2018); and design explorations in
relation to kinematics, virtual work and displacements (McRobie et al.,
2017). As these contributions are primarily theoretical in nature, the ex-
amples presented are typically small, self-stressed structures and have not
demonstrated their potential in an interactive design workflow. Work from
Athanasopoulos have shown glimpses of how these principles can be ap-
plied to more realistic, larger-scale structures (Athanasopoulos and McRobie,
2017; Athanasopoulos et al., 2018). Nevertheless, these contributions provide
the theoretical background and the insights necessary for developing new
application concepts and ideas for 3D graphic statics.

Research in applied 3D graphic statics is still in its infancy, and has several
important topics for further work. Above all, there is no openly available
computational framework for 3D graphic statics. Without sufficient com-
putational tools, it is challenging to explore or implement new 3D graphic
statics applications in an interactive design environment. In addition, com-
mercially available CAD software in architecture and structural engineering
practices is not designed for handling polyhedral geometries with inherent
planarity constraints and additional layers of data necessary for 3D graphic
statics. In order to extend polyhedral force diagrams beyond just being a tool
for visualisation or verification of spatial equilibrium, a computational envi-
ronment that allows adequate modelling and manipulation of polyhedral
geometries is necessary. Furthermore, the current design implementations of
3D graphic statics are focused on computing the corresponding reciprocal
diagram from a given form or force diagram strictly from geometry point
of view, without addressing any realistic boundary condition constraints
or loading cases. Materialisation and fabrication of spatial form diagrams
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also needs further investigation, to ensure that designs generated with 3D
graphic statics result in practically meaningful and constructible structures.

Most importantly, with the growing complexity of spatial structures, the
reciprocal diagrams become just as complex and visually cluttered. Maxwell
noted in 1870 that “the mechanical interest of reciprocal figures in space
rapidly diminishes with their complexity.” In 2D graphic statics, the mag-
nitudes of forces are represented by the lengths of lines in the force diagram,
whereas the areas of polyhedral faces in 3D graphic statics represent the
magnitudes of forces. Compared to lengths of lines, areas are more difficult
for a human eye to perceive quantitative information (Cleveland and McGill,
1984; Mackinlay, 1986), and the inherent, intuitive benefits of graphic statics
are lost (Figure 2.8-a). Even in 2D graphic statics, the force diagrams of
complex structures are visually cluttered and difficult to read (Figure 2.8-b).
For polyhedral reciprocal diagrams, the legibility is even more challenging
with three-dimensional elements that are stacked and clustered on top of
one another (Figure 2.8-c). In order to increase the legibility and usefulness
of polyhedral reciprocal diagrams, the means of representation and user
interface need significant improvements.

Figure 2.8: With increasing complexity of structures, the form and force diagrams can quickly
become difficult to decipher: a) Accuracy ranking of quantitative perceptual tasks (Mackinlay,
1986), which shows that compared to positions and lengths, quantitative information that is
represented through volumes and areas are more difficult for human eyes to perceive and
understand; b) polygonal form and force diagram of 2D graphic statics (Van Mele et al., 2012),
which use positions of points and lengths of lines to visualise force-related information; c)
polyhedral form and force diagrams in 3D graphic statics (Akbarzadeh et al., 2015b), which
use areas and volumes of polyhedrons to visualise force-related information; and d) FE analysis
of arches (Block et al., 2006), which use colours to visualise force-related information.
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2.4 Graphic statics and engineering applications

Graphic statics has also gained momentum within the structural engineering
community due to some of its unique advantages over conventional numer-
ical tools. Some of the latest developments and exemplary applications are
reviewed in this section.

2.4.1 Graphic statics and structural optimisation

In addition to the interactive form-finding and design explorations, the
parameterisation of the reciprocal relationship between from and force
diagrams provides an alternative approach to conventional structural opti-
misation methods (Mazurek et al., 2011; Beghini et al., 2013). Unlike existing
optimisation techniques, which typically manipulate the geometry of the
structure (the form diagram) in search of optimum solutions, using graphic
statics instead allows optimisation to be conducted using the geometry of
forces (the force diagram), which offers several key benefits.

First, the total volume of the structure, a common performance metric used
in structural optimisation (Hansen and Vanderplaats, 1990; Rahami et al.,
2008), can be computed easily using the geometry of the reciprocal diagrams.
To approximate the total volume of structures during conceptual design,
several methods can be used: the total load path of the structure (Maxwell,
1870; Cox et al., 1965; Baker et al., 2013), energy density method (Baker, 1992),
and by using morphological indicators (Samyn et al., 1999; Van Steirteghem
et al., 2002). Total load path in particular can be seamlessly coupled with
graphic statics; the total structural volume can be approximated by summing
the products of the lengths of the members and the internal axial forces,
which are both provided by the reciprocal diagrams. Second, because the
existence of a force diagram entails an equilibrated form diagram, any
manipulation of that force diagram will always result in an equilibrated
structure. Third, fewer variables are needed to describe the connectivity of

Figure 2.9: How graphic statics can be incorporated into a structural optimisation workflow to
minimise the total load path or weight of the structure (Beghini et al., 2013).
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an equilibrated structure with force diagrams, compared to the number of
variables that would be required to describe the same structure using the
geometry of the form. Therefore, the efficiency of optimisation processes
can be significantly improved, and the range of optimisation problems that
can be addressed is expanded (Beghini et al., 2013). In 3D, a geometry-
based optimisation method for simple spatial trusses using polyhedral force
diagrams was presented by Konstantatou and Mcrobie (2018).

However, work in this area remains mostly analytical and theoretical, with
idealised design examples of highly specific typologies such as Michell
trusses. Its application has been limited to specific, prescribed design
scenarios and the methods as presented (Hartz et al., 2017), have not been
generalised to address a wide range of problems and structural typologies.

2.4.2 Force-driven design

This subsection reviews some of the existing force-driven design methodolo-
gies, where the form finding process of the structural geometry is guided by
force-driven constraints or objectives.

2.4.2.1 With numerical methods

With today’s interactive digital modelling environments, various numerical
form-finding techniques can be implemented to derive equilibrium geome-
tries by controlling non-geometric properties: the force density method
where the inner forces and lengths of the structural members are replaced
by force-length ratios, called force densities (Linkwitz and Schek, 1971); the
dynamic relaxation method where the axial stiffnesses of the members and
the damping factors for each of the nodes are defined (Barnes, 1977); and
the particle-spring method where each node is modelled as a spring with an
assigned axial stiffness, initial length and a damping coefficient (Kilian and
Ochsendorf, 2005).

The force density method in particular is a powerful method that allows
the user to control and interact explicitly with both the geometry of the
form and the magnitude of the internal forces. Lachauer and Block (2014)
have shown how the force density method can be implemented in a CAD
software to create an interactive design environment, where the user can
modify the topology and geometry of the structure, or constrain the force
densities of members and the coordinates of nodes. After each modification,
a computational optimisation procedure is iteratively executed to update the
geometry of the structure until an equilibrium solution is found that satisfies
the newly defined geometric and force-driven constraints. Such interactive
modelling methods are powerful in deriving equilibrium solutions for
complex spatial topologies, while allowing the user to directly modify the
geometry of the equilibrated form and impose both geometric and force-
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Figure 2.10: a) Various equilibrium solutions of a surface structure based on different
distribution of target force density values (Lachauer, 2015); and b) equilibrium solutions for
two examples of curved arch bridges, generated by setting two ranges of force densities for the
compression members and tension members (Lachauer and Block, 2014).

driven constraints during the design process. However, the forces can be
controlled only through manual assignment of specific numerical values or a
range of values for the force densities. Therefore, manually assigning specific
force density values or range of values for a large number of members can
be tedious and time consuming.

2.4.2.2 With graphic statics

In graphic statics, the internal forces of equilibrium structures are repre-
sented graphically. Using a parametric modelling environment, the geom-
etry of forces can be explicitly controlled and modified to explore various
equilibrium solutions. Manipulating the geometry of the force diagram is a
powerful way of exploring design variations. For example, the geometry of
the force diagrams can be used for form finding of structures with specific
force-driven objectives and constraints (Allen and Zalewski, 2009; Van Mele
and Block, 2014; Lachauer and Kotnik, 2010) (Figure 2.11). The geometry
of the force diagram can also be manipulated and optimised to search
for optimal solutions (see Section 2.4.1). In addition, projected horizontal
force diagrams can enable interactive design and exploration of free-form
shell structures (Rippmann, 2016). However, these applications are based on
modification of force diagrams, which means that a force diagram needs
to exist before any transformations can take place. Therefore, a specific
structural typology must be predefined by the user.

The geometry of the force diagrams can also be used to change and generate
the topology of the form diagram, which is another unique feature of
using the geometry of the force diagram for design applications. Given an
initial force diagram, subdivision schemes can be applied to split polyhedral
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Figure 2.11: a) Implementation of the constant-force bottom chord principle using interactive
drawings setup with eQuilibrium (Block Research Group, 2010); control over the shape of the
top chord in combination with the force constraint on the bottom chord allows for an exploration
of free-form constant force trusses (Van Mele et al., 2012); and b) interactive, parameter-driven
explorations of the relation between form and forces demonstrate how the same structural
principles can result in different architectural shapes (after Figure 5 of Lachauer and Kotnik
(2010)).

cells into smaller cells, thereby creating new nodes and members in the
corresponding form diagram (Akbarzadeh et al., 2014, 2015c; Nielsen et al.,
2017; Ghomi et al., 2018). As subdivision can be applied only to an
existing cell, it is essentially a topology refinement methodology where each
subdivision adds new members that generally follow the initial geometry
and topologyof the structure. Alternatively, additive transformation can
be used in combination with shape grammars to automatically generate
highly non-standard topologies (Lee et al., 2016). Additive transformation
methodology has been implemented only for 2D structures.

2.5 Computational tools for polyhedral geometries

In order to create an interactive design environment using 3D graphic statics,
sufficient computational back-end for handling and processing of polyhedral
geometries is needed. This section discusses the pros and cons of some of the
existing CAD software and computational implementations of polyhedral
geometries that could potentially be suitable for 3D graphic statics. Tools and
implementations for single polyhedral meshes as well as volumetric meshes
are reviewed.
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2.5.1 Polyhedral mesh

Most computational techniques in engineering sciences are based on finite
discretisations of a physical specimen or a defined domain into manifold
meshes made up of polygonal elements. Computational implementation
of mesh datastructures is a well-researched topic across many disciplines.
Depending on the purpose and the objectives of each discipline, variants of
mesh datastructures have been proposed over the past few decades. Detailed
explanations and comparative overview of various mesh datastructures can
be found in Garimella (2002), Alumbaugh and Jiao (2005) and De Floriani
and Hui (2005; 2007).

There also have been significant advances in modelling tools for free-form
surface geometries in architecture. In contrast to engineering applications
where predefined geometries are typically discretised into smaller polygonal
elements, CAD software are designed for creating and modelling surfaces
or solid geometries. Therefore, the representation of geometry in some of
the most widely used CAD software in architecture such as Rhinoceros
and Maya (Autodesk Inc., 2018) are based on a non-uniform rational B-
spline (NURBS) model, which focuses on more mathematically precise
representations of curves and free-form surfaces. Essentially, these CAD
software allow users to create and generate complex free-form geometries
using a few number of descriptors or “control points.” Alternatively, the
geometries can also be described and represented in a CAD environment by
polygon meshes, which are collections of vertices, edges and faces. Polygon
meshes commonly consist of faces that are triangles or quadrilaterals. A
polygon mesh is also referred to as a “polygonal (or polyhedral) mesh” due
to the fact that its constituent faces are polygonal.

Research in the applications of polygon meshes in CAD environments are
extensive, which includes boolean logic, smoothing, ray tracing, collision
detection, rigid-body dynamics and many others. Polygon meshes typically
represent a single continuous surface, or a solid object as a surface that is
self-enclosing. For 3D graphic statics application, a polygon mesh can be
sufficient to represent a single polyhedral cell. However, as most structures
usually contain multiple nodes, polygon meshes are not sufficient for
representing the corresponding polyhedral force diagrams, which have
multiple cells and enclosures. Furthermore, certain key geometric properties
of polyhedral reciprocal diagrams such as the planarity of the faces, is not
intrinsically enforced.

In the context of computational geometry, various mathematical models,
geometric algorithms and design interfaces have been developed to enable
designers to incorporate a wide range of geometric and practical constraints
while maximising user interactivity and creative flexibility. Planarity con-
straint in particular, is an important topic of research in computational ge-
ometry of free-form architectural surfaces because of the advantage of using
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flat materials with regards to fabrication and cost. With planarity as the main
focus, numerous rationalisation algorithms have been developed to achieve
various geometric goals: optimisation of planar quadrilateral meshes (Liu
et al., 2006; Zadravec et al., 2010); constrained mesh modelling (Deng et al.,
2015; Vaitkus and Várady, 2015); multi-layered mesh modelling (Pottmann
et al., 2007, 2015; Jiang et al., 2015); surface penalisation (Pottmann et al.,
2008; Eigensatz et al., 2010); statics-aware mesh modelling (Schiftner and
Balzer, 2010; Vouga et al., 2012; Tang et al., 2014; Miki et al., 2015) (Figure
2.12-a); 3D mesh modelling (Poranne et al., 2013, 2015) (Figure 2.12-b); and
numerous others in the literature. Interactive implementations of algorithmic
modelling such as Shape-Up (Bouaziz et al., 2012) and ShapeOp (Deuss
et al., 2015) have enabled common architectural design tools like Rhinoceros
to become a much more sophisticated modelling tool with fully-integrated
geometric constraints and algorithms (Figure 2.12-c).

Despite the rapid development of mesh modelling tools and algorithms,
previous research in this area is primarily concerned with single surface
geometries. With polyhedral force diagrams used in 3D graphic statics, the
constituent cells are individually closed and often intersect with one another.
Similar geometric constraints and algorithms are applicable to a system of
force polyhedrons, and can certainly be used to drastically improve the way
in which the user can interact with the geometry of polyhedral cells.

Figure 2.12: a) Planar meshing of self-supporting surface structures (Vouga et al., 2012); b)
interactive planarisation and optimisation of 3D meshes (Poranne et al., 2013); and c) use
of ShapeOp for constrained modelling of various meshing schemes with multiple geometric
constraints imposed simultaneously (Deuss et al., 2015).
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2.5.2 Volumetric mesh

In 3D graphic statics, a single force polyhedron can be computationally
represented with a mesh. However, a polyhedral force diagram consisting of
multiple cells cannot be represented with a single, manifold mesh. A multi-
cell object is also referred to as a non-manifold, and a different datastructure
is necessary to computationally handle such object. Several datastructures
for representing and modelling non-manifold objects have been previously
proposed: non-manifold indexed data structure with adjacencies (NMIA),
which is a decomposition of non-manifold objects into simplical complexes
(De Floriani and Hui, 2003); Algorithm Oriented Mesh Database (AOMD)
(Remacle and Shephard, 2003); radial edge datastructure (RED) (Weiler,
1988) as an extension to non-manifold objects of winged-edge datastructure
(WED) (Baumgart, 1975); Linear Cell Complex datastructure (Damiand,
2018) as a part of the Computational Geometry Algorithms Library (CGAL)
(The CGAL Project, 2018) (Figure 2.13-a); the OpenVolumeMesh library
(Computer Graphics Group Aachen, 2016) developed by Kremer et al. (2013)
(Figure 2.13-b); and etc.

These datastructures implement different data processing strategies, organi-
sation and querying techniques depending on the context of the discipline
that they were intended for. While the computational formulation of the
datastructures are usually the focus of these contributions, they overall lack
the accompanying set of functions or operations to translate them to any
practical applications. More importantly, the user manual or documentation
of these libraries lack visual material, tutorial or examples to describe these
complex datastructures, which may be difficult to understand and visualise
for non-expert users.

Within the context of 3D graphic statics, notable computational implementa-
tions of polyhedral force diagrams where the specific type of datastructure
used were explicitly mentioned, are based on WED (Akbarzadeh et al.,
2015b) (Figure 2.13-c) and “volume mesh” (Reeves et al., 2016). In either of
these applications, detailed explanations of how the data is computationally
structured and implemented were never provided. The interpretation of the
various components of datastructure as they relate to 3D graphic statics is
also not thoroughly described or documented.

Figure 2.13: a) Linear Cell Complex datastructure (Damiand, 2018); b) winged-edge datastruc-
ture (Akbarzadeh et al., 2015b); and c) OpenVolumeMesh (Kremer et al., 2013).
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2.6 Materialisation

The relationship between reciprocal form and force diagrams is inherently
geometric and does not address any material information or properties. They
are useful for early-stage design explorations and form finding of structural
geometry. However, an additional procedure is required to materialise the
skeletal line information of form diagrams into a realistic structure.

Skeletonisation is a procedure for extracting a topological skeleton or the
medial axes (vertices and a network of edges) of a mesh or a solid object
(Saha et al., 2016). The inverse procedure (the thickening or materialisation
of a network of lines) has relevant applications in numerous disciplines
such as computer graphics, character modelling and animations (Bærentzen
et al., 2012). Solidifying of lines in computer graphics applications are
primarily concerned with rapid geometric approximation with maximum
visual perception and recognition. A well-known Rhinoceros plugin for
solidifying wireframes is Exoskeleton and Cytoskeleton developed by Daniel
Piker and David Stasiuk, which are based on concepts and techniques
described in Srinivasan et al. (2005).

In general, these methods first materialise the vertices using spheres or a
variation of convex hull, then interpolate those vertex masses along the
edges using sweeps or lofts. The vertex masses and swept edges masses
are then combined and refined to create a single, continuously smooth
mesh surface (Figure 2.14). However, the smooth mesh around the nodes
is complex in geometry and difficult to fabricate. The complexity is not
problematic for small 3D printing applications, whereas it would quickly
become unfeasible with larger structures. Subtractive milling from solid
masses is another alternative, which is time consuming, inefficient use of
material and expensive to fabricate.

First full-scale prototype of a 3D graphic statics design is the Hedracrete
project (Akbarzadeh et al., 2017). A thorough structural analysis of the
structure can be found in Bolhassani et al. (2018). Hedracrete is a self-

Figure 2.14: Conversion of wireframe data to thickened, wireframe meshes using Exoskeleton,
a plugin for Rhinoceros developed by David Stasiuk.
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Figure 2.15: Hedracrete, first full-scale prototype designed using 3D graphic statics (Bolhassani
et al., 2018).

Figure 2.16: Built prototype of a spatial structure using CNC-cut sheet materials (Reeves et al.,
2016).

supporting, funicular structure made of prefabricated nodes and linear
members (Figure 2.15). The prefabricated elements are made of glass fibre
reinforced concrete, with extra steel rebars embedded in the tensile members.
Although this project showcased numerous benefits of 3D graphic statics,
the process of generating the geometry of the individual elements is not
explicitly described. It is not clear how the inherent polyhedral geometry was
exploited to generate or optimise the geometry of the CNC-milled moulds,
especially for the complex node elements.

David Reeves et al. (2016) proposed a method for materialising spatial
structures using only developable strips cut from sheet materials and
inexpensive 2-axis CNC technology (Figure 2.16). The fabrication geometry
was generated by exploiting the the dual relationship between the geometry
of the polyhedral form and force diagrams. This project demonstrated how
the inherent planar properties of the polyhedral force diagrams can be used
to develop the logic of the massing of the spatial structure, and demonstrate
its advantages as they relate to fabrication and construction through modest
sheet materials. However, this project was an exercise in processing and
development of fabrication geometry, and the prototype is not based on any
realistic structural design loads or boundary conditions.
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2.7 Summary

This chapter presented the literature review of the relevant theoretical
background, previous research and existing implementations of graphic
statics with particular emphasis on computational graphic statics.

First, the various factors that led to the emergence of graphic statics as
a widely accepted structural design and analysis method during the 19th

century were discussed. At that time, graphic statics was an appropriate
method for analysing truss-like structures made of linear, iron or steel
members carrying axial loads only. However, as the building industry began
to move towards using indeterminate materials such as reinforced concrete,
the usefulness and relevance of graphic statics in structural engineering
practice started to fade. The developments of computers and FE methods
over the 20th century also contributed to the decline of graphic statics.

In recent years, graphic statics has been going through a revival. With today’s
rapid advancements in parametric CAD software, graphic statics drawings
no longer have to be drawn manually on paper. In addition, drawings can
be constructed parametrically such that real-time interactivity is possible
even after the drawings have already been completed. However, interactive
graphic statics drawings need to be procedurally constructed by someone
who has previous knowledge and experience with graphic statics. Most
importantly, it is difficult to make any design or topological changes to the
interactive drawings once they are complete.

AGS introduced a method for automatically constructing the force diagrams
from a given form diagram. In the case of bi-directional AGS, the automatic
generation and real-time updating can happen from either from the form
diagram to the force diagram, or vice versa. Algebraic formulation and
construction of reciprocal diagrams means that the tedious and error-
prone procedural construction of the reciprocal diagrams can be bypassed.
Although it establishes a robust back-end for a real-time, interactive
and flexible computational implementation of traditional graphic statics,
algebraic graph statics remains applicable to only specific types of structures
in 2D.

Extension of graphic statics to three dimensions introduced polyhedral recip-
rocal diagrams. Because the polyhedral reciprocal diagrams are constructed
with faces and polyhedral cells opposed to lines and polygons in 2D, 3D
graphic statics can be used for a variety of applications for the design
and analysis of spatial structures. Although much of the basic theoretical
foundation for polyhedral 3D graphic statics have been established, it is
evident that there is a general lack of computational tools to sufficiently
handle complex polyhedral geometries in an interactive design environment.
The lack of visual clarity and inadequate legibility of polyhedral force
diagrams are some of the major drawbacks of polyhedral 3D graphic statics.
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Within the context of structural engineering, graphic statics provides many
advantages over conventional FE software. For example, the formulation
of a structural optimisation problem can be drastically simplified when the
geometry of the force diagram is optimised, as opposed to the form diagram.
Using only a few control points or parameters, the connectivity of the entire
structure can be described and controlled. Another benefit of using reciprocal
diagrams for structural design is the ability to explicitly set force-based
constraints by geometrically constraining specified elements of the force
diagram. In contrast to force-driven design using numerical methods like the
force density method, force-driven design using graphic statics may be more
intuitive for the user and has a higher potential for the user to draw new
insightful conclusions. Graphic statics in engineering applications have been
applied to mainly 2D structures only, and the topology of those structures
are often predefined.

Mesh is a well-researched computational datastructure for representing
and modelling surface and solid geometries. Theoretical background and
computational implementation of meshes are well studied and established
in the field of computational geometry and numerous other disciplines. In
contrast, volumetric meshes, or 3-manifold meshes, have seen comparatively
less development. This may be due to the fact that most computational
models or representations of meshes are concerned with discretisation of
real-life objects (i.e. animations, models of physical objects for FE analysis)
which can typically be modelled as single surfaces or solid objects. Whereas
in a volumetric mesh representation of a polyhedral force diagram, multiple
cells are inter-linked with the possibility of self-intersections and overlaps.
The established computational libraries built around meshes may not
necessarily translate to or be compatible with volumetric meshes.

Graphic statics is widely accepted as an intuitive method for form-finding
and equilibrium analysis of structural geometry. However, materialisation
of the form diagram is not typically incorporated into graphic-statics-based
design workflow. Although polyhedral 3D graphic statics allows exploration
of fully spatial structures, the materialisation and fabrication design of
spatial structures remain challenging. The nodes of spatial structures are
often treated as special, one-off components that are difficult to resolve
geometrically and expensive to fabricate. Various methods exist in literature
which can turn wireframe models of lines into a single mesh surface. While
such methods are appropriate for small models and prototypes which can be
easily produced using additive manufacturing methods like 3D printing, it
does not particularly scale well for structural components at a 1-to-1 scale.
Although 3D graphic statics broadens the repertoire of spatial structural
typologies, the fabrication aspect also needs further research to ensure that
complex spatial structures can be realised as meaningful structures in a
feasible manner.



3 Scope of Work

Based on the literature review presented in the previous chapter, this chapter
defines the specific problem statements of the dissertation. This chapter
concludes Part 1 of the dissertation by providing an outline of the research
objectives.

3.1 Problem statements

This section presents the specific problem statements that will be addressed
in this dissertation. These problems can be contextualised in a realistic design
workflow that can be adapted by designers in practice (Figure 3.1).

Figure 3.1: Design workflow using 3D graphic statics: 1) addressing realistic boundary
conditions; 2) new topology generation methods beyond subdivision; 3) exploring non-
polyhedral structures; and 4) materialisation of spatial structures.

1. Addressing realistic boundary conditions

In the beginning stages of a project, the only known information are
typically the type of loading the structure will carry (applied load
locations and magnitudes) and the physical constraints of the site
(i.e. support locations, types, allowable reaction force magnitudes,
etc.) (Figure 3.1-1). Before any design explorations using 3D graphics
can take place, the quantitative (force magnitudes) and spatial (force
locations) site constraints which are unique for each project need to
be incorporated during the construction of the initial global force
polyhedron. Although the global force polyhedron for determinate and
highly symmetric cases can be constructed procedurally (Akbarzadeh
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et al., 2015a, 2016), there is no generalised method for addressing this
“blank space” problem with sufficient control, especially with regards
to controlling the face areas (force magnitudes) during the construction
of the global force polyhedron.

2. Topology generation method beyond subdivision

Once the global force polyhedron has been constructed, various
subdivision schemes can be applied to generate and explore structural
topologies (Akbarzadeh et al., 2015c) (Figure 3.1-2). Subdivision of
internal polyhedral cells increases the complexity of the structural
topology without changing the initial boundary conditions. As a result
of subdividing a polyhedral cell, a single member of the correspond-
ing form diagram is replaced with multiple members that together
carry the same magnitude of axial force as the replaced member.
Therefore, subdivision can be an effective method for addressing
buckling, although it is a trade-off for challenging fabrication due
to the diminishing member-to-member angles as the overall number
of members is increased. Subdivision schemes are highly dependent
on the initial funicular topology embedded within the global force
polyhedron. The repeated subdivision of a global force polyhedron
generally results in designs that are refinements of the initial funicular
form and topology.

3. Limitation to polyhedral forms

The inherent dual and reciprocal relationship between the polyhedral
form and force diagrams means that the form diagrams are strictly
limited to polyhedral geometries (i.e. subdivided tree structures,
faceted domes, polyhedral mesh or surface structures, crystalline
aggregations, etc.) (Figure 3.1-3). Therefore, polyhedral force diagrams
can represent the equilibrium of only highly constrained and specific
types of structures. With current implementations of polyhedral 3D
graphic statics, it is impossible to construct polyhedral force diagrams
for equilibrated structures that are non-polyhedral (i.e. structures with
overlapping members, non-planar faces, spatial structures with 2D
nodes, etc.). Polyhedral constraint is beneficial for applying global
manipulations and transformations, but ultimately limits the range of
structural typologies that can be explored.

4. Materialisation of spatial structures

The final step of the 3D graphic statics design workflow is the
materialisation of the network of lines that represents the form diagram
(Figure 3.1-4). The form diagrams in graphic statics applications
represent the topology and geometry of equilibrium structures, but
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they do not carry any material information. While complex structural
toplogies can be quickly generated using the 3D graphic statics design
workflow, addressing the materialisation and practical feasibility of
such complex network of lines in space, especially the nodes, is
important in expanding 3D graphic statics applications beyond com-
putational form-finding explorations of abstract shapes. Existing “wire
thickening” methods can be acceptable for small scale applications
where the geometric complexity of the components can be resolved
through additive fabrication methods such as 3D printing. However,
as the structure increases in scale, a more generalised method for
rationalising the fabrication geometry of complex spatial nodes is
needed for both economic and practical reasons.

5. Insufficient user control and visualisation

The 3D graphic statics design workflow provides the users with
explicit control of both form and force diagrams. The user’s interaction
with these computational objects in an interactive design environment
is dependent on the clarity of visualisation and control. Polyhe-
dral force diagrams are spatial objects that are difficult to visualise
and understand as static drawings or objects through 2D media,
such as papers or computer monitors. With increasing complexity
of structures, polyhedral force diagrams quickly become visually
cluttered, losing all of the inherent benefits that makes 2D graphic
statics a uniquely insightful and intuitive tool. In general, alternative
techniques for visualising polyhedral form and force diagrams are
needed. Computational frameworks can be constructed as efficiently
and robustly as possible, but without sufficient user control and
discernible visualisation, its impact and usefulness are limited within
the design community. While the framework can be used to handle
the back-end polyhedral computation and processing, conventional
CAD software can be used as the canvas. However, most CAD
software used by designers in architecture and structural engineering
are not designed for handling cellular networks or volumetric meshes.
Therefore, the built-in visualisation and interactive functionalities of
those CAD software need to be customised and calibrated for 3D
graphic statics applications.

6. Lack of computational library for 3D graphic statics

There is a lack of a generalised computational framework for 3D
graphic statics, which hinders continuation of research, exchange of
computational knowledge and collective development of the field.
New publications of graphic statics are often stand-alone implementa-
tions with their own set of conventions, computational languages and
software dependencies, which make them incompatible or unusable
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by other researchers. New knowledge is often shared through papers
in physical or digital formats that describe the computational imple-
mentations with text and static images without actually delivering
any usable computational material to the readers. Anybody who is
interested in doing research on 3D graphic statics must start his or her
implementation from scratch, unless he or she joins a research group
with an established computational framework. The lack of a unifying
platform or computational environment for graphic statics makes it
difficult to start new strands of research or continue existing ones.

3.2 Research objectives
The components of the presented computational framework are developed
in response to the problem statements outlined in the previous section. The
specific research objectives for each of the problem statements are:

1. Addressing realistic boundary conditions

• Formulation of a generalised method for constructing global force
polyhedrons from a spatial system of forces in a controlled man-
ner, while incorporating various boundary condition constraints

• Computational implementation of new and existing theories, con-
cepts and methods for single polyhedral cells, which establishes
a robust base for the modelling, transforming and processing of
convex as well as non-convex polyhedrons

2. New topology generation method beyond subdivision

• Development of a datastructure for multi-cell polyhedrons with
related functionalities and algorithms, which enable controlled
modelling and transformations of polyhedral form and force
diagrams

• Expansion of polyhedral transformation operations beyond sub-
division

• A new design workflow for allowing users to manually generate
and sculpt equilibrium structures in space in a controlled manner

3. Limitation to polyhedral structures

• Development of a datastructure for generalised cell networks that
can represent the spatial equilibrium of non-polyhedral structures

• Enabling force-driven design through more precise control of the
areas of the polyhedral faces, incorporating more quantitative
design criteria and realistic load cases (tributary area loads,
internal point loads)
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• Broadening the range of new structural typologies that can be
addressed with polyhedral 3D graphic statics using the cell
network datastructure

4. Materialisation of spatial structures

• Utilisation of the geometry of 3D force diagrams to develop and
rationalise the fabrication geometry

5. Insufficient user control and visualisation

• Improvement of user control of various polyhedral objects and
datastructures in an interactive design environment

• Dynamic drawing and visualisation strategies for enhancing the
legibility of 3D form and force diagrams

6. Lack of computational library for 3D graphic statics

• Implementation of the presented computational framework in
an open-source library, making the contributions of this research
available to the public

• An online documentation of the library for future users, re-
searchers and contributors

3.3 Summary

This chapter concludes Part 1 of the dissertation, which presented the
motivation statements, an overview of the state of the art, the problem
statements and an outline of specific research objectives. Based on the
problem statements and research objectives identified in this chapter, the
remainder of the dissertation is organised as follows. In Part 2, “Com-
putational Framework,” the theoretical background will be presented in
Chapter 4, where the main datastructures for 3D graphic statics design
workflow are introduced and formulated. Computational implementation
of the theoretical background will be presented in Chapter 5, “compas_3gs.”
Then later in Part 3, “Applications,” new structural design applications using
the computational framework will be presented.
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4 Theoretical background

This chapter presents the theoretical background of the computational
framework. The theoretical background and concepts are developed in
response to the shortcomings and limitations of 3D graphic statics outlined in
the previous chapter. At the core of the presented theoretical background is
the formulation of three datastructures that can be used to address different
types of equilibrium problems using 3D graphic statics. In the next chapter,
“compas_3gs,” the implementation of the computational framework will be
presented.

Parts of this chapter are based on these publications by the author:

• Form-finding explorations through geometric manipulations of force polyhe-
drons (Lee et al., 2016)

• Area-controlled construction of global force polyhedra (Lee et al., 2017)

• Disjointed force polyhedra (Lee et al., 2018)

4.1 Introduction

This section provides a brief overview of this chapter: a summary of the key
concepts and terminologies of the theoretical background; the notation that
will be used throughout the dissertation; and an outline of the chapter.

4.1.1 Overview and key terminology

This chapter presents three datastructures for representing polyhedral force
diagrams that address different types of equilibrium problems involving
spatial systems of forces. Each datastructure is unique in its construct and has
specific applicability and purpose in a 3D graphic statics design workflow.
The three datastructures are summarised as follows:

• Polyhedral cell

A polyhedral cell is a single force polyhedron that can represent the
equilibrium of: 1) the external forces acting on a structure; or 2) a single
node of a multi-node structure.
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• Multi-cell polyhedron

A multi-cell polyhedron is an aggregation of conjoined polyhedral cells
that can represent the equilibrium of a structure with multiple nodes,
which is polyhedral in its geometry.

• Cell network

A cell network is a collection of disjointed polyhedral cells that are
implicitly linked to one another. Cell networks can represent the
static equilibrium of any nodally-loaded spatial truss comprised of
straight bars, which may be either polyhedral or non-polyhedral in its
geometry.

Investigation of single polyhedral cells is important for formulating gen-
eralised utility and geometric functions that are applicable to all three
datastructures. A better understanding of the topological structure of
different types of polyhedral cells is essential for developing a computational
framework that can process convex as well as non-convex polyhedral cells.
Methods for constructing polyhedral cells from a set of external forces is
necessary for addressing boundary conditions and initialising the 3D graphic
statics design pipeline.

Convex and regular polyhedrons as geometric or topological entities are
well-studied topics in numerous disciplines. However, there remains a
research gap between the established knowledge and their translation to
a computational design environment. The goal of this chapter is to bring
together dispersed knowledge from the related fields, such as the Extended
Gaussian Image, to establish a robust theoretical base necessary for sufficient
computational representation, construction and processing of polyhedral
cells.

The current state of the art of 3D graphic statics is largely based on
multi-cell polyhedrons that consist of conjoined polyhedral cells, where
every pair of two adjacent cells is separated by a single face. Although
the basic principles and design potentials (Akbarzadeh et al., 2015b) and
mathematical descriptions (McRobie, 2017a) of multi-cell polyhedrons have
been presented, a detailed formulation of the computational datastructure
and its related functions have not been addressed in the literature.

A volumetric mesh datastructure that is based on a halfface datastructure is
introduced in this chapter to represent multi-cell polyhedrons. A thorough
description of the datastructure is not only important for research in 3D
graphic statics, but also for establishing a more rigorous dialogue with
researchers from other fields as computational geometry. The multi-cell
polyhedron datastructure can be used to revisit previously presented design
implementations and explore new design applications.



4.1. Introduction 51

Because all of its constituent cells are conjoined, a multi-cell polyhedron
can be especially useful for global transformations such as subdivision
operations and applying general algorithms (Akbarzadeh et al., 2015c).
However, multi-cell polyhedrons strictly limit the corresponding structures
to be polyhedral in their geometry (i.e. subdivided tree structures, faceted
domes, polyhedral mesh or surface structures, crystalline aggregations,
etc.). The polyhedral geometry constraint also makes it difficult to perform
transformation operations where the topology of the multi-cell polyhedron
may need to change in order to accommodate the required geometric
changes.

Cell networks are introduced to address these limitations of multi-cell
polyhedrons. The neighbouring cells of a cell network are no longer
conjoined through a single face. Instead, they are interfaced by two faces
that are equal in area but may be different in their geometries. The
individual cells represent the local equilibrium of a node of a structure, but
collectively represent the equilibrium of the entire structure. Without the
global topological constraint of a multi-cell polyhedron, cell networks enable
transformation operations where the topology of individual cells can change
independently from one another. Cell networks also allow a more explicit
force-driven design by prioritising area-based constraints over geometric
ones. Most importantly, cell networks can represent the equilibrium of
structures that are not necessarily polyhedral in their geometry. As a result,
the range of typologies of structures that can be explored with 3D graphic
statics is expanded.

The three datastructures summarised in this section address the shortcom-
ings of the current implementations of 3D graphic statics. Polyhedral cells,
multi-cell polyhedrons and cell networks are the fundamental building
blocks for expanding the range of structural design applications using 3D
graphic statics. Together, they provide the theoretical foundation for the
presented computational framework.

4.1.2 Notation

Figure 4.1 is a summary of key notations and symbols that will be used
throughout this chapter as well as the remainder of the dissertation. In
general, the force diagrams have the superscript ⊥, which signifies that
the elements of the force diagram are in perpendicular orientation to the
corresponding element in the form diagram (edge to edge in 2D, and face
to edge in 3D). The prime symbol (′) is used to signify dual elements
or relationships. Any elements or variables that are exclusive to the force
diagrams are suffixed with an asterisk (∗).
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Г polyhedral form diagram Г┴ multi-cell polyhedron
(polyhedral force diagram)

G║ 2D force diagram
(Cremona)

Ψ non-polyhedral form diagram

ei,j edge, form diagram
(from vi to vj) 

f *
i,j , face, normal 

(j-th face of i-th cell) 

hf *
j , halfface, normal

(j-th halfface of Г┴) 

A*
i,j , A*

j area
(of j-th face of i-th cell, j-th halfface of Г┴) 

vi vertex, form diagram

fi,j force in ei,j

c*
i i-th polyhedral cell

EGIi EGI of c*
i

Form diagram

Coefficients and factors

Force diagram

α unified diagram scale factor

Other notations

b barycenter

t target unit vector

Superscripts and subscripts

_( t = 0 ) @ time step t = 0

_target target

_ ub upper bound

_ lb lower bound

_´ dual element

_* element in the force diagram

λ

reciprocation weight factor

ζ* prism thickness scale factor

γ

edge to face normal direction coefficient

s half-face scale factor

Ψ┴ cell network
(disjointed/non-polyhedral force diagram) 

Λ external forces Λ┴ global force polyhedron

G 2D form diagram
G┴ 2D force diagram

(Maxwell)

n*
i,j

n*
j

halfedge
(from v*

a to v*
b ) 

h*
a,bunitised edge vector

(from vi to vj) 
ei,j

cell dual  &
perpendicularity

face dual  &
perpendicularity

face dual  &
parallelity

cell dual  &
perpendicularity

cell dual  &
perpendicularity

cell dual  &
perpendicularity

amplitude

face dual

perpendicularity only

Figure 4.1: Nomenclature of the key terms and symbols.



4.1. Introduction 53

4.1.3 Chapter outline

The remainder of this chapter is divided into three main sections.

In Section 4.2, the polyhedral cell datastructure is presented. The organisa-
tion and structure of the data of polyhedral cells will be described in detail,
followed by a discussion on the dual relationships between the various
elements of a polyhedral cell and the corresponding elements in the form
diagram. The Extended Gaussian Image is introduced as an unitised dual
representation of a polyhedral cell, which is useful for visually describing
and understanding the topological structures of various types of polyhedral
cells. A generalised method for computing the oriented normal and area
of any closed polygon is presented, which is essential for interpreting
the external or internal member forces in the form diagram. A method
of interpreting 2D equilibrium using polyhedral cells is also described.
Next, geometric operations that enable constrained transformations of a
polyhedral cell through pulling and tilting of faces are presented. This
section concludes by demonstrating how the geometry of a polyhedral
cell can be computed from a set of equilibrated forces in space using the
Extended Gaussian Image.

In Section 4.3, the multi-cell polyhedron datastructure is presented. A
detailed explanation of the various layers of data that define a multi-cell
polyhedron is provided. Interpretation of a multi-cell polyhedron’s cell
adjacency information and the relationship to the forces in the corresponding
structure with multiple nodes is discussed. Unified diagrams are introduced
and presented in this section, which have numerous benefits with regards
to the visualisation of multi-cell polyhedrons. This section concludes by
presenting an operation that enables a constrained geometric transformation
of multi-cell polyhedrons.

Finally, in Section 4.4, the cell network datastructure is presented. A cell
network is a set of disjointed polyhedral cells, which requires additional
layers of data to manage and control the connectivity relationships between
every pair of neighbouring cells. These additional layers, which are unique
to cell networks, will be described in detail. An approximated visualisation
strategy for the unified diagram of cell networks is also presented in this
section.
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4.2 Polyhedral cell

This section presents the polyhedral cell datastructure, which can represent
the static equilibrium of the external forces acting on a structure, or a
single node of a multi-node structure. This section also introduces the
Extended Gaussian Image, a spherical representation of polyhedrons that
has numerous benefits with regards to the topological understanding
and transformations of polyhedral cells. The Extended Gaussian Image is
used to develop the key utility functions, transformation operations and
reconstruction methods for polyhedral cells.

4.2.1 Definition

In 3D graphic statics, the equilibrium of the external forces acting on a
structure or a node of a structure can be represented by a polyhedral cell
(Rankine, 1864; Akbarzadeh et al., 2015b). The equilibrium of the external
forces of a structure, Λ (Figure ??-a), is represented by a polyhedral cell,
which is the global force polyhedron, Λ⊥ (Figure ??-c). The equilibrium of the
i-th node vi of a structure (Figure ??-b), is represented by a polyhedral cell c∗i
(Figure ??-c). For each polyhedral cell c∗i , the normal n̂∗i,j and the area A∗i,j
of the j-th face f∗i,j represent the direction and magnitude of the force fi,j ,
respectively. fi,j corresponds either to an external force of Λ, or the internal
force of the member ei,j of the structure.

Figure 4.2: a) external forces acting on a structure, Λ; b) the i-th node vi of a structure; and c)
the global force polyhedron Λ⊥ that represents the equilibrium of the external forces, or the
polyhedral cell c∗i that represents the forces acting on node vi.
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4.2.2 Datastructure

The topology and geometry of a polyhedral cell, which is essentially a
mesh, can be represented by a halfedge datastructure that stores incidence
information of vertices, edges and faces. Each edge of a mesh is decomposed
into two halfedges with opposite directions. Each halfedge stores the
information of the face that it belongs to. Using the halfedge directions and
incident face information, various data of the mesh can be accessed and
traversed. The data of a mesh thus consists of vertices, edges, faces and
halfedges.

Each k-th vertex v∗k of the polyhedral cell c∗i is stored as a vkey-value pair
(Figure 4.3-a) in the mesh datastructure. The vertex key (vkey) is the unique
identifier of the vertex, and the value itself stores the specific attributes for
each vertex. x, y and z are the default attributes of each vertex, and they
define the xyz coordinate of the vertex, and therefore the geometry of the
entire mesh.

Each edge e∗u,v of the polyhedral cell c∗i is stored as a vkey-vkey-value triple
(Figure 4.3-b) in the mesh datastructure. An edge (u,v) is an ordered pair
of two unique vkeys (from “tail” vertex u to “head” vertex v). The vkeys
u and v are the two keys of the key-key-value triple. The edges are first
organised by their tail vkeys, u. Each u then points to all vkeys v for all
the edges (u,v) whose head vkey is v. Because each edge is directed and
defined by two uniquely ordered vkeys, an edge is stored only once in the
datastructure. For example, there is only one entry for edge (0,2); there is
no entry for (2,0). Each edge (u,v) points to the value of the key-key-
value triple, which contains the edge attributes.

Each j-th face f∗i,j of the polyhedral cell c∗i is stored as a fkey-value pair
(Figure 4.3-c). The face key (fkey) is the unique identifier of the face, and
the value is an ordered list of vkeys that form the polygonal loop of the
face. The first vkey and the last vkey are not the same. Every consecutive
pair of this list of ordered vkeys (including the last to the first), is a halfedge
of the mesh.

Lastly, each halfedge h∗u,v of a mesh is stored as a vkey-vkey-value triple
(Figure 4.3-d). Each halfedge (u,v) is uniquely defined by a tail vkey u and
head vkey v. The halfedges are first organised by the tail vkeys u, then by
the head vkeys v. The vkeys u and v are the two vkeys of the vkey-vkey-
value triple. Each halfedge (u,v) points to the value of the vkey-vkey-value
triple, which is the fkey of the face that the halfedge belongs to. Halfedges
do not have any attributes.

Figure 4.3 is a detailed graphical representation of a polyhedral cell c∗i with
six faces, which represents the equilibrium of six concurrent forces of Λ or vi.
The 0-th face f∗i,0 is defined by four vkeys, [7,1,2,4] (highlighted in blue,
Figure 4.3-c). The halfedge h∗4,7 is defined by tail vkey 4 and head vkey 7.
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Figure 4.3: Polyhedral cell c∗i represented as a mesh, a halfedge datastructure with four main
layers of data: a) vertex; b) edge; c) face; and d) halfedge.
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As vkey 4 and 7 are two consecutive vkeys in the polygonal loop of f∗i,0,
the halfedge h∗4,7 points to fkey 0 (highlighted in red, Figure 4.3-d).

The direction of a face normal is defined by the right-hand rule, which is a
common mnemonic for understanding the orientation conventions for vector
cross products in three dimensions (i.e. the direction of the angular velocity
vector in physics, the magnetic field in a coil of wire and the electric current
in the wire in electromagnetics, the vorticity at any point in the field of flow
of a fluid in continuum mechanics, etc.).

For example, the face normal direction of f∗i,0 is pointing away from the
centre of the cell. In general, the face normals of convex polyhedral cells are
uniform (to be referred to as the polyhedral cell direction); the normals of
all faces point either toward the centre of the cell (negative cell direction),
or away from the centre of the polyhedron (positive cell direction) (Lee
et al., 2016). For complex polyhedral cells which have complex faces, the face
normal directions may not necessarily be uniform.

4.2.3 Duality

Maxwell used the principle of duality in projective geometry to express the
reciprocal relationship between the form and force diagrams in the context of
graphic statics (Harman, 2001). The 2D form and force diagrams have a dual
relationship with each other; the points and lines of one diagram is mapped
to the lines and points of the other. The mapping of one geometric object
in one diagram to a different geometric object in the other diagram can be
explained by Maxwell’s observation that 2D form and force diagrams are
projections of plane-faced three-dimensional polyhedrons (Maxwell, 1864,
1870).

The same relationship is true for any n-dimensional reciprocal form and
force diagrams: n-dimensional reciprocal diagrams are projections of (n +
1)-dimensional stress functions (Crapo and Whiteley, 1994; Konstantatou
and McRobie, 2016). Based on this principle, three-dimensional form and
force diagrams can be defined as projections of four-dimensional stress
functions. The duality relationships between the elements of n-dimensional
structures and the (n + 1)-dimension of the corresponding stress functions
are summarised in Figure 4.4.

The reciprocal diagrams of 2D structures have a “face dual” relationship,
where the vertices one diagram corresponds to the faces of the other
diagram. The reciprocal diagrams of 3D structures have a “cell dual”
relationship, where the vertices of one diagram corresponds to the cells of
the other diagram. A polyhedral cell and the corresponding form diagram
have a cell dual relationship; the polyhedral cell and its faces correspond to
a vertex and edges of the form diagram.
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Figure 4.4: Summary of the duality relationships between the elements of n-dimensional
structures and the (n + 1)-dimension of the corresponding stress functions (force diagrams)
(after Figure 1 of Konstantatou et al. (2018)).

4.2.4 Extended Gaussian Image

The geometry of a polyhedral cell, especially irregular and non-convex
types, alone may not be sufficient for complex topological transformations.
While there is a significant amount of research from numerous disciplines
regarding convex and regular polyhedrons, non-convex polyhedrons have
seen comparatively less development.

For both convex and non-convex polyhedrons, the dual polyhedral repre-
sentations can be beneficial in providing a better understanding of their
topological structure (Grünbaum, 2007). The Extended Gaussian Image (EGI)
is an abstract dual representation of a polyhedron (Horn, 1984), and it can be
particularly useful in representing, manipulating and transforming both the
topology and the geometry of polyhedral cells.

An EGI is an unitised topological representation of a closed polyhedral
surface or cell on a unit Gaussian sphere using its face orientations and areas.
In EGIi of polyhedral cell c∗i , each j-th face f∗i,j is represented by a “point
mass” f ′i,j on the Gaussian sphere (Figure 4.5-c, e). Each point mass f ′i,j can
be located on the Gaussian sphere by placing the tail of the unitised normal
n̂∗i,j of face f∗i,j at the centre of the sphere (Figure 4.5-b). The head of n̂∗i,j
then lies on the surface of the sphere and represents a point mass of EGIi.
Each point mass is assigned a value that is equal to the area A∗i,j of f∗i,j , or
equivalently the magnitude of the corresponding force fi,j (Figure 4.5-a).
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Figure 4.5: A graphical overview of the topological relationships between the form diagram Λ
or vi, the polyhedral cell c∗i , and the EGI: a) Λ or vi; b) unitised force vectors; c) polyhedral cell
c∗i ; d) spherical polyhedron representation of c∗i ; and e) the EGIi.

The point masses of an EGI describe the orientations and areas of the faces
of a polyhedral cell. However, the point masses do not provide any of the
face adjacency information of c∗i . Two faces of c∗i are adjacent if they share
a common edge. Since the vertices and the faces of c∗i are mapped to the
face and the vertices of EGIi, respectively, they are topological face duals
of each other. By the definition introduced in Section 4.4, the edges of c∗i are
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then dual to the edges of EGIi. An edge of EGIi, which connects two point
masses each representing a face of c∗i , then represents the adjacency of the
two faces of c∗i . The edges of EGI are typically represented as arcs on the
Gaussian sphere called “arcs of adjacency” or “adjacency arcs” (Moni, 1990).
The EGI with point masses and adjacency arcs is the “dual image” (Roach
and Wright, 1986) or the dual “spherical polyhedron” (Wenninger, 2012) of
c∗i (Figure 4.5-d). A spherical polyhedron is a set of arcs on a Gaussian sphere,
each representing the projection of an edge of a polyhedron.

Although the conventional definition of an EGI only includes point masses,
the adjacency arcs are essential in describing the complete topology of the
corresponding polyhedron. Therefore, an EGI in this dissertation will consist
of both point masses and adjacency arcs.

4.2.5 Types

For regular convex polyhedrons, various notations and methods of rep-
resentation exist which attempt to compare and relate different types of
polyhedrons, such as: the Schläfli symbol, which is a notation for defining
regular convex polyhedrons whose faces are also regular n-sided polygons;
the Coxeter–Dynkin diagram, which is a graph representation of the
relationship between its constituent faces using symmetry and dihedral
angles (Coxeter, 1973); and the Schlegel diagram, which is a planar projection
of a polyhedron through a point beyond one of its faces (Schlegel, 1883).

However, these representations are mere notations and visualisations, which
are established only for regular and highly specific convex polyhedrons. In
3D graphic statics, a force diagram may contain polyhedral cells that are not
just convex, but also concave and complex. While convex polyhedrons are
well-defined and well-studied, mathematical definitions of non-convex and
irregular polyhedrons remains largely unresolved and unaddressed (Lakatos
et al., 1976).

EGIs can be useful in visualising, classifying, understanding and processing
the topological structures of different types of polyhedrons. Because an EGI
itself has its own topological structure that is dual to the polyhedron, it can
also be used to develop topological operations and geometric transforma-
tions of polyhedrons. This section provides an overview, descriptions and
computational implementations of the three different types of polyhedrons
that can frequently occur within the context of 3D graphic statics: convex,
concave and complex.

4.2.5.1 Convex

This section introduces, defines and compares the different types of convex
polyhedrons. For each type, its relevance and interpretation within the
context of 3D graphic statics is discussed.
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Figure 4.6: Various cell types and corresponding EGIs.
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Regular convex

The definition of a “polyhedron” may vary depending on the discipline.
The general agreement across numerous disciplines is that a polyhedron
is a solid or a closed surface that can be described by its vertices and flat
polygonal faces. A convex polyhedron is a special case where a segment
connecting two points on any two faces always lies in the interior of the
polyhedron (Lyusternik, 1963). In other words, a straight line can cut a
convex polyhedron through a maximum of two points. There are two main
ways to define a convex polyhedron: 1) as a convex hull of a finite set
of points, also known as the vertex representation, V-representation or V-
description; and 2) as an intersection of a finite number of half-spaces, also
known as the half-space representation, H-representation or H-description
(Grünbaum, 2003). In a H-representation, the half-spaces can be defined
algebraically as a system of linear inequalities.

The face normal directions of a positive convex polyhedron point away from
the cell’s centre of mass (Figure 4.6-a2), while the face normal directions of a
negative convex polyhedron point towards the cell’s centre of mass (Figure
4.6-b2). The EGI of a convex polyhedron is also convex (Figure 4.6-a4, b4).
The face normal directions of the EGI also match those of the corresponding
polyhedron; the face normal directions of the EGI of a positive polyhedron
point away from the origin of the EGI, while the face normal directions of
the EGI of a negative polyhedron point towards the origin of the EGI.

In 3D graphic statics, convex polyhedral cells are the most basic and common
building blocks of force diagrams. For example, funicular spatial structures
such as domes, compression-only shells, tensile nets or branching structures
all have corresponding force diagrams with only convex polyhedral cells.
The modelling and processing of convex polyhedral cells is comparatively
straightforward, and hence most of the initial explorations of 3D graphic
statics are indeed based on transformations of convex polyhedral cells
(Akbarzadeh et al., 2015b,a).

Prism

A prism or a prismatic polyhedron is a special case of convex polyhedron
where two of the non-adjacent faces are parallel and congruent (faces 1 and 3
in Figure 4.6-c2), and all remaining faces are parallelograms (Kern and Bland,
1948). A right prism, is a special case of a prism where the top and bottom
faces are not only identical but are orthogonal translations of each other, and
all of the side faces are rectangles. As prisms are convex, the EGI of prisms
are also convex (Figure 4.6-c4).

In 3D graphic statics, a prismatic polyhedral cell can be used to represent
the equilibrium of a 3D node, but also 2D nodes where the congruent
faces can be interpreted as two external forces that cancel each other out.
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The interpretation of the equilibrium of a system of coplanar forces using
prismatic polyhedral cells will be discussed in further detail in Section
4.2.7.2.

Flat

A flat polyhedron consists of faces which are all coplanar. A flat polyhedron
with two faces is a dihedron, which is a polyhedron composed of only
two flat polygonal faces that share the same set of edges. A dihedron is
also referred to as a bihedron (Kántor, 2003), or a doubly covered polygon
(O’Rourke, 2010). The EGI of a dihedron is a hosohedron, which is a beach-
ball-like tessellation of lunes, or an area on a sphere bounded by two half
great circles where each lune shares the same two antipodal points (Coxeter,
1973).

In 3D graphic statics, a flat polyhedral cell may represent the equilibrium of
a system of parallel forces. For example, a flat polyhedral cell could represent
the equilibrium of external forces where the applied loads are vertical and all
of the reaction forces are also vertical (i.e. tied arches or tied domes). A flat
polyhedral cell that is a dihedron would represent an equilibrium of forces
where there is only one applied load and only one reaction force such as
a vertically loaded column. However, in a larger structure, there may be
multiple, parallel external forces and reactions. A flat polyhedral cell with
only two faces will have an EGI that is a hosoderon with only two antipodal
points, whereas a flat polyhedral cell with more than two faces as shown
in Figure 4.6-d4, the EGI will have multiple coincident vertices; there are
actually four vertices at the top of the EGI in Figure 4.6-d3, d4.

4.2.5.2 Non-convex

This section introduces, defines and compares the different types of non-
convex polyhedrons. For each type of non-convex polyhedron, its relevance
and interpretation within the context of 3D graphic statics is discussed.

Concave

A concave polyhedron contains at least two points on any two faces such
that the line segment connecting the two points contains points that are
outside of the polyhedron. In other words, a straight line can cut a concave
polyhedron through more than two points. In 2D, convexity of a polygon
can be checked by evaluating the internal angles formed by its edges at the
vertices. A convex polygon will have all internal angles of less than π, while
a concave polygon may have internal angles greater than π. Similarly in 3D,
the dihedral angles between the pairs of faces at an edge can be evaluated
to check for convexity. However, this would require the measuring of the
dihedral angle between all possible pairs of a cell, which would be an overly
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unnecessary and inefficient procedure. Another method of checking would
be to cut the cell with a plane, then evaluate the convexity of the resulting
polygonal shape of the section cut. This method would be considerably
more exhaustive and inefficient, since the number of sections cuts required
to verify a cell’s convexity cannot clearly be defined. However, by evaluating
the EGI of a polyhedron, which is constructed only from the face normals and
connectivity of the polyhedron, the convexity can be checked easily. If the
EGI is complex (if any faces of EGI are self-intersecting), the corresponding
polyhedron is concave. At any non-convex vertex of a concave polyhedron,
the Gaussian curvature is negative, and the vertices of the EGI are traversed
in different directions compared to the non-convex vertices; the polyhedron
itself is one possible geometric realisation and is not unique to the EGI (Xu
and Suk, 1995). The overlapping arcs in Figure 4.6-e3 are shown with an
exaggerated offset for clarity.

In 3D graphic statics, concave polyhedral cells are essentially an alternate
representation of an equivalent convex polyhedral cell. By rearranging the
faces and changing the face adjacencies, an equivalent convex polyhedral
cell representing the same force equilibrium of a concave polyhedral cell can
be constructed (Figure 4.6-e2).

Complex

A complex polyhedron consists of faces that are self-intersecting. Addition-
ally, the face normal directions are no longer necessarily uniform; some may
point away while some point towards the cell’s centre of mass (Figure 4.6-f2).
The normal of face 5 is pointing towards the polyhedron’s centre of mass,
while all other face normals are pointing away from the centre of the cell.
EGI of a complex polyhedron may have open hemispheres (Figure 4.6-f3)
where not all of the Gaussian sphere is covered with spherical faces. The
overlapping arcs in Figure 4.6-f3 are shown with an exaggerated offset for
clarity. Symmetric complex polyhedrons are special cases of complex cells
where self-intersections of some of the face occur, but all of the face normals
are still uniform (Figure 4.6-f3).

In 3D graphic statics, complex polyhedral cells represent indeterminate
states of equilibrium. As such, all complex polyhedral cells can be repre-
sented with an equivalent convex polyhedral cell. In Figure 4.6-f2, faces
and 0 and 5 are pointing in the same direction. Therefore, if faces 0 and 5
were consolidated into one face, and convex polyhedral cell that represents
the equivalent net force equilibrium can be constructed while maintaining
the same areas for all the other face. This simplified convex polyhedral
cell representation can be useful in certain applications when a simplified
visualisation of the force diagram may be desired. Complex polyhedral cells
can be used to illustrate possible equilibrium states of hyperstatic structures
(Kilian and Ochsendorf, 2005; Block, 2005; Van Mele et al., 2012).
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Other

The aforementioned typologies are generalisations, and there are many
other irregular types of polyhedrons. Some of these additional types are:
non-orientable polyhedral surfaces, such as the Klein bottle (Alling and
Greenleaf, 1969) or the Boy’s surface (Boy, 1903) (Figure 4.7-a); skew
apeirohedron or infinite skew polyhedron (Garner, 1967); or cuploids or
star polyhedrons which have repetitive non-convex elements or features
(Conway et al., 2008, pp. 404-408) (Figure 4.7-c). These special types of
polyhedrons can be sufficiently constructed and represented as a mesh.
Although these types of polyhedrons may appear in some cases, these
polyhedrons that have high geometric complexity as part of form diagrams
are not generally addressed or investigated in detail.

Figure 4.7: Special types of polyhedral cells: a) the Klein bottle; types of star polyhedra b)
the “great dodecicosahedron” and c) the “great grand stellated polydodecahedron”; and d)
pseudo-platonic cubic polyhedron, which is a regular skew apeirohedra; (Images: a) Wikimedia
Commons; b) Robert Webb; c), d) Wikimedia Commons)

4.2.6 Faces

This section gives a detailed description of the faces of a polyhedral cell. It
also describes how the oriented area and normal of a face are computed.

4.2.6.1 Polygonal area

As illustrated in the previous section, there are numerous types of polyhedral
cells. Different types of cells are also made up of faces that vary in type;
the constituent faces may be convex, concave, complex, both concave and
complex, or “gauche” (non-planar) (McRobie, 2016a, 2017a). Because the
relationship between polyhedral form and force diagrams is inherently
dependent on the face areas and orientations, correctly computing the areas
and normals of the faces are necessary. While the area and normal of
any general convex polygon can be computed directly using triangulation
and trigonometry, the procedure is not as straightforward for concave
and complex polygons. In most computational geometry applications, the
numerical value of the area is sufficient. However, in the context of 3D
graphic statics, a face of a polyhedral cell represents a force vector. Not only
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the numerical value of the oriented area of a face need to be computed, but
also the direction or the oriented normal of the face. Computing the area of
the polygonal loop that defines a face can be interpreted in different ways
depending on the discipline and the problem at hand.

Every face of a polyhedral cell has a polygonal loop or a winding direction.
A face can be decomposed into vertices and a series of directed edges
connecting them. This series of edges are equivalent to the halfedges of the
mesh datastruture (Figure 4.8-a). For a convex face, a simple procedure for
computing the area would be to triangulate the polygon into sub-triangles
using each of the edges and any point that is inside the polygon (Figure
4.8-c). Then, the areas of the sub-triangles can be computed and summed.
However, as shown in Figure 4.8-d, this simple triangulation may result in
overlapping sub-triangles for concave and complex cells.

A method of interpreting the area of a complex face is the “even-odd rule”
method. This rule essentially counts or discounts the sub-faces of the face
in an alternating matter; one of any pair of adjacent regions along an edge
counts towards the area, while the other does not (Figure 4.8-e). The even-
odd pattern can be determined by algorithms such as the Bentley-Ottman
algorithm (Bentley and Ottmann, 1979), which sweeps a line across the entire
polygon and determines the “interior” and “exterior” of the polygon by
ordering and evaluating all intersection points. While this interpretation
works for most cases in computing the nominal area of a self-intersecting
face, it does not take into account the directions of faces, and therefore the
oriented normal of the polygon cannot be computed correctly. In addition,
such exhaustive procedure would be unnecessarily inefficient for force
diagrams with multiple complex polyhedral cells, each consisting of several
complex faces.

In order to determine the oriented area and normal of a face, the winding
direction of each of the sub-regions of the face need to be taken into account
(Figure 4.8-f). The winding direction of each sub-region can be determined
by splitting up each of the edges at every self-intersection, while maintaining
the parent edge directions. The split edges can be stitched back together to
determine the new regions such that every split edge of the region starts
where the previous one ends. This procedure can start with any split edge,
and follow the next edge with the same direction. If there are more than
one split edges that are available, convexity can be enforced such that the
resulting region is not concave or complex. Convexity of the region can be
enforced by maintaining a uniform direction of the cross product of every
two consecutive split edges. This procedure continues until every split edge
has been accounted for.

Each sub-region then has its own local winding direction, which can be
used to determine whether the region contributes positively or negatively
to the total area of the face. The positive areas (the sub-regions with
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Figure 4.8: Different interpretations of the area of a complex face that is self-intersecting; a) a
face of a polyhedral cell and its halfedges; b) the halfedges complete the polygonal loop that
defines the winding direction of the face; c) polygonal loop broken up into individual edges;
d) sub-triangles formed by each of the edges and the centroid, b∗i,j ; e) the “even-odd” rule
interpretation, where the sub-faces are counted in an alternating sequence; and f) the oriented
area of the face, where the winding direction of each sub-region is taken into account.
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counterclockwise winding directions and normals pointing away from the
page) are shown in blue, and the negative areas (the sub-regions with
clockwise winding directions and normals pointing into the page) are shown
in red in 4.8-f). The total oriented area of the face is then the sum of the
oriented areas of all the sub-regions. A positive oriented area will mean the
oriented normal is pointing away from the page, and a negative oriented
area will mean that the oriented normal of the face is pointing into the page.

4.2.6.2 Oriented area

The split-edge method works for most polygons. However, splitting edges,
re-ordering split edges and finding sub-regions with consistent edge di-
rections is rather an inefficient method for force diagrams with multiple
polyhedral complex cells. For non-planar and self-overlapping faces, the
edges may not necessarily intersect with one another. In addition, it is not
always guaranteed that all found regions are convex.

If any polygonal loop of a face is interpreted as the planar projection of a
face that makes up a fictitious polyhedral cell, the procedure for computing
the oriented normal and area of that face becomes much simpler and more
elegant. Rather than computing the area of a face by deconstructing it into
smaller pieces and then reassembling them into sub-regions, the oriented
area of a face can be computed by summing the oriented normals of all the
other faces of the fictitious polyhedral cell. This is always true, regardless
of the planarity, concavity or complexity of the face, because the sum of
the oriented or weighted normals of all the faces (each representing a
force vector) of a polyhedral cell is always equal to zero (equilibrium) by
definition.

Consider the pentagon-shaped face f∗i,j in Figure 4.9-a1. This face can be
interpreted as a projection of the bottom face of a pentagonal pyramid
(Figure 4.9-a2). The simplest way to construct this pentagonal pyramid is
to use the centroid of the face b∗i,j (although any arbitrary point in space can
be chosen), and moving it up in the +z direction (towards the top of the
page) to form the peak of the pyramid. By using each directed edge of f∗i,j
and b∗(z)i,j , the missing triangular faces can be constructed to complete the
fictitious polyhedral cell (Figure 4.9-a3).

The area of f∗i,j then is the inverse of the sum of the oriented normals of the
triangular faces. To make the formulation even simpler, a flattened cell can
be used; instead of using b∗(z)i,j , centroid b∗i,j itself can be used. Regardless of
where the peak of the fictitious cell is, the oriented normal of f∗i,j is always
the same. In this particular convex case, the oriented normal of f∗i,j is in the
−z direction (towards the bottom of the page). The amplitude of the oriented
normal of fi,j , which is the sum of the oriented normals of the five triangular
faces pointing in the +z direction, is the nominal area A∗i,j (Figure 4.9-a4).
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Figure 4.9: Computing the oriented area and normal of face of a polyhedral cell using the sum
of the oriented normals of all of its sub-triangles of: a) a convex; b) a concave; and c) a complex
face.

For a concave face shown in Figure 4.9-b1, the procedure is the same.
Because of the concavity of the central vertex, the oriented normals of two
of the triangular faces are pointing in the −z direction, while the other
three are pointing in the +z direction (Figure 4.9-b3). The region where the
positive and negative faces overlap naturally cancels each other out, which
is equivalent to the sum of the weighted normals of all the triangular faces
(Figure 4.9-b4).
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For a complex face shown in Figure 4.9-c1, the fictitious cell has multiple
enclosures, but the procedure remains the same because all of the missing
faces are still triangular. With complex faces, there are multiple positive and
negative sub-regions (Figure 4.9-c4). Once again, by summing the oriented
normals of the sub-regions, or equivalently the force vectors corresponding
to each of the missing triangular faces, the oriented normal of the face can
be computed (Figure 4.9-c5). The magnitude of the oriented normal is the
oriented area of the face.

This method of computing the oriented area of a face presented in this
section is equivalent to the bivector description of polyhedral face areas
based on Clifford algebra (McRobie, 2017a, pp. 3-4). The explicit directional
information of the oriented face normals presented in this section will prove
to be essential for the development of numerous operations and algorithms
in later sections.

4.2.7 Interpretation

This section discusses how the oriented face normals of a polyhedral cell
can be used for the interpretation of the corresponding forces in the form
diagram. Also presented in this section is how prismatic polyhedral cells can
be used to represent the equilibrium of a coplanar system of forces.

4.2.7.1 Compression and tension

Once the oriented normals of the faces have been computed, the interpre-
tation of the corresponding external forces or the internal member forces in
the form diagram can be made. The oriented normal of a face in the force
diagram can be compared to the orientation of the corresponding edge in
the form diagram to determine whether or not the internal force in that edge
is in tension or compression.

A force fi,j acting on node vi can be either a compression force or a tension
force; it is a compression force if it is pushing onto the node, or a tension
force if it is pulling away from the node. In 3D graphic statics, the direction
of fi,j is the same as the direction of the normal n̂∗i,j of the corresponding
face of the polyhedral cell. Therefore, a single force polyhedron can represent
the equilibrium of various combinations of compression and tension forces
(Akbarzadeh, 2016). For example in Figure 4.10-b1 and b2, the directions
of the external forces are in the same orientations and directions as the
corresponding face normals in c∗i (Figure 4.10-a). However, the external
forces are interpreted differently; fi,4 of Λ case 1 is in tension, while fi,4 of
Λ case 2 is in compression.

The interpretation the j-th external force or the internal force of the j-th
structural member at node vi as either compression or tension, can be made
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Figure 4.10: Multiple configurations of compression and tension elements are possible for a
polyhedral cell: a) Λ⊥ or polyhedral cell c∗i of node vi; b) orientation of the members or external
forces as unitised vectors êi,j ; and c) the direction and type of forces in the members.
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by comparing the face normal n̂∗i,j and the orientation of the corresponding
member (Lee et al., 2016). Locally defined for each node vi, the orientation
of the j-th external force or member can be represented by a unitised edge
vector êi,j with the tail of the vector at vi (Figure 4.10-c). If n̂∗i,j and êi,j are
pointing in the same direction, the force in the corresponding member is
interpreted as positive, so in tension; if the vectors are in opposite directions,
the force in the corresponding member is interpreted as negative, so in
compression. The compression and tension forces are shown in blue and red,
respectively, in Figure 4.10-d.

4.2.7.2 Two-dimensional equilibrium

Two-dimensional equilibrium can be interpreted as a special case of three-
dimensional equilibrium; the equilibrium of a two-dimensional or coplanar
system of forces can be represented by a prismatic polyhedral cell. Consider
the node vi of 2D form diagram G in Figure 4.11-a. This node is equilibrium
and has three members in compression. In the Cremona representation of 2D
reciprocal diagrams, edges of the force diagram G‖ and the corresponding
edges in the form diagram G are parallel to one another (Figure 4.11-
a). In the Maxwell representation of 2D reciprocal diagrams, edges of the
force diagram G⊥ and the corresponding edges in the form diagram G
are perpendicular to one another (Figure 4.11-b). Maxwell representation is
simply the Cremona representation rotated 90 degrees on the plane.

A force polygon of G⊥ can be interpreted as the planar projection or the
polygonal loop of a face of a prismatic polyhedral cell. In this particular
example, the force polygon in G⊥ is a planar projection of face f∗i,4 (Figure
4.11-c). e∗i,1 of G⊥ can then be interpreted as the projection of halfedge h∗a,b of
face f∗i,4 of c∗i . Face f∗i,4 then represents the force fi,4, acting along the viewing
axis onto vi. Since this polyhedral cell is prismatic, f∗i,4 and f∗i,5 are parallel in
their orientations and equal in areas. Therefore, the two corresponding forces
fi,4 and fi,5 in vi are equal in magnitudes but opposite in directions. The sum
of the forces acting out of viewing axis is zero.

The length of the halfedges of f∗i,4 are proportional to the magnitudes of the
forces in the corresponding members, subject to a scale factor, ζ. ζ is the the
vertical extrusion length of the prismatic polyhedral cell. Finally, fi,1 then
corresponds to f∗i,1, where n̂∗i,1 is the direction and ζ · h∗a,b is the magnitude
of the force (Figure 4.11-d).

This method of interpreting 2D equilibrium of forces with prismatic
polyhedral cells is similar to the one described in McRobie and Williams
(2018, p.43-44) using stress functions, where the authors point out that:
“the 3D Maxwell–Rankine theory thus contains the standard Maxwell
theory for 2D reciprocal trusses ... this feature may prove useful in 3D, as
many 3D structures contain 2D substructures.” Indeed, by using prismatic
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Figure 4.11: Interpretation of 2D reciprocal diagrams using prismatic polyhedral cells: a) 2D
form diagram, G, and Cremona representation of the 2D force diagram, G‖; b) Maxwell
representation of the 2D force diagram, G⊥; c) node vi of the structure, and the corresponding
polyhedral cell c∗i ; and d) the two horizontal faces of c∗i shown as virtual faces, while the other
vertical faces represent the equilibrium of the internal member forces at vi.
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polyhedral cells as described in this section, the techniques developed in
this dissertation for 3D structures can also be applied to 2D nodes or
structures. Prismatic polyhedral cells can also be useful in explaining some
of the important polyhedral concepts without the visual clutter. For various
examples and auxiliary diagrams throughout the dissertation, prismatic cells
will be used for simplicity and clarity.

4.2.8 Operations

In most computational graphic statics applications in 2D or 2.5D, geometric
manipulations of form and force diagrams are simple and straightforward
using a mouse and a computer monitor. Because the diagrams are coplanar
on a single viewing plane, one can simply click and move the vertices of
the force diagram to observe the consequential effects on the form diagram
in real-time. Moving the vertices of a 2D force diagram changes both
the magnitudes and orientations of the corresponding external forces or
members in the form diagram.

Geometric manipulations of polyhedral cells are not as straightforward or
intuitive without the fixed viewing plane of 2D applications or the projection
plane of 2.5D applications. Moving the vertices of a polyhedral cell changes
its geometry, but it is not immediately clear to the user how much effect
the geometric transformation has on the new distribution or orientations
of forces. Vertex translation in 3D space also requires meaningful geometric
guides or constraints that are based on the local geometry of the polyhedral
cell to avoid arbitrary or counterproductive transformations. Furthermore,
the translation of vertices could also cause some of the faces of the polyhedral
cell to become non-planar. For manipulating the geometry of polyhedral cells
while enforcing the planarity constraints of the faces, vertex translations are
simply not sufficient enough. Instead, a constrained translation and rotation
of the faces are needed.

In order to change the force distribution of a polyhedral cell while
maintaining the initial face orientations, a face can be pulled along its normal
vector. For the simple cell shown in Figure 4.12-a, all four vertices of face f∗i,j
are 3-valent, which makes the face pull operation simple. A plane can be
defined by normal vector and a point, which determine the orientation and
location of the plane, respectively. The plane P ∗i,j which f∗i,j lies on can be
defined by the centroid b∗i,j and the normal vector n̂∗i,j . Suppose that f∗i,j is
being pulled in the +z direction and relocated from its initial position of b∗i,j
to b∗(z)i,j . Since all of the vertices of f∗i,j are 3-valent, there is only one trailing
edge per vertex. For example, e∗a,b is a trailing edge of v∗i,b. The new position

of the b-th vertex of f∗(z)i,j can be computed by intersecting the trailing edge

e∗a,b with the newly located plane P ∗(z)i,j .
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In order to change the orientation of a particular force while maintaining the
initial orientations of all the other forces, the face can be tilted using one of
its constituent edges as the tilt axis. In the example shown in Figure 4.12-b,
edge e∗b,c is chosen as the tilt axis. This axis is then located to the centroid b∗i,j ,
around which f∗i,j can be tilted with the angle of θ.

If a face contains vertices that have valencies of four or more (more than one
trailing edge), the pulling or tilting of the axis will result in faces that are
no longer in their original orientations or possibly non-planar. Consider the
polyhedral cell shown in Figure 4.13-b, where f∗i,2 is being pulled along its
normal. Vertex v∗11 of this cell has a valency of four and it has two trailing
edges: e∗0,11 and e∗4,11. This also means that the dual spherical face of v∗11 in
the corresponding EGI has four edges (Figure 4.13-a). Because there are two
trailing edges at v∗11, intersecting those two edges with the plane at the new
location of f∗(z)i,2 results in an extra vertex (shown as green vertices in Figure
4.13-c). The eventual f∗i,2 needs to incorporate these extra vertices resulting
from the extra trailing edges, which means the topology of the face, and
therefore the polyhedral cell, needs to be updated prior to the operation.

The topological transformation of a cell can be guided and significantly
simplified by the EGI. Because the two edges at v∗11 create an extra vertex
and therefore an additional edge, v∗11 needs to be split into two vertices. In
addition, these two vertices also need to be ordered in a specific way such
that the winding directions of all the faces are maintained. If this procedure
were to be done using just the geometry and topology of the cell itself, it
would require additional steps to sort and order the vertices in space, which
would quickly become tedious with multiple vertices that may have several
trailing edges.

Figure 4.12: Constrained face operations on a simple polyhedral cell: a) pulling face f∗i,j in the
+z direction; and b) tilting face f∗i,j , using the edge e∗b,c as the tilt axis.
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Figure 4.13: Faces with high-valent vertices require those vertices to be split before the face can
be pulled or tilted: a) stereographic projection of vertex 2 of the EGI that corresponds to f∗i,2
with 4-valent vertices; b) the corresponding polyhedral cell; c) the additional vertices (shown in
green) created by the extra trailing edges; d) stereographic projection of vertex 2 of the EGI, with
its neighbouring spherical faces now split in two; e) the corresponding polyhedral cell with the
additional vertices and edges, and the new topology; and f) the resulting polyhedral cell.

The splitting of a cell vertex is topologically equivalent to splitting the
corresponding spherical face of the EGI. By pulling f∗i,2 in the +z direction,
an edge will be created between f∗i,2 and f∗i,6. This means that the vertices 2
and 6 in the EGI, which respectively represent f∗i,2 and f∗i,6 will need to be
connected with a new edge. Using this edge, face 11 can be split into two
new faces, 18 and 19 (Figure 4.13-d). The procedure can be repeated for any
other vertices that have multiple neighbouring edges. Once all the required
spherical faces have been split, the topology of the cell can be updated
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by removing the old vertices and adding new vertices and edges. Using
the topology of the spherical faces around vertex 2 in the EGI, the correct
ordering of the new vertices of f∗i,2 can be determined. Any new vertices
will initially be placed at the same location as the parent vertex, although
the topological structure is different from what the geometry may suggest
(Figure 4.13-e). With the updated topology of the polyhedral cell, the face can
be pulled or tilted with the same procedure described in Figure 4.12 (Figure
4.13-f).

4.2.9 Construction

So far, the polyhedral cells have been assumed to be an existing condition.
However, in a typical design workflow, the only known information during
early stages of design may be the boundary condition information such
as the locations, magnitudes and orientations of the external forces. This
subsection presents a polyhedral cell construction method using the EGI,
which computes the geometry of the polyhedral cell from the orientation
and magnitudes of spatial forces in equilibrium.

4.2.9.1 Background

Computation of polyhedral geometry, or more commonly known as “poly-
hedral reconstruction,” is a well-researched topic for a variety of applications
in many disciplines, such as computer vision, computational geometry and
combinatorics. In most applications, the word “reconstruction” is typically
used instead of “construction” because the objective is to retrieve or
reconstruct the polyhedral geometry from partial information about the
polyhedra (i.e. from projected images, vertex locations, edge lengths, face
geometries, face normals, face areas, dihedral angles etc.) (Demaine and
O’Rourke, 2007). In this dissertation, the word “construction” will be used
to refer to these procedures that compute polyhedral cell geometries.

The polyhedral construction method that is most relevant to 3D graphic
statics is the one based on face normals and area information. The theory
of polyhedral construction from its face normals and areas, or modifying
the polyhedral geometry with target face areas, originates from Minkowski’s
theorem (Minkowski, 1897). Alexandrov’s (2005) interpretation of the the-
orem is recited below, with modified notations to stay consistent with the
nomenclature used in this paper:

If n̂0, ... ,n̂m are non-coplanar unit vectors and A0, ... ,Am are
positive numbers such that

∑m
j=0 Aj · n̂j = 0, then there exists a

closed convex polyhedron whose faces have outward normals n̂j

and areas Aj, [... with uniqueness up to translation].
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Although proofs for this existence theorem can be found in numerous
texts in the literature (Grünbaum, 2003; Alexandrov, 2005; O’Rourke, 2011),
the construction procedure was never explicitly mentioned or developed
in detail. It was not until the 1980s that this problem was revisited with
adequate computational tools.

Ikeuchi (1981) first proposed a technique by using a constrained minimi-
sation procedure, followed by Little’s (1983) iterative minimisation solver
using the EGI, which is a topological representation of a surface or a
polyhedral object on a unit sphere (Horn, 1984). Moni (1990) added another
layer to the EGI-based technique by using zero-area faces to address
indeterminate face adjacencies. Xu and Suk (1995) introduced hierarchical
EGI to reconstruct concave polyhedra. In these implementations, while
robust in their theory and setup, the methods were demonstrated on only
a few simple examples. The general computational complexity and hardness
of this construction problem was addressed by Gritzmann and Hufnagel
(1999).

Especially with EGI-based methods, the complexity and diversity of
polyhedrons that can be reconstructed was not demonstrated through a
large sampling of convincing examples. Furthermore, the ultimate goal of
these methods is to simply demonstrate the improved efficiency over its
predecessors, rather than manipulate or interact with the resulting geometry
of the polyhedra. The designer’s ability to customise the method and control
the computed geometry of the polyhedrons is not addressed, which is crucial
in an interactive design environment for architecture and structural design.

In a more numerical approach, Lachand-Robert and Oudet (2005) presented
a variant of a convex hull method that could construct convex bodies
with more than 1000 given face normals and areas. Such powerful nu-
merical methods are necessary for large optimisation problems in various
engineering applications. However, in the context of 3D graphic statics
applications, individual polyhedral cells have relatively low number of faces;
a structure would typically not have nodes where more than six members
come together. Instead, structures are typically a large network of simple
cells. Rather than a powerful solver that can reconstruct a single cell with
a large number of faces, a flexible and interactive setup that can ultimately
control a large network of simple cells is needed.

4.2.9.2 From force vectors to EGI

Previous work in polyhedral construction have been generally based on
optimisation schemes that seek to maximise the processing efficiency or the
output capacity of the method itself. Therefore, these methods are not ideal
for a design environment where the geometry of the polyhedral cells may
require constant interaction and change.
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As described in Section 4.2.4, the construction of EGI from a set of
equilibrated forces is a straightforward process. Once the point masses have
been added to the EGI, the adjacency arcs that define the face adjacencies
of the polyhedral cells can be added. An adjacency arc is defined as the
minor arc of the great circle containing any pair of point masses on the
Gaussian sphere (Moni, 1990). However, the face adjacency information of
a polyhedral cell is not directly recoverable from the location of the point
masses and arcs alone.

Figure 4.14: Three polyhedral cells with same face orientations, but with different areas: a) faces
1 through 4 are adjacent with one another at a single vertex; b) faces 1 and 3 are adjacent along
an edge; and c) faces 2 and 4 are adjacent along an edge.
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Consider the three cells shown in Figure 4.14. These three cells have the same
face orientations but different face areas. Based on the definition of an arc
stated above, the face normals and areas of the three polyhedral cells result in
the same EGIs (middle row of Figure 4.14). However, the actual EGIs (bottom
row of Figure 4.14) are different, as the different face area distributions result
in different face adjacencies. Depending on the face area distribution, various
face adjacencies occur: faces 1-4 are all adjacent with one another at a vertex;
faces 1 and 3 are adjacent; or faces 2 and 4 are adjacent.

This indeterminacy of face adjacencies occurs where an arc crosses another
arc on the EGI. Moni (1990) defines these arc intersections as “cross-
adjacencies,” where various face adjacencies could occur depending on
different face area distributions. By adding a fictitious, “zero point mass”
at these arc intersections, and subsequently a face with zero-area, or a “zero
face,” all possible face adjacencies can be embedded and represented in a
single EGI (Figure 4.15-a). Once all zero point masses have been added,
the datastructure of the EGI as the dual spherical polyhedron is complete,
and the “unit cell” can now be constructed, which is simply the topological
primal of the dual spherical polyhedron or the EGI (Figure 4.15-b). All zero
faces have a target area of zero.

One of the most remarkable properties of EGI is that the centre of mass of
the EGI’s point masses has to lie at the origin of the Gaussian sphere (Horn,
1984). This means that there cannot exist a hemisphere on the EGI that does
not have a point mass, which would represent an unbounded polyhedron.
However, there are commonly used node elements in structural design for
which the corresponding EGI may have one or multiple empty hemispheres,
such as: a prismatic polyhedral cell representing the equilibrium of a
coplanar system of forces (Figure 4.16-a); an open node (Figure 4.16-b); or
a node with members that may temporarily be unequilibrated during the
form-finding process (Figure 4.16-c).

Figure 4.15: a) The EGI with zero point mass 5 added; and b) the corresponding unit cell with
an added zero face.
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Figure 4.16: a) A 2D node, its EGI and the prismatic polyhedral cell with two added virtual
faces; b) an open node, its EGI and the polyhedral cell with four added virtual faces; and c) a
temporarily unequilibrated node, its EGI and the corresponding polyhedral cell with one added
virtual face, which in this case is also a zero face.

For these special cases, “virtual faces” are introduced to complete the
geometry of the unit cell. Virtual faces are not the same as zero faces, and
have no target area values; the only purpose of the virtual faces is to facilitate
the geometric construction of cells in these special situations, and have no
corresponding force or member in the form diagram. In general, if the centre
of mass is not at the origin of the Gaussian sphere, or if there are any empty
hemispheres, virtual point masses are placed at the centre of the empty
hemispheres. In the case of a prismatic polyhedral cell, only two virtual faces
are needed, with an arbitrary scale factor of ζ (see Section 4.2.7.2). For an
open node, at least three virtual faces are needed to complete the polyhedral
cell (Figure 4.16-b). During the interactive design process, some polyhedral
cells can become temporarily unbounded. A virtual face can be added for
each empty hemisphere, and only in such unbounded cases, the virtual faces
are treated as zero faces with target areas of zero.
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Once the topological datastructure of the unit cell has been constructed,
each face of the unit cell can be iteratively re-sized towards their target
areas. Zero faces and virtual faces which have target areas of zero eventually
collapses to an edge or vertex as a result of this iterative procedure. A more
detailed explanation of the technical implementation of this procedure will
be discussed in Chapter 5.

Figure 4.17: Construction sequence of a polyhedral cell using the EGI: a) equilibrated force
vectors; b) the EGI with adjacency and cross-adjacency arcs; c) normal vectors at each of the
point masses on the Gaussian sphere; d) unit polyhedral cell; e) iterative re-sizing of the faces
towards their target areas; and f) geometry of the final polyhedral cell.
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4.2.10 Summary

This section presented polyhedral cells, which can represent the equilibrium
of: 1) the external forces of a structure; or 2) a single node of a multi-node
structure. Investigation of single polyhedral cells is important in developing
robust and generalised utility functions and understanding of various
topological structures as they relate to the geometry of the polyhedral
cells. The generalised utility functions then can be used to develop various
transformation functions of a single polyhedral cell. The construction of
polyhedral cells is also important in initialising the global force polyhedron
for addressing boundary conditions and external forces. However, typical
structures consist of multiple nodes. Therefore, in the following section, a
datastructure for representing the equilibrium of multi-node structures will
be presented.
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4.3 Multi-cell polyhedron
This section presents the multi-cell polyhedron datastructure, which can
represent the static equilibrium of spatial structures with multiple nodes.

4.3.1 Definition

A polytope is a geometric object with faces (closed polygonal loop of edges),
which can exist in any general n number of dimensions as n-dimensional
polytope or n-polytope (Coxeter, 1973). A n-polytope is made up of (n −
1)-polytopes and also referred to as a (n − 1)-manifold. For example, a
polyhedral cell which is a 3-polytope is a 2-manifold. A vertex is a 0-polytope
in zero dimension, while an edge is a 1-polytope in one dimension. A face in
two dimensions is a 2-polytope made up of 1-polytopes, edges. A polyhedral
cell in three dimensions is a 3-polytope made up of 2-polytopes, faces.

Following the same analogy, a 4-polytope in four dimensions is then made
up of 3-polytopes, or polyhedral cells. Because a polyhedral cell represents
the equilibrium of a single node, a force diagram of a structure with multiple
nodes consists of multiple polyhedral cells. This set of conjoined polyhedral
cells can be described as a 4-polytope (McRobie, 2017a). This 4-polytope
is defined as multi-cell polyhedron, which represents the polyhedral force
diagram Γ⊥ of a polyhedral form diagram Γ with multiple nodes.

4.3.2 Datastructure

The adjacency information of the faces of a 3-polytope or a polyhedral cell,
are defined by the halfedges. The adjacency information of the cells of a
4-polytope or a multi-cell polyhedron, can be defined by a combination
of halffaces and planes. Whereas each edge of a polyhedral cell is split into
two halfedges with opposite directions, each face of a multi-cell polyhedron
is split into two halffaces with opposite orientations. The halfedges of a
polyhedral cell store their incident face information, while the halffaces
of a multi-cell polyhedron store their incident cell information. Using the
halfface orientations and its incident cell information, various data of a
multi-cell polyhedron can be accessed and traversed. The data of a multi-
cell polyhedron consists of vertices, edges, halffaces, cells and planes. The
vertices and edges of a multi-cell polyhedron have the same structure as the
vertices and edges of a polyhedral cell (see Section 4.2.2).

Each j-th halfface hf∗j of the multi-cell polyhedron Γ⊥ is stored as a hfkey-
value pair (Figure 4.18-c). The halfface key (hfkey) is the unique identifier of
the halfface, and the value is an ordered list of vkeys that form the polygonal
loop of the halfface. The first vkey and the last vkey are not be the same.
Every consecutive pair of this list of ordered vkeys (including the last to
the first), is a halfedge. Each cell c∗i of Γ⊥ is made up of halffaces which are
unique to that cell.
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Figure 4.18: The datastructure of a multi-cell polyhedron with two cells: a) the vertex dictionary;
b) the edge dictionary; c) the face dictionary; d) the half-edge dictionary; and e) the plane
dictionary.
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Each i-th cell c∗i of the multi-cell polyhedron Γ⊥ is stored as a ckey-vkey-
vkey-hfkey quadruple (Figure 4.18-d). The ckey or the cell key is the unique
identifier of a cell. Each ckey points to two ordered vkeys that define a
halfedge which belongs to one of the cell’s halffaces. This halfedge then
points to the hfkey of the incident halfface.

Each plane of a multi-cell polyhedron is stored as vkey-vkey-vkey-ckey
quadruple (Figure 4.18-e). The three ordered vkeys, u, v and w as a
sequence, is the unique identifier of the plane (u,v,w). u, v and w are three
consecutive vkeys of a halfface, or two consecutive halfedges (u,v) and
(v,w). Each plane then points to the incident cell. Planes essentially store
the halfface and their incident cell information.

Consider the multi-cell polyhedron shown in Figure 4.18. This multi-cell
polyhedron has two cells. Halfface hf∗0 of cell c∗0, is made of four vertices:
7, 1, 2 and 4 (highlighted in blue, Figure 4.18-c). Plane (1,2,4) is defined
by two halfedges (1,2) and (2,4) of hf∗0 . This plane points to c∗0, which
is the incident cell of hf∗0 (highlighted in red, Figure 4.18-e). Plane (4,2,1)
belongs to the halfface which is in the opposite orientation compared to hf∗0 .
Because plane (4,2,1) belongs to a halfface which does not belong to c∗0, it
points to the adjacent cell of cell 0, which in this case is 1 (highlighted in red,
Figure 4.18-e).

4.3.3 Interpretation

As discussed in Section 4.2.7, the interpretation of the internal force of mem-
ber at a node as either compression or tension can be made by comparing
its orientation relative to the oriented normal of the corresponding halfface
of Γ⊥. For a Γ⊥ that contains multiple cells, the interpretation of forces can
also be made by comparing cell directions of neighbouring adjacent cells
(Akbarzadeh et al., 2017).

Based on the convention established in Section 4.2.7, the two nodes that
define a member in tension will correspond to two cells with positive
cell directions in Γ⊥ (Figure 4.19-a); two nodes that define a member
in compression will correspond to two cells with negative cell directions
(Figure 4.19-b). Γ⊥ for compression-only funicular structures will only
consist of cells with negative directions, whereas tension-only funicular
structures will only consist of cells with positive directions. For a structure
that contains members in both compression and tension, Γ⊥ contains both
positive and negative cells.

It is possible for a polyhedral cell to have no cell direction. For example,
a complex polyhedral cell where all of its faces are complex and have
oriented areas of zero (and therefore no oriented normals), would have no
cell direction. Therefore, if either of the pair of adjacent cells have no cell
direction, the corresponding member in Γ would be a zero-force member.
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Figure 4.19: Interpretation of member forces in relation to the cell directions of the correspond-
ing pair of adjacent cells: a) two adjacent cells with positive cell directions, which corresponds
to a member in tension; b) two adjacent cells with negative cell directions, which corresponds
to a member compression; c) and d) two adjacent cells that have different cell directions may
correspond to a member in either compression or tension.
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Figure 4.20: A force diagram Γ⊥ with prismatic polyhedral cells and the corresponding 2D
form diagram Γ (vertical forces not shown): a) a structure with four external forces; and b) a
self-stressed structure with five cells and no external forces.

4.3.4 Hierarchy

For externally loaded structures, the cells of a Γ⊥ can be categorised into two
groups: the global force polyhedron Λ representing the equilibrium of the
external forces; and nodal polyhedral cells c∗i that each represent the local
equilibrium at node v∗i . While each cell c∗i corresponds to a node, a pair
of conjoined cells represent a member in Γ (Figure 4.20-a). At the interface
of two conjoined cells is a pair of halffaces. The boundary halffaces at the
extremities of a Γ⊥ are not paired, and therefore represent external forces.
The combination of all of the boundary halffaces represents the global force
polyhedron, Λ⊥.

Self-stressed structures have no external forces. Therefore, the corresponding
Γ⊥ does not have any unpaired, boundary halffaces. The example shown in
(Figure 4.20-b) has four triangular prismatic cells which are all contained
within a single outer rectangular cell. In contrast to the example in Figure
4.20-a, the four external forces represented by the four boundary halffaces,
is now internally resolved at a single central node whose equilibrium is
represented by the outer rectangular cell.
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4.3.5 Unified diagram

Although one of the most valuable benefits of computational graphic statics
is the visualisation and explicit control of both the structure’s geometry
and its equilibrium of forces, the form and force diagrams increasingly
become more visually cluttered and illegible as structures become more
complicated. The illegibility is even more severe for polyhedral reciprocal
diagrams, where it is quite difficult to perceive quantitative information
through volumes and face areas of solid geometries (Cleveland and McGill,
1984), especially when they are represented as 2D images on flat media.
Therefore, the visualisation of Γ⊥ needs to be improved in order to fully
take advantage of the inherent benefits of graphic statics, and make the
polyhedral reciprocal diagrams more legible, usable and interactive.

The unified diagram, Γ⊥(α), represents both the geometry and internal forces
of a structure in a single diagram, thereby improving the legibility of
reciprocal diagrams (Zanni and Pennock, 2009) (Figure 4.21). A method for
computing and displaying the unified diagrams was presented by McRobie
(2016a) as “Minkowski sum” diagrams: “Maxwell-Minkowski” diagrams for
2D cases, and as “Rankine-Minkowski” diagrams for 3D cases. This method
was later refined and generalised as the “Corsican sum” (McRobie, 2017a).
In order to avoid confusion of the terminology, the combined form and force
diagrams are henceforth referred to as unified diagrams.

In unified diagrams, the constituent polygons or cells of the force diagram
are scaled relative to the corresponding nodal coordinates in the form
diagram, resulting in an “exploded view” of the force diagram. Each pair
of neighbouring polygons or cells are then connected in two dimensions
by interstitial rectangles and in three dimensions by interstitial prisms.

Figure 4.21: Form diagram G, the reciprocal force diagram G⊥ and the unified diagram G⊥(α)
for a simple truss (After Maxwell (1864) and McRobie (2016a)).
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In contrast to traditional, side-by-side representation of form and force
diagrams, the unique visualisation method of unified diagrams provide
new insights and perspectives. Γ⊥(α) is not only more discernible, but
also provides an interesting visual representation of the material required
for a uniform stress design (McRobie, 2016a). Furthermore, the unified
diagram reveals visual insights in relation to some of the most fundamental
principles of structural engineering and analysis, such as: kinematics and
mechanisms (Zanni and Pennock, 2009); virtual work and displacements
(McRobie et al., 2017); and stress-fields and strut-and-tie models (Schlaich
and Anagnostou, 1990; Muttoni et al., 1997). Most importantly, the usefulness
of unified diagrams is even more apparent for 3D trusses. Because conjoined
polyhedral diagrams have volumetric objects stacked on top of each other, it
is difficult to read, understand and discern in an intuitive manner.

The generalisation of the unified diagram as the Corsican sum (McRobie,
2017a) allows any geometry that is topologically dual to the polyhedral force
diagram to be in equilibrium; the members of the structure do not need
to be straight, nor do they need to be perpendicular to the corresponding
faces in the force diagram. However, only 3D trusses carrying axial loads are
considered in this dissertation, and therefore, the members of the structure
needs to be straight and be perpendicular to the corresponding faces in the
force diagram. In order to construct the unified diagram for trusses that are
under axial loads only, the nodal coordinates of Γ and the cell geometries of
Γ⊥ are needed.

Once Γ and Γ⊥ are both computed, a simple geometric algorithm can be
used to visualise Γ⊥(α). By parametrically modifying the scaling factor α, all
cells of Γ⊥(α) are scaled relative to its corresponding nodes of the structure
such that the distance between any pair of adjacent cells is α · L, where L is
the length of the corresponding member in Γ. Each cell is now positioned in
space such that every pair of halffaces that represent a member in Γ are not
only parallel, but also orthogonal translations of each other.

For a conjoined polyhedral force diagram Γ⊥, every pair of adjacent halffaces
have the same topology and geometry. Therefore, one of the halffaces can be
simply extruded by length α · L to visualise the interstitial prisms. A scaling
factor of 1 results in Γ, whereas lower values of α closer to 0 will result in a
Γ⊥(α) that more closely resembles the polyhedral force diagram Γ⊥ (Figure
4.23-b). The volume of the interstitial prisms that are formed in between the
adjacent cells is equivalent to the work f ·L being done by the corresponding
member, where f is the internal force in the member between the two nodes,
and L is the length of that member.
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Figure 4.22: Form diagram G and the unified diagram G⊥(α) with varying scale factor values
for α, for three 2D trusses: a) Howe truss; b) Warren truss; and c) Michell truss;
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Figure 4.23: A simple 3D truss and its unified diagram: a) Γ of the truss, which is equivalent to
Γ⊥(α = 1); and b) the Γ⊥(α) with varying scaling factor of α.

4.3.6 Operations

Compared to polyhedral cells, geometric transformations of multi-cell
polyhedrons are not as straightforward. Pulling or tilting a face of a
multi-cell polyhedron will have a cascading effect on a series of faces at
once. A vertex-based method for constrained geometric manipulations of
multi-cell polyhedrons was presented in Nejur and Akbarzadeh (2018). In
this approach, the new geometry of multi-cell polyhedrons are computed
through local edge intersections to determine the new vertex locations.
The face orientation constraint is enforced edge-per-edge by maintaining
the initial edge orientations. Because the computation of the resultant
geometry is dependent on series of local geometric procedures, vertex-based
manipulation requires several steps: formulation of transformation graphs,
cluster graphs, transformation prioritisation and transformation propaga-
tion. Alternatively, geometric manipulations of multi-cell polyhedrons while
maintaining the initial face orientations can be conceptualised as a face
relocation problem, where the localised operations are applied at the cell
level. Because face-based transformations inherently enforce the planarity
and orientation constraints, a simpler method can be formulated.

The first step for applying a constrained face operation to an arbitrary face
f∗i,j (shown in blue, Figure 4.24) of a multi-cell polyhedron is to identify
the dependent faces (shown in gold, Figure 4.24). The dependent faces are
other neighbouring faces of f∗i,j that will also need to be transformed as a
by-product of the face pull operation on f∗i,j . A dependent face is a face
of the neighbouring cells which share an edge with the initial face f∗i,j , or
other dependent faces. There can be only one dependent face per cell. The
dependent face finding procedure is repeated until there are no more faces
left in the multi-cell polyhedron that meets this requirement.
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Once all of the dependent faces have been identified, the transformation
operation is a linear process. The initial face f∗i,j can be locally pulled or tilted,
following the procedure described in Section 4.2.8. With the new location of
f∗i,j , the new positions of its dependent faces can be determined one after
another.

For each dependent face, the new location is one of the vertices of the
edge that is shared with f∗i,j . The new dependent face locations can be
used to update the geometry of the corresponding cells. The transformation
continues until all of the cells with dependent faces have been updated.
Instead of using the initial normals of f∗i,j and its dependent faces for the
recursive face pull operations, a target normal can be used. This effectively
projects f∗i,j and its dependent faces to a target plane, which could be a useful
in constraining multiple faces at once (Figure 4.24-d). This transformation
can be applied to the multi-cell polyhedrons as well as their corresponding
polyhedral form diagrams.

Figure 4.24: a), b) , c) Constrained transformations of multi-cell polyhedrons through recursive
face pull operations (selected face for transformation shown in blue, and their dependent faces
shown in gold); and d) face pull operations of the selected face and its dependent faces with a
target plane.
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The resulting geometry of multi-cell polyhedrons is not unique, and is
subject to various global constraints enforced by the user. For example,
tilting faces of a multi-cell polyhedron cannot be executed unless generalised
rules or assumptions are provided, such as how much the dependent faces
are allowed to change relatively to one another. Furthermore, pulling of
interior faces can have multiple solutions, depending on which faces are
allowed to move and which are not. Most importantly, a large number of
triangular faces, especially in the interior cells of a multi-cell polyhedron can
be extremely constraining for any geometric operation. Unifying transfor-
mations such as aligning all dependent faces to a target plane, especially for
boundary faces, can be useful in enforcing geometric constraints to multiple
cells at once. However, geometric manipulations of multi-cell polyhedrons
in general, are highly constrained problems that are directly dependent on
the the initial topology.

4.3.7 Summary

Multi-cell polyhedrons have intrinsic topological constraints that are glob-
ally enforced onto all of its constituent cells. As a result, it is an ideal
datastructure for exploring top-down operations such as subdivisions and
global geometric manipulations. However, such inherent constraints of
multi-cell polyhedrons also results in some key limitations. It is difficult to
impose specific distribution of external forces based on realistic tributary
areas or loading conditions. Also, the corresponding form diagrams of multi-
cell polyhedrons are strictly polyhedral in its geometry, which is only a small
subset of equilibrated spatial structures that can be explored. Furthermore,
the globally enforced topological constraint makes it challenging to perform
any local geometric transformations of multi-cell polyhedrons, especially
ones involving internal cells.

To address these limitations of multi-cell polyhedrons, the next section
presents a datastructure for an unconstrained polyhedral force diagram,
which can liberate the individual cells from global topological constraint
while maintaining the equilibrium of the structure both locally and globally.
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4.4 Cell network
This section presents cell network datastructure, which is a generalised
polyhedral force diagram for representing the static equilibrium of spatial
trusses, which are nodally loaded and comprised of straight bars.

4.4.1 Definition

Previously presented design explorations using 3D graphic statics have been
based on aggregations, subdivisions or transformations of polyhedral force
diagrams where all pairs of adjacent cells have matching halfface geometries
(halffaces hf∗1 and hf∗0 in Figure 4.25-a), and therefore can be assembled into
a conjoined multi-cell polyhedron, Γ⊥. The concept of neighbouring cells
with dissimilar or mismatching contact faces was first introduced by McRobie
(2016b) (faces f∗0,1 and f∗1,0 in Figure 4.25-b). In more recent papers, McRobie
(2017a; 2017b) showed that the equilibrium of two neighbouring cells with
mismatching contact face geometries can be explained using “face cushions”
or collapsed cells (cell c∗2 and in Figure 4.25-c). The “face cushions” represent
fictitious nodes in Γ with a net force of zero at that node, which is important
in constructing a Γ⊥ for more complicated structures. The collapsed cell
in-between two adjacent cells allows the two initial cells to no longer be
conjoined; the two cells are “disjointed” in the sense that the contact faces
in between the two cells only need to have equal areas, but not necessarily
matching geometries.

A collection of disjointed cells in equilibrium is defined as a cell network,
Ψ⊥. Each individual cell of Ψ⊥ represents the local equilibrium of a node
in the corresponding form diagram, Ψ. At the local level of a node, the
corresponding cell behaves like a polyhedral cell. Unlike the polyhedral form
diagram Γ, the form diagram Ψ which corresponds to a cell network Ψ⊥ is
not necessarily polyhedral in its geometry. The topological structures of Ψ
and Ψ⊥ do not have a dual relationship, which means they can not be defined
as reciprocal; Ψ⊥ is a collection of cells that are individually reciprocal to its
corresponding nodes in Ψ. On the other hand, the polyhedral form and force
diagrams Γ and Γ⊥ are mutually dual and reciprocal, and are special cases of
a non-polyhedral form diagram Ψ and the corresponding cell network Ψ⊥,
respectively.

4.4.2 Datastructure

A cell network is a collection of polyhedral cells. Because the polyhedral
cells of a cell network are disconnected from one another and not explicitly
conjoined into a single topological object, another layer of datastructure is
needed to manage and control the inter-cell connectivities and relationships.

The cell connectivity information is embedded into the cell network at the
global level, as a network or graph datastructure. A network is a collection of
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Figure 4.25: a) Two nodes in equilibrium where the two cells have matching halffaces; b) two
nodes in equilibrium where the two cells are disjointed with mismatching contact faces; and c)
fictitious node v2, and the corresponding cell c∗2 linking the two cells with mismatching contact
faces, in convex and collapsed states.

vertices and a set of edges connecting the vertices. The vertices store various
data and information, while the edges defined the relationship between pairs
of vertices. With the coordinate information stored in each of the vertices, this
global layer of the cell network datastructure also defines the geometry and
topology of the non-polyhedral form diagram, Ψ (Figure 4.26-a, b). At the
local level, each vertex of the cell network contains the data of the polyhedral
cell that represents the equilibrium of that vertex (Figure 4.26-c).

The vertices and edges of cell networks are stored in the same manner as in
polyhedral cells and multi-cell polyhedrons; the vertices are stored as vkey-
value pairs, while the edges are stored as vkey-vkey-value triples. Each fkey
of the faces of a cell corresponds to the vkey of the vertex to which the face is
pointing. In the simple example shown in Figure 4.26, fkey of 1 is assigned
to the face of cell of vertex 0 which is adjacent to the cell of vertex 1. Similarly,
fkey of 0 is assigned to the face of cell of vertex 1 which is adjacent to the
cell of vertex 0.
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Figure 4.26: The datastructure of a cell network Ψ⊥ with two cells.
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4.4.3 Hierarchy

For a multi-cell polyhedron, the unpaired boundary halffaces can be joined
to construct the global force polyhedron, Λ⊥. For a cell network, the unpaired
faces at the extremities of the structure cannot simply be joined because
of potential topological incompatibilities of those faces. The global force
polyhedron Λ⊥ of a cell network needs be constructed independently from
the cells. Λ⊥ can be stored as an independent object within the cell network
datastructure. It can carry the necessary boundary condition information,
such as the magnitudes and orientations of the known external forces. As a
result, Λ⊥ imposes the boundary condition constraints onto the cell network
starting from the peripheral cells and propagating towards the interior cells.

4.4.4 Unified diagram

For cell networks, the construction of unified diagrams, Ψ⊥(α), is not as
straightforward since the prisms cannot simply be extruded due to the
mismatching contact faces in between pairs of cells. A true Ψ⊥(α) would
show the collapsed cells between two disjointed cells, with two prisms
instead of one (Figure 4.27-b). However, with the priority being placed
on maximising the visual clarity and legibility of unified diagrams, the
representation of the two prisms and a collapsed cell can be simplified by
using a convex-hull of the two contact faces (Figure 4.27-c, d). Note that the
volume of this convex-hull is not f · L.

The unified diagrams for cell networks are applied purely as a visual ap-
proximation to improve the legibility of Ψ⊥. A Γ⊥ for a structure having both
compression and tension elements typically consist of cells with positive and
negative cell directions; the face normals of some cells point inward, and
some cells outward (Lee et al., 2016; Akbarzadeh, 2016). In cell networks, all
cells of a Ψ⊥ are locally constructed and have the same directions (either all
negative or all positive, depending on the conventions chosen by the user).
Therefore, the distance between any pair of neighbouring cells in a Ψ⊥(α) is
not precisely α · L.

4.4.5 Summary

Cell networks are unconstrained polyhedral force diagrams that enable more
area-based (force-driven) constraints to be imposed. Because the topology
of the individual cells can change independently from one another, cell
networks allow force-driven design explorations, which may be not be pos-
sible using multi-cell polyhedrons that have globally enforced topological
and geometric constraints. Cell networks can be particularly useful in later
stages of design, when more realistic and force-driven considerations need
to be enforced once the overall design of the structural geometry has been
finalised. However, the lack of intrinsic global constraints of cell networks
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Figure 4.27: a) Interstitial prism between two cells of a Γ⊥(α); b) the collapsed cell and the two
interstitial prisms between two cells of a Ψ⊥(α); c) convex-hull as a visual alternative to b) with
the collapsed cell omitted, for two cells with the same valency; and d) two cells with different
valencies.

require that users are more cognisant of the boundary condition constraints,
and what parameters can remain free.

In general, Ψ for a given force distribution is not always unique, and is
subject to certain geometric constraints such as maximum and minimum
length of edges allowed, and node location constraints. Consequently, a
design problem can become over-constrained and an equilibrium solution
may not be found that satisfies all of the input constraints. In such cases,
the converged solution then provides the designer with the closest solution
given the input constraints, and indicates where certain constraints can be
removed or modified. It will be shown in Part 3 of the dissertation, that these
constraints can be used as an opportunity for design rather than a hindrance;
the users can interactively set different combinations of constraints to explore
various equilibrium solutions.
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4.5 Summary

This chapter presented three datastructures for addressing different types of
equilibrium problems involving spatial system of forces. Polyhedral cells,
multi-cell polyhedrons and cell networks were developed in response to
some of the key limitations of 3D graphics. These three datastructure are the
fundamental building blocks for expanding the range of structural design
applications using 3D graphic statics. Based on this theoretical foundation,
the next chapter presents compas_3gs, which explains how the various
concepts introduced in this chapter are implemented in an interactive design
environment.



5 compas_3gs

The presented computational framework is implemented in an open-source
library, compas_3gs. This chapter presents the general implementation
methodology, organisational structure and key features of compas_3gs. De-
velopment of interfaces for integrating compas_3gs with a CAD software is
also presented, which allows the computational framework to be used in an
interactive design environment.

5.1 Introduction

This section provides some basic information about the library, explains the
general approach, and gives an overview of the organisational structure of
compas_3gs.

5.1.1 About

compas_3gs is an additional package for the COMPAS framework (Van
Mele et al., 2017). COMPAS is an open-source, Python-based computational
framework for collaboration and research in architecture, engineering and
digital fabrication. compas, the main library of the COMPAS framework,
contains all of the basic datastructures, algorithms, utilities and functionality.
Building on this core library, compas_3gs provides additional features that
are specifically geared towards 3D graphic statics applications.

Developed entirely independent of the functionality of CAD software,
compas_3gs can be used on different platforms and in combination with
external software and libraries. It can also take advantage of the extensive
libraries for design and research that are widely available in the Python
ecosystem. Because it is not dependent on any other software, compas_3gs
in combination with compas, is intended to bring 3D graphic statics to a
wide audience with diverse range of academic backgrounds, expertise and
experience.

5.1.2 General approach

The functionalities and algorithms of compas_3gs are mainly based on
transparent, geometry-based solvers and optimisation techniques as op-
posed to “black-box,” numerical methods. compas_3gs is developed with
the following goals in mind:

101
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1. Flexibility

The implementation needs to be general and flexible enough to cover a
wide range of both known and unknown structural typologies. It also
needs to have as few software dependencies as possible, so that users
from a variety of backgrounds and expertise can adapt the library for
various applications regardless of the CAD software being used.

2. Simplicity

In computational geometry, improvement of the computational effi-
ciency of solving procedures and algorithms are often prioritised over
the user’s ability to modify and interact with the resulting solutions.
Instead of focusing on computing the absolute solution in the shortest
amount of time possible, the solution as well as the procedure should
communicate complex information in simple ways that are easy to
understand and potentially provide meaningful insights.

3. Customisability

During early stages of design, it may be desirable to explore multiple
feasible solutions as rapidly as possible while meeting the require-
ments that are specific to the design problem at hand. This requires a
set of flexible yet robust functions and operations, which can be easily
mix-and-matched to create customised toolbars and workflows that are
tailored for the needs of the user.

4. Open source

compas_3gs is developed as an open-source library, encouraging
researchers from a wide range of disciplines and expertise to make
contributions that all users can benefit from. In order to incentivise the
researchers to contribute their work, each contribution to compas_3gs
is treated like a publication which can be cited and referenced. The
concept and philosophy of this open source framework are modelled
after the CGAL Project (2018).
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5.1.3 Library structure

The contents of compas_3gs is organised as follows:

• Datastructure

This folder inherits the main datastructures of the COMPAS frame-
work, and incorporates additional functionalities and properties that
are tailored for 3D graphic statics applications.

• Utility

This folder contains utility and helper functions that are necessary for
geometric and topological operations on polyhedral cells and multi-
cell polyhedrons (i.e. computing the oriented normal, re-sizing of faces
with target areas, etc.).

• Operations

This folder contains transformation and manipulation functionalities
(i.e. face pull and tilt, cell subdivisions, splitting faces, etc.).

• Algorithms

This folder contains the algorithms and iterative solvers that perform
mass operations (i.e. planarisation, reciprocation, arearisation, etc.).

• CAD helpers

This folder contains wrappers, display and control functionalities that
facilitate the implementation of compas_3gs in the interactive design
environments of various CAD software.

5.1.4 Online documentation

Full documentation of the compas_3gs library is available online
(https://compas-dev.github.io/compas_3gs/). The online documentation
is designed to be a manual and reference for users, researchers and
practitioners. It contains examples, tutorials, full API reference, and guide
for developers and contributors.

5.1.5 Public release

The first announcement of the public release of compas_3gs was made in
August, 2018 at the IASS (International Association for Shell and Spatial
Structures) Symposium in Boston, USA. During the “Computational Graphic
Statics using COMPAS” workshop, the main contents of this research were
presented to the attendees. Main concepts of the theoretical background and
the computational framework were presented, and some of the key features
of compas_3gs were showcased. The official public release of compas_3gs
is scheduled for June of 2019.

https://compas-dev.github.io/compas_3gs/
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Figure 5.1: Online documentation of compas_3gs.

Figure 5.2: Introduction and announcement of compas_3gs by the author during the
“Computational Graphic Statics using COMPAS” workshop at the IASS 2018 Symposium.

5.2 Datastructures

The main library of the COMPAS framework, compas, is based on three
main datastructures which are designed for a wide range of research
and design applications in architecture and structural engineering. These
datastructures can be used in different combinations for various 3D graphic
statics applications.

5.2.1 Types

Network

A network is a directed graph, made up of a finite set of vertices, which are
connected by a finite set of edges (Figure 5.3-a). In mathematics, graphs are
abstract topological datastructures used to model and depict relationships
between pairs of objects. In compas, the geometry of a network is defined
by adding xyz coordinate information to each of the vertices. A network
can be 2D on a plane, or 3D in space. A network does not carry any face
information.
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Mesh

A mesh is a network of faces, which has a halfedge datastructure (Figure
5.3-b). A mesh can be open with boundary edges (polyhedral mesh or
surface), or closed without any boundary edges. As implemented in compas,
a mesh is strictly a 2-manifold; an edge is shared by no more than two
faces. In essence, a mesh is a network with vertices and edges, with the
addition of face information. The edges of a mesh are directed, although the
directions of the edges are arbitrary and not used for querying or traversing
the datastructure. A face of a mesh is defined by an ordered list of vertices,
and need not necessarily be planar (flat) in its geometry.

Volmesh

A volmesh is a 3-manifold volumetric mesh; an edge of a volmesh can
be shared by more than two faces. Embedded within this volumetric mesh
is a network of cells, where the cell-to-cell relationships are defined by a
combination of halffaces and planes (Figure 5.3-c). Similar to a network
or mesh, a volmesh has a finite set of vertices and edges. The edges of a
volmesh are directed, although the directions of the edges are arbitrary and
not used for querying or traversing the datastructure. Whereas every edge of
a mesh is split into two halfedges, every face of a volmesh is split into two
halffaces. Because the edge directions are arbitrary, a face of a volmesh does
not have a winding direction. Locally, each cell of a volmesh is structured
like a mesh.

Figure 5.3: The three main datastructure of compas: a) networks: 2D on a plane (top) and
3D in space (shown with thickened arrows and spheres for clarity only); b) meshes: an open,
polyhedral surface with boundary edges (top), and a closed, polyhedral cell with no border
edges (bottom); and c) a volmesh.
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5.2.2 3D form and force diagrams

The three datastructures, network, mesh and volmesh can be used to
represent the form and force diagrams used in 3D graphic statics.

A polyhedral cell which is typically used for the representation of a global
force polyhedron Λ⊥, is modelled as a mesh (Figure 5.4-a). The initial form
diagram Λ, which contains the information of the magnitudes and locations
of the external forces, are typically a disconnected set of vectors or “lines” in
space. These vectors can be moved to one location such that the heads of the
vectors are coincident. The consolidated vectors then can be modelled as a
network, where each external force is represented with an edge.

A multi-cell polyhedron Γ⊥ and its corresponding polyhedral form diagram
Γ, are modelled as volmesh and network, respectively (Figure 5.4-b).
Because Γ⊥ and Γ are topologically dual to each other, Γ can also be
modelled as a volmesh. However, because the topological information of
Γ is embedded in Γ⊥, some information do not need to be duplicated.
For example, the face and cell information of Γ can be computed from the
topology of Γ⊥. The polyhedral form diagram Γ as a network is essentially
a visualisation of the cell connectivity information of Γ⊥.

A cell network Ψ⊥, which contains the form diagram Ψ and a nodal
polyhedral cell at each node, is modelled as a network (Figure 5.4-c).
Because Ψ and Ψ⊥ are intrinsically linked and are inter-dependent, a few
algorithms need to enforce the necessary global constraints. The EGI of each
node ensures that the topology and geometry of the individual cells are
correct and up to date. The arearisation algorithm ensures that all pairs of
adjacent cells have contact faces with equal areas. Finally, the reciprocation
algorithm, enforces perpendicularity between Ψ and Ψ⊥. These algorithms
will be presented in the next section.

5.2.3 Computational interpretation of diagrams

In Section 4.2.7.1, it was shown how the interpretation of the force in a
member as either tension or compression can be made locally for a single
node, by comparing the orientations of the member at that node and the
normal of the corresponding face in the force diagram. In a network
representation of a form diagram, the directed edges can also be used for
the interpretation of forces.

In 2D and 2.5D applications of computational graphic statics, a directed
edge of the form diagram ei→j and the corresponding directed edge e∗i→j

in the force diagram are parallel and have the same orientations for tensile
forces or members (Van Mele and Block, 2014). If they are parallel but have
opposite orientations, ei→j is in compression. In 3D graphic statics, the same
interpretation can be made by comparing the orientations of the directed
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Figure 5.4: Representation of the three types of form and force diagrams using compas
datastructures: a) a group of equilibrated external forces Λ and the corresponding global force
polyhedron Λ⊥ modelled as a network and mesh; b) a polyhedral form diagram Γ and the
corresponding multi-cell polyhedron Γ⊥ modelled as a network and volmesh; and c) a cell
network Ψ⊥ and its non-polyhedral form diagram Ψ modelled together as a network.

edges in the form diagram and the normals of the corresponding “directed
faces.”

For a mesh representing a polyhedral cell, the directed face is simply the
face of the mesh that corresponds to its dual edge. However, a volmesh
representing a multi-cell polyhedron does not have face information in its
datastructure. For a volmesh, a directed face that corresponds to ei→j is
equivalent to the halfface of the i-th cell of Γ⊥, whose paired halfface belongs
to the j-th cell. In the example shown in Figure 5.5, the directed face of
directed edge e0→2 is the halfface of c∗0, whose paired halfface belongs to
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Figure 5.5: Interpretation of the forces using the directed edges of the network and the
corresponding directed faces of the mesh or volmesh: a) a multi-cell polyhedron Γ⊥ with four
prismatic cells; b) the “directed faces” of Γ⊥; c), d) and e) various configurations of the form
diagram Γ, where perpendicularity is enforced but the force distributions are different.
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c∗2 (highlighted in blue). For e1→6, the directed face is simply the halfface of
c∗1 that corresponds to that edge (highlighted in green). Figure 5.5-c, d, and
e are three different configurations of Γ where each directed edge maintains
the same connectivity and perpendicularity with the corresponding directed
faces, but have different force distributions.

5.3 Key algorithms

This section presents some of the key features and algorithms of
compas_3gs, which enable interactive transformations of the form and
force diagrams while enforcing the planarity and perpendicularity con-
straints.

5.3.1 Planarisation

At any point during the design process, the faces of polyhedral cells or
multi-cell polyhedrons may become non-planar. Before any further design
explorations can be made, the non-planar faces need to be planarised.
Planarisation of non-planar faces can be formulated as an iterative projection
method, which is a tried-and-tested methodology in computational geome-
try (Liu et al., 2006; Bouaziz et al., 2012; Deuss et al., 2015).

Figure 5.6 shows an example application of the planarisation algorithm,
implemented using the iterative projection method. At each time step, each
face is projected onto either: the plane defined by its initial normal and
the current centroid; a plane defined by a target normal; or a best-fit plane
computed from its current vertex coordinates. Because faces are projected
independently from one another, there will be multiple coordinates for a
single vertex at the end of each time step. The average or the barycenter of the
coordinates of a vertex is its new location for that time step. The procedure
continues until a desired tolerance has been reached.

If there are no constraints enforced, each face projects itself to the plane
defined by its current centroid and normal (Figure 5.6-b). In some 3D
graphic statics applications, specified faces may need to stay fixed in
their orientations. For example, some of the boundary faces of a multi-
cell polyhedron corresponds to externally applied loads, which typically
do not change in their magnitudes or locations during the design process.
In addition, it may sometimes be desired to fix the orientations of certain
members in the form diagram.

The orientation constraint can be enforced by updating the 'fix_normal'
attribute of the specified faces. Individual vertex constraints can also be set
by updating the 'x_fix', 'y_fix', 'z_fix' attributes for the specified
vertices. Figure 5.6-c shows the planarisation, but this time with faces 2, 1
and 5 constrained to be perpendicular to the x, y and z axes, respectively.
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Figure 5.6: Planarisation of a polyhedral cell with non-planar faces: a) unconstrained planari-
sation, where the best-fit planes is used for each face at every iteration; and b) constrained
planarisation, where some of the faces are given target normal vectors (faces 2, 1 and 5 are
constrained to be perpendicular the x, y and z axes, respectively).

5.3.2 Arearisation

Controlling the magnitudes of forces in 2D force diagrams is straightforward
and intuitive, since the vertices can be easily constrained to and moved
around on the plane. However, in 3D graphic statics, modifying the
magnitudes of forces is not as simple since polyhedral face areas have to be
controlled. There is no clear and intuitive means for a user to control the area
of a polyhedral face through translation of vertices or edges. This section
presents the arearisation algorithm, which allows users to more precisely
control the face areas of force diagrams, and consequently the magnitudes
of the forces in the structure.

5.3.2.1 Arearisation of polyhedral cells

It was demonstrated in Section 4.2.8 how a face of a polyhedral cell can
be pulled along its normal while maintaining the initial orientations of
all the other faces. As a face is pulled, the distribution of forces changes.
However, the precise amount of change in the area of the pulled face is not
visually quantifiable, and it is not immediately apparent how the operation
will affect the face’s oriented normal. Rather than pulling the faces in
arbitrary amounts, finding the new face location such that the resulting face
area matches a target value will enable a more force-controlled geometric
operation.

For the symmetric polyhedral cells shown in Figure 5.7, the area A∗i,0 of face
f∗i,0 as a function of its position along its normal can be directly formulated.
For the fully symmetric case shown in Figure 5.7-a, f∗i,0 is a square, and
remains as a square regardless of its z position. It can also be observed
here that there are two values of z that result in the same face area as well
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as the same normal direction. For a partially case shown in Figure 5.7-b,
there are also two values of z that result in the same face area, but with
opposite normal directions. In this particular case, the function of A∗i,0 is
linear, with the oriented normal changing directions around the inflection
point (Figure 5.8-a). The example shown in Figure 5.7-c is a case where the
face area remains the same regardless of its position z. Changing the area of
this face is only possible by scaling the entire polyhedral cell, or allowing the
orientations of other faces to change.

For more general, non-symmetric cells, a face’s area as a function of its
z position along its normal is not linear (Figure 5.8-b, c, d). As evident
by the plots of A∗(z)i,0 for each example, the behaviour of the function is
not immediately apparent through a visual inspection of the geometry of
the polyhedral cell. However, since the function is parabolic, and therefore
unimodal, a simple minimisation procedure can be used to determine the
target z value for a face, given a target area A∗,targeti,0 .

For this minimisation procedure, the Golden-section search method (Kiefer,
1953) is used, which is a simple technique for finding the extremum
(minimum or maximum) of unimodal functions by iteratively narrowing the
range of values [a, b] inside which the extremum exists:

Minimise : f(z) = | A∗,targeti,j − A
∗(z)
i,j |

subject to : a ≤ z ≤ b
(5.1)

First, in order to determine which direction (either in the direction of the face
normal, or the opposite) cause the area of the face to increase, a face is pushed
in the direction of its normal a small amount. If the area increases, then the

Figure 5.7: Possible solutions of face pull operation with target face areas, in both positive and
negative domains: a) symmetric complex cell, where n̂∗i,0 does not change on either side of the
inflection point; b) partially symmetric complex cell, where n̂∗i,0 changes in its orientation above
the inflection line; and c) case where all of the trailing edges of f∗i,0 are perpendicular to the face,
and therefore moving f∗i,0 along its normal does not change its area.
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Figure 5.8: The relationship between the face area and its relative normal position z for various
cell types: a) a partially symmetric cell where A∗i,0 as a function of z is linear; b) a cell and f∗i,0
with only 3-valent vertices; c) a cell and f∗i,0 with a 4-valent vertex; and d) a cell and f∗i,0 with
only 4-valent vertices.

+z direction is in the direction of the face normal. If the area decreases, then
the +z direction is in the opposite direction of the face normal. If there is no
change in the area, the search is aborted as this suggest a case where all the
trailing edges are perpendicular to the face.

Once the +z direction has been determined, the initial search range [a, b] can
be defined, where a is the lower bound and b is the upper bound. b can be
manually defined, or a multiple of A∗,targeti,j can be used to have an initial
range that is reasonably proportional to the difference between A∗,targeti,j and

A
∗(z=0)
i,j Then, the objective function is evaluated at c and d, where c = b −

(b− a)φ and d = a+ (b− a)φ, and φ is the “Golden ratio”:

φ =
1 +
√

5

2
(5.2)
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Figure 5.9: The Golden-section search method: a) if f(d) < f(c), the range of search for the next
time step t + 1 is [c, b]; and b) if f(d) > f(c), the range of search for the next time step t + 1 is
[a, d].

If f(d) < f(c) at step t, the range of search for the time next step t + 1 is
[c, b]. If f(d) > f(c) at step t, the range of search for the next time step t + 1
is [a, d]. This loop continues, until the difference between c and d is less than
the tolerance entered.

As an input, the user can enter either a positive or negative value as the
target area. A positive number will mean that the normal of the resulting face
will remain in the same direction as its initial normal direction. A negative
number will mean that the normal of the resulting face will be in the opposite
direction as its initial normal direction. As shown in Figures 5.7-a and 5.8-
c, it is possible that there may be two values of z that results in the target
face area. In such cases, the smaller z value will be returned unless specified
otherwise. This iterative procedure for the arearisation of a single face of a
polyhedral cell is adopted from Press et al.’s formulation of Golden-section
search method (2007).

This procedure is applied to f∗i,0 of the polyhedral cell shown in Figure 5.10.
The initial area of f∗i,0 at z = 0 is 1. A target area A∗,targeti,0 of 2 is given. With
an initial search range of [0, 6] and tolerance of 1e−6, the final z value of 2.140
is output after 31 iterations, with A∗(t=31)

i,0 = 19.99972.

Because arearisation algorithm allows a more precise control of the areas
of individual faces of a cell, and therefore the magnitudes of the forces
in the corresponding members in the form diagram, it can be used to
explain the concept of static indeterminacy of spatial structures. It can
also demonstrate that polyhedral reciprocal diagrams are not limited to
the exploration of statically determinate spatial structures, but also various
possible equilibrium solutions for statically indeterminate structures (Kilian
and Ochsendorf, 2005; Block, 2005; Van Mele et al., 2012).
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Figure 5.10: Arearisation of a face using the Golden-section search: a) visualisation of the face at
each time step; and b) the plot of the function of A∗(z)i,0 and the search process.

In an indeterminate structure, the distribution of forces among the members
of the structure is highly dependent on the boundary conditions, imper-
fections of the building components and the tolerance accumulated during
the assembly on site. Therefore, the actual internal stress state is unknown,
difficult to predict and is sensitive to minor changes in the boundary
conditions. Using polyhedral force diagrams and the arearisation algorithm,
indeterminate states of equilibrium can be visualised and described. In the
context of structural design, this indeterminacy can be exploited to explore
and obtain different internal equilibrium states.

Figure 5.11-a shows a polyhedral cell for an elastic stress state of a five-bar
structure with one applied load fi,5 = P , where all of the bars have the same
axial stiffnessEA. However, if some bars were slightly shorter than intended
due to some imperfections during the fabrication process, the tensile forces
in those bars would be higher. For example in Figure 5.11-b, bars 1 and 4 are
relatively shorter, and therefore the tension forces of fi,1 and fi,4 are slightly
higher. On the other hand, if some bars are slightly longer than intended,
their internal forces may go under compression while other bars compensate
by carrying higher tensile forces (Figure 5.11-c, d, e).

In certain cases, asymmetric distributions of forces may cause some bars to
carry no force at all, and the applied load P will be carried by only four of the
five bars. Small changes in the boundary conditions, fabrication imperfection
and construction tolerance can potentially cause significant changes in
the internal stress distribution of indeterminate structures. In contrast to
conventional numerical calculations and finite element analysis of structures,
polyhedral reciprocal diagrams can visualise and describe different states of
internal stress distribution. Consequently, it can be used not only for design
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explorations, but also to explain and investigate static indeterminacy, which
is traditionally a difficult concept to understand through just numbers or
analysis data.

Figure 5.11: An indeterminate, single-node structure with five tensile members with one applied
load fi,5 = P (the area of A∗i,5 is 1 in all examples), can have different stress states depending on
the boundary conditions: a) the initial, elastic stress state when all five bars are under the same
amount of tensile force; b) a stress state where tensile forces fi,1 and fi,4 are much greater than
the others; c) a stress state where fi,1 is now in compression, with fi,0 and fi,2 carrying most of
the tensile loads; d) a stress state where fi,3 is now in compression, with fi,2 and fi,4 carrying
most of the tensile loads; e) a stress state where fi,2 and fi,4 are in compression, with fi,0 and
fi,3 carrying most of the tensile loads; and f) a stress state where f∗i,3 is complex and an oriented
area of 0, and therefore the magnitude of fi,3 is 0.
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5.3.2.2 Arearisation of multiple faces

The arearisation of a single face uses the combination of the face pull
operation and a minimisation procedure to determine the new location of a
single face based on a given target area for that face. Because the orientations
of the faces are fixed, it is ideal for controlling the magnitude of the force
in a single member and exploring different equilibrium states for a group of
members with fixed orientations. However, it is not ideal for scenarios where
the areas of multiple faces need to be controlled simultaneously. Controlling
the areas of multiple faces at once can be useful in addressing boundary
conditions where the applied loads are known and the magnitudes of the
reaction forces are specified in advance, or in a multi-cell polyhedron where
multiple faces may need to be constrained at once.

Instead of pulling each face independently towards its target location, each
face can be iteratively re-sized until all of the faces have reached their target
areas. At each iteration, the faces are re-sized individually and then new
vertices are computed for the cell. Re-sizing a face with a target area can
be formulated as a polygon scaling problem. The area of each face can be
determined using the procedure described in Section 4.2.6.2. The procedure
is visualised in Figure 5.12 as a reference for the following series of equations.
The area of the n-th sub-triangle f∗i,j,n is:

A∗i,j,n = q ·A∗i,j =
1

2
· |rn| · |rn+1| · sinβ (5.3)

where q is the ratio of the area of the n-th sub-triangle A∗i,j,n to the total area
A∗i,j , and β is the angle between rn and rn+1 (Fig 5.12-b). If the face f∗i,j is
scaled by a factor of s from bi,j to satisfy the target face area of A∗,targeti,j , the
new area of the n-th sub-triangle f∗i,j,n is:

Figure 5.12: Face re-sizing with respect to a target area: a) face partitioned into sub-triangles; b)
two new inner edges and the angle β that can be used to determine the area of each sub-triangle;
and c) the new face now with the target area, scaled by factor of s.
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A∗,targeti,j,n = q ·A∗,targeti,j

=
1

2
· |rn · s| · |rn+1 · s| · sinβ

=
1

2
· s2 · |rn| · |rn+1| · sinβ

(5.4)

Solving for q from equations 5.3 and 5.4, the scale factor can be obtained as:

s =

√√√√A∗,targeti,j

A∗i,j
(5.5)

In certain applications, it is possible for faces to have target areas of zero (see
Section 4.2.9.2). Using the scale factor s from Equation 5.5, faces with target
area of zero would collapse to a point. However, it is possible for a face with
zero area to collapse into a point or and edge. It is also possible for a complex
face to have an area of zero. It is generally assumed that the eventual shape of
the faces with target areas of zero is unknown, and therefore the face should
not be scaled to a point. Faces with target areas of zero are omitted during
the iterative procedure.

Once the scale factor s has been determined for each face, each face can
be scaled independently from one another at each time step, and the new
coordinates for a vertex can be averaged to determine its new location. This
procedure is equivalent to the planarisation algorithm, except that the faces
are now scaled prior to being projected onto the target planes. The target
plane can be constrained by target normals, or re-defined for each time step
as the best-fit plane from its current vertex coordinates. Allowing faces to
be adaptive to the new best-fit target planes allows the faces to reorient
themselves to satisfy the given force distribution constraints, and therefore
output a new form-found geometry of the structure.

In addition to force-driven form finding, the arearisation algorithm can also
be used for the construction of polyhedral cells from a given set of force
magnitudes and orientations (see Section 4.2.9.2). Because the orientations
of the faces are fixed in this application, the construction of EGI and the unit
cell with zero faces is necessary before arearisation can be applied.

Figure 5.13 shows construction sequences of polyhedral cells from their face
normals and areas. The first column shows the equilibrated force vectors
as spike models. The second column shows the corresponding EGIs with
adjacency and cross-adjacency arcs. The third column shows the unit cell
with their zero faces highlighted in orange. Finally, the last column shows
the final geometry of the polyhedral cells with face areas that match the
magnitudes of the corresponding force vectors.
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Figure 5.13: Construction of polyhedral cells from force magnitudes and orientations - the force
vectors, the EGI, unit cell and the final geometry of the polyhedron (from left to right): a)
rectangular box; b) pentagonal pyramid; c) tetradecahedron; d) pentagonal trapezohedron; e)
dodecahedron; and f) irregular, asymmetric polyhedral cell.
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5.3.3 Reciprocation

Another constraint that needs to be enforced is the perpendicularity of
the members in the form diagram to the corresponding faces in the force
diagram. The perpendicularity can be imposed through an iterative solver,
similar to the method implemented for graphic statics applications in 2.5D
(Rippmann et al., 2012) and in 3D (Akbarzadeh et al., 2015b). Detailed
explanation of the procedure can be found in (Rippmann, 2016, pp. 120-125).

In compas_3gs, the perpendicularity between the polyhedral form and
force diagrams is enforced by the reciprocation algorithm. The reciprocation
algorithm adds several new layers, such as the weight factor, constraining
edge lengths, and incorporating tensile members. Similar to the planarisation
algorithm, basic geometric constraints can be enforced manually by the user
at any point during the reciprocation algorithm (such as vertex fixity, edge
fixity, face orientations, etc.).

Based on the convention established by Van Mele and Block (2014), the
directed edge ei→j of the form diagram and the corresponding directed edge
e∗i→j of the force diagram are parallel and have the same orientations for
tensile forces or members; their unitised vectors are equal:

êi→j = ê∗i→j (5.6)

In 3D graphic statics, the edges of the form diagram are perpendicular to the
corresponding faces of the force diagram. For a tensile force or member, the
êi→j of the form diagram and the unitised normal n̂∗i,j of the corresponding
face (for multi-cell polyhedrons, defined as the unitised normal of the
halfface of i-th cell that is adjacent to the j-th cell) are equal:

êi→j = n̂∗i,j (5.7)

In certain applications, it may be desirable to control how much the form and
force diagrams are changing relatively to each other during the form-finding
procedure. Before the iterative process, a target vector ti,j can be determined
by using the initial edge and face normal orientations, and a weight factor
γ. Then, the edges of the form diagram and the faces of the force diagram
re-orient themselves towards ti,j . The weighting factor γ is a value between
0 and 1, and it determines how much each diagram changes. For example,
γ = 1 would adjust the edges of the form diagram only, whereas γ = 0 would
reorient the faces of the force diagram only.

ti,j = γ êi→j + (1− γ) n̂∗i,j (5.8)
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Once the target vectors for each face and the corresponding edge have been
determined, the force diagram can be adjusted by using the planarisation
algorithm, using ti,j as the target normal of the projection plane for each
face. Before the edges of the form diagram can be reoriented, the current
directions of êi→j relative to n̂∗i,j need to be checked. This check determines
whether or not the edge is in tension or compression, and therefore if the
edge and the corresponding normal need to be parallel only, or parallel as
well as having the same orientation. The relative direction of êi→j and n̂∗i,j
can be evaluated by their dot product. Using this dot product, the edge-
to-face direction coefficient λ can be determined. A negative dot product
means they are pointing in the opposite directions (λ=-1), while a positive
dot product means they are pointing in the same direction (λ=1). With the
edge to face normal direction coefficient λ, Equation 5.8 updates to:

ti,j = γ êi→j + (1− γ) λ n̂∗i,j (5.9)

For example in Figure 5.14-a, êi→j and n̂∗i,j are generally pointing in the
same direction, which would signify that ei→j is in tension in this scenario.
However, if ei→j was in compression, êi→j and n̂∗i,j would be pointing in
opposite directions. The updated ti,j can be used to re-orient ei→j . By scaling
unitised t̂i,j by the length of the corresponding edge ||e(t)

i→j || at time step

t, new coordinates for the two vertices v(t+1)
i and v(t+1)

j of e(t+1)
i→j can be

computed:

v(t+1)
i = v(t)

j − t̂i,j · || e(t)i→j ||

v(t+1)
j = v(t)

i + t̂i,j · || e(t)i→j ||
(5.10)

Edge length constraint can be imposed globally to all edges or locally for
each edge by setting the lower bound ωlb and upper bound ωub. If ||e(t)i→j ||
falls outside of the defined bounds, ||e(t)i→j || in can be replaced with either
ωlb or ωub. Once all the edges have been reoriented at each time step,
there will be multiple new coordinates for each vertex. The centroid of the
new coordinates for each vertex, is then the new vertex coordinate for that
time step. The iterative process is repeated until a convergence tolerance is
reached, i.e. when all of the edges of the form diagram are perpendicular to
the corresponding faces of the force diagram within a specified maximum
deviation value. One way to measure the deviation δ between êi→j and n̂∗i,j
is by evaluating their dot product and subtracting it from 1:

δ = | 1 − | êi→j · n̂∗i,j | | (5.11)
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Figure 5.14: Reciprocation of a single prismatic polyhedral cell c∗i with four edges in tension
with varying values of γ (top view, with the faces that are parallel to the page removed): a)
initial form and force diagrams; b) γ = 1, where only the form diagram is adjusted; c) γ = 0.75;
d) γ = 0.5, where both c∗i and the form diagram are adjusted equally; e) γ = 0.25; and f) γ = 0,
where only c∗i is adjusted.

If êi→j and n̂∗i,j are parallel and in the same direction, the dot product will be
1 which would make δ = 0. At the end of each iteration, δ can be compared
to the value of tolerance parameter to either proceed with or terminate the
algorithm.

5.4 CAD integration

This section presents compas_3gs.rhino, which is a CAD helper package
for compas_3gs. It provides a user interface for processing, visualising
and interacting with compas_3gs datastructures and functionality in the
interactive CAD environment of Rhinoceros (Robert Mcneel & Associates,
1993). The overall set up of the computational design environment using
compas_3gs is described. Key features of the three main components of
compas_3gs.rhino, wrappers, display and control, are also presented.
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5.4.1 Setup

The compas_3gs package of the COMPAS framework is implemented
independent of the functionality provided by existing CAD software.
However, CAD tools are still necessary for constructing and manipulating
geometry, applying constraints interactively, making custom user interfaces
and visualising script results. While the geometric computation is handled
by compas_3gs in the background, existing CAD software can be used as
the medium for processing, visualising and interacting with datastructures
and geometrical objects (Figure 5.15).

The CAD software that was chosen for this dissertation was Rhinoceros,
mainly due to its wide usage in architecture, an established user base
and a large ecosystem of additional plugins and packages. The built-in
visualisation and control functions of Rhinoceros are exploited to create
an interactive environment that is specifically calibrated for 3D graphic
statics design applications. CAD helper packages for other software can be
developed in the future.

Figure 5.15: Graphical overview showing how compas_3gs.rhino is used as the visualisation
and user interface for compas_3gs.

5.4.2 Wrappers

COMPAS and its additional packages, including compas_3gs, are imple-
mented primarily in Python and designed to be used on different platforms
and in combination with external software and various scientific and non-
scientific Python libraries. The datastructures, utility functions, operations
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and algorithms of compas_3gs are independent of CAD software. However,
in order for the scripts to run and be visualised within existing CAD
software, the contents of compas_3gs need to be wrapped with “wrapper”
functions using the API of the CAD software. In addition to Python
language, compas_3gs.rhino uses RhinoScript 1 and RhinoCommon
API 2 for visualisation, the user interface features and exchange of data
between compas_3gs and Rhinoceros. The components of compas_3gs
can be accessed manually and executed using script editors in Rhinoceros,
such as the built-in IronPython editor or the Python editor in Rhinocero’s
Grasshopper. The users can also create custom toolbars for Rhinoceros that
compile specific combinations of compas_3gs commands and functions
that are tailored for the design problem at hand.

5.4.3 Control

In 3D graphic statics, the polyhedral force diagram often contains mul-
tiple cells that are overlapping and on top of one another. Through the
compas_3gs.rhino drawing functionalities, the polyhedral form and
force diagrams are visualised as native Rhinoceros objects. Once drawn,
these objects can be selected using the built-in Rhinoceros select functions.
However, in a dense cluster of cells, selecting a desired interior cell can
be cumbersome and difficult since the pointer of the mouse is subject to
tolerance of the Rhinoceros viewport. Furthermore, it may not be obvious
to the user which node in the form diagram the selected cell corresponds to.
By using Rhinoceros’ built-in DrawForeground functionality, selection of
various geometric objects can be enhanced; before the mouse is clicked, the
objects where the mouse pointer is hovering on is dynamically highlighted
(Figure 5.16). In addition, the corresponding elements in either the form
or the force diagram are also highlighted with matching colours. Taking
advantage of the simple dynamic drawing functions, the selection process
is enhanced, and understanding the relationship between the corresponding
elements in the form and force diagrams is also improved without having to
constantly redraw the objects.

5.4.4 Display

This part of compas_3gs.rhino includes visualisation strategies for im-
proving the user interaction and experience. Various dynamic visualisations
and display modes facilitate the filtration and communication of various
visual information to the user in a clear and understandable manner.

1McNeel’s RhinoScript Wiki: https://wiki.mcneel.com/developer/rhinoscript
2RhinoCommon API documentation: https://developer.rhino3d.com/api/RhinoCommon

https://wiki.mcneel.com/developer/rhinoscript
https://developer.rhino3d.com/api/RhinoCommon
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Figure 5.16: Dynamic display of volmesh elements and the corresponding elements in the
network as the mouse pointer is hovered over them.

Dynamic drawing

OnDynamicDraw functions of Rhinoceros can also be used to dynamically
visualise meaningful information and data during the operations. For
example, during the face pulling operation, simply changing the geometry
without any other information makes it difficult for the user to know what
the quantitative consequence of the operation is. During this operation, the
area of the face can be dynamically displayed as a number (Figure 5.17). In
addition, faces could also be colour coded, such that it is possible to visually
observe how much the area of the face is changing relative to the other faces.
For example in Figure 5.17, a rainbow colour map is used, where the blue end
of the spectrum represents a smaller face area compared to the other faces,
and the red end of the spectrum represents a relatively larger face area. The
face areas can also be dynamically visualised as scaled force vectors at the
centre of the polyhedral cell, so that the face areas can be inspected by a
number, colour and as a length of a vector.

Figure 5.17: Dynamic visualisation of the face area information during the face pull operation.
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By using the DisplayConduit functionality of Rhinoceros, temporary
solutions at each step of the iterative solvers can be dynamically visualised.
As opposed to having the final results just appear on the screen, visualisation
of the individual steps enhances the visual understanding of both the process
and the solution. This is drastically different from conventional, “black-box”
structural design or analysis tools, which are based on numerical solvers
that are difficult for users to understand without an advanced knowledge
or experience.

Based on user feedback of similar implementations of computational graphic
statics using iterative geometric solvers, the dynamic visualisation of the
iterative solving process was appreciated as an invaluable feature in helping
them better understand the relationship between the geometry of the form
and force diagrams (Rippmann, 2016, p. 254). The dynamic drawing and
selection functionalities can be combined to enhance the user interaction and
visualisation of the results as well as the solving procedures (Figure 5.18).

Figure 5.18: Various dynamic drawing helper functions to enhance the face pull operation on
a volmesh: a) a normal display mode of a volmesh; b) dynamically drawings for visually
assisting the selection of cells; c) dynamic highlighting of faces and its dependent faces; and d)
DrawForeground function for previewing the solution.
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Static display modes

Different static display modes may be necessary depending on the design
problem at hand. By default, the faces of the force diagrams are displayed
as a set of meshes, and the corresponding form diagram is displayed using
points and lines. If the global force distribution needs to be assessed, the
magnitudes of the forces in the structure can be displayed through pipes
with different sizes, as scaled force vectors at each of the nodes, or by simply
using a consistent colour scale on both form and force diagrams. The unified
diagram with a slider for the scale factor α, can be used to visualise force
diagrams in a way that is easier to visually understand and discern (Figure
5.19).

Figure 5.19: A screenshot of the form diagram and the scaled unified diagram in Rhinoceros.
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5.5 Summary

This chapter presented compas_3gs, an implementation of the compu-
tational framework. Overall organisation of the library, implementation
of different datastructures in 3D graphic statics context, and technical
details of some of the key features and algorithms were described.
compas_3gs.rhino was also presented, which is a helper package that
enables compas_3gs and its functionalities to be used and applied within
the interactive design environment of Rhinoceros. The online documentation
of compas_3gs was also introduced, which contains detailed information
about the functionalities of the library, the source codes, tutorials, examples
and general reference material for users, researchers and potential contribu-
tors. Using the presented functionalities of compas_3gs, the new structural
design potentials of the computational framework will be demonstrated in
the next Part of the dissertation.
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6 Addressing boundary conditions

This chapter presents a method for constructing global force polyhedrons
that incorporates various boundary condition constraints of a design prob-
lem, using the EGI and the arearisation algorithm (see Sections 4.2.9 and
5.3.2.2, respectively).

Some of the contents of this chapter are based on the following publication
by the author:

• Area-controlled construction of global force polyhedra (Lee et al., 2017)

• Disjointed force polyhedra (Lee et al., 2018)

6.1 Goals

The establishment of the resultant force and the global equilibrium is
one of the most fundamental principles of graphic statics. In 2D graphic
statics, the resolution of global equilibrium for a given boundary condition
(i.e. magnitudes and locations of external loads and reaction forces) are
typically addressed using trial funicular construction. The procedures of
this technique are well documented in numerous publications (Allen and
Zalewski, 2009; Bow, 1873; Wolfe, 1921).

Akbarzadeh et al. (2015a) introduced a three-dimensional equivalent of the
trial funicular method for constructing the global force polyhedron, Λ⊥, for
a given set of boundary conditions. By translating well established concepts
and procedural techniques from 2D to 3D graphic statics, it was shown how
the geometry of a Λ⊥ can be constructed. However, this method is strictly
dependent on geometric procedures, which results in a few key limitations.

First, the method is only applicable for determinate boundary conditions
consisting of three support locations and three applied loads. It has not yet
been shown how the Λ⊥ for an indeterminate system can be constructed (i.e.
mismatching number of supports and applied loads, asymmetric support
and applied load locations), and how the magnitudes of the external forces
can be controlled and logically distributed during the construction process.

Furthermore, procedural method for constructing Λ⊥ does not take into
account any specific magnitudes of external forces. Given a set of applied
loads with specific magnitudes, the procedural method will need an
additional step to ensure that the face areas of Λ⊥ match the magnitudes
of corresponding force.

131



132 Chapter 6. Addressing boundary conditions

Finally, procedural geometric construction of Λ⊥ means that any change
in the boundary conditions requires a complete reconstruction of the
polyhedral geometry. Although the step-by-step procedure is necessary and
important for teaching the fundamental principles of polyhedral reciprocal
diagrams, repeated procedural reconstruction is cumbersome and inconve-
nient during early stages of design when the boundary conditions may not
yet be finalised and multiple scenarios can still be investigated.

By using the EGI (see Section 4.2.4) and the arearisation algorithm (see
Section 5.3.2), the construction of Λ⊥ can be automated while maintaining
the flexible datastructure to negate the need for constant re-drawing.
Building upon the previous implementations that introduced various meth-
ods for computing the geometry of polyhedral cells from its face areas
and orientations, the examples presented in this section demonstrates the
capacity of reciprocal polyhedral diagrams to address more quantitative,
force-driven boundary constraints.

6.2 Setup

6.2.1 Basic approach

The method for constructing the geometry of a polyhedral cell from a system
of force vectors in equilibrium is provided in Section 4.2.9. The main steps
of the method is summarised in Figure 6.1. The method for constructing
polyhedral cells using EGI described in Section 4.2.9 assumes that the lines
of action all of the force vectors are concurrent, or intersecting at one point
in space. For a boundary condition where all of the externals forces are
concurrent at point p (Figure 6.1-a), the method can be directly used to
construct the Λ⊥.

Figure 6.1: Procedure for constructing the global force polyhedron, Λ⊥, for a concurrent system
of external forces: a) given boundary condition, with a common intersection point p of all the
external forces; b) the corresponding EGI; c) the unit cell with zero faces; and d) the global force
polyhedron, Λ⊥.
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6.2.2 Concurrent cases

In both 2D and 3D graphic statics applications, the global equilibrium of
external forces is established using the line of action l of the resultant
forces; one resultant force, R, representing the externally applied loads, and
one “anti-resultant” force, −R, representing the reaction forces. The anti-
resultant has the same magnitude as the resultant but opposite in direction.
Typically, the magnitudes and directions of the externally applied loads are
known, and they can be used to determine the magnitude and location
of R by procedurally constructing a funicular polygon or polyhedron
(Akbarzadeh et al., 2016), or simply computing the weighted average of the
force vectors. The lines of action l of R and −R are coincident in space. For a
boundary condition where all of the external forces intersect at a single point
p, lines of action l of R and −R always passes through point p (Figure 6.2-a).
For such cases, the forces intersecting at p can be used to construct the EGI
and then the Λ⊥ as described in previous sections.

Figure 6.2: a) For a concurrent configuration of forces, a single EGI can describe the Λ⊥. b)
For a partially concurrent configuration of forces, where the lines of action l of R and −R are
coincident, the global equilibrium can be represented by two hemispheres of a single EGI. Top
hemisphere describes the polyhedral cell representing the equilibrium of the applied loads and
the resultant, R, while the bottom hemisphere describes the polyhedral cell representing the
equilibrium of the reaction forces and the anti-resultant, −R.
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6.2.3 Partially concurrent cases

It is also possible for partially concurrent system of external forces to be
in global equilibrium. In a partially concurrent configuration, the external
forces may not intersect at a single point, but the lines of action l ofR and−R
may still be coincident. For the example shown in Figure 6.2-b, the externally
applied loads intersect at point p1, while the reaction forces intersect at point
p2. For such partially concurrent cases, the forces at two points p1 and p2

can be represented by two halves of a single EGI, where the two points are
the origins of the two hemispheres. The top hemisphere then is the dual of
the tetrahedral cell representing the equilibrium of the three applied loads
and the resultant R. The bottom hemisphere is the dual of the six-sided cell
representing the equilibrium of the five reaction forces and the anti-resultant
−R. Because R and−R are coincident in space with the same magnitude but
opposite directions, the two polyhedral cells can be interpreted as a pair of
disjointed cells (see Section 4.4). If the two hemispheres were interpreted as
a single EGI such that points p1 and p2 are coincident, the same procedure
used to construct the Λ⊥ using a single EGI for concurrent cases can be used
equivalently for partially concurrent cases.

A parallel configuration of forces can be interpreted as a special case of
a partially concurrent configuration of forces, where the lines of action of
some or all of the external forces intersect at a common point at infinity.
Consider the series of scenarios shown in Figure 6.3. In these examples, the
externally applied forces are concurrent and intersect at point p1 on the line
of action l. Reaction forces are also concurrent and intersect at point p2 on
the line of action l. In this series of scenarios, p1 remains fixed while p2 is
gradually raised until all of the reaction forces are vertical and parallel from
one another (Figure 6.3-f).

From the EGI of each scenario, it can be observed that the vertices on the
bottom hemisphere converge toward the south pole of the EGI as the reaction
forces become more vertical. It is also evident that if the locations of the
reaction forces remain unchanged, the topology of the EGI does not change
regardless of where p2 is. Therefore, any of five EGIs can be used to construct
the initial unit cell of any other scenario. In general, to construct the EGI
representing a partially concurrent configuration, either p1 or p2 can be used
as the origin of the EGI. For cases where p1 or p2 fall far outside of the
area of interest such as in a scenario consisting of a parallel configuration
of forces, the centroid of the locations of the external forces can be used as
the origin of the EGI. Using an arbitrary point like the centroid may result in
an EGI that correctly describes the topology of the Λ⊥, but the vertices may
not initially be in correct positions. The target normal for each vertex of the
EGI is typically defined by the vector from the origin to the vertex. However,
if the forces have specified target magnitudes or orientations, they can be
imposed during the final arearisation step of the construction process while
maintaining the correct topological structure of the polyhedral cell.
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Figure 6.3: For partially concurrent configuration of forces, if the locations of the external forces
are fixed, the topology of the EGI is the same regardless of the position of p1 or p2 on the line
of action: a) base scenario with three applied loads which are concurrent; b), c), d), e) scenarios
with varying positions of p2 and the corresponding EGI; and f) a scenario parallel reaction
forces, where the topology of the EGI remains unchanged. Cross adjacency arcs are not shown
on the EGIs for visual clarity.

6.2.4 Non-concurrent cases

In a non-concurrent configuration of forces, the forces do not intersect at
a common point. In general, a system of non-concurrent forces cannot be
deduced to a single resultant force without an introducing and additional
“resultant couple” (Akbarzadeh et al., 2015a). Therefore, the polyhedral cell
representing the equilibrium of a non-concurrent configuration of forces
cannot be closed with a single resultant face, as shown in Figure 6.2-b. As
presented, the method of constructing Λ⊥ using EGI requires that, either:
all of the external forces are concurrent through a single point; or, they are
partially concurrent with a maximum of two concurrent points on the line
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of action of the resultant forces, where all of the externally applied loads
are concurrent and all of the reaction forces are concurrent. Non-concurrent
configurations of forces are not addressed in this implementation.

6.3 Results

This section presents several design examples demonstrating how the the
polyhedral cell construction method using the EGI can be used to construct
Λ⊥ during early stages of design while incorporating various boundary
condition constraints.

6.3.1 Simple examples

This subsection presents two types of examples for a simple loading scenario,
where various boundary condition constraints result in different geometries
of the Λ⊥. The first set of examples will use fixed support locations, and the
second set of examples will use fixed prescribed support force magnitudes.

Consider the loading scenario in Figure 6.4. There are three applied point
loads, and five pinned supports. The magnitudes, orientations and the
locations of the applied loads (forces 1, 2 and 3) are fixed and are not allowed
to change in any of the examples. The supports are always coplanar, and their
positions can be either fixed or unconstrained on that plane.

Each applied load will represent one unit force, and the magnitudes of the
forces at the supports are assigned and measured proportionally to this unit
force. For each example, a table showing which constraints were used as
input is shown. Empty slot in the table means no constraint was assigned. In
the form diagram for each example, force vectors are shown with dots at 0.5
increments for visual reference.

Figure 6.4: a) The loading scenario, with three non-vertical point loads and five supports (the
hidden lines are shown for clarity only, and does not necessarily imply any specific structural
topology); b) the EGI of the loading scenario; and c) the unit polyhedron with zero-area faces
shown in orange, and the applied load faces shown in green.
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6.3.1.1 Constraining support locations

In the first set of examples, the locations of the external loads are constrained,
and therefore all face orientations are constrained to remain the same. In
addition to the orientation constraints, assigning specific target areas for
all faces will potentially result in an over-constrained scenario where the
forces may not sum to zero and therefore a polyhedron may not exist that
satisfies the input constraints. Therefore, only some of the faces are given
specific target areas. Because the face orientations are constrained, only the
magnitudes of the forces at the supports can change; the support locations
do not change in these examples.

In the example in Figure 6.5-a, all faces corresponding to the support reaction
forces were given a target area of 1. However, the converged solution does
not result in a polyhedron with the correct face areas, suggesting that indeed
the inputs caused the problem to be over-constrained, and either the target
area or the orientation criteria for some of the faces need to be unconstrained.
In Figure 6.5-b and c, fewer faces are given prescribed areas, and the solution
converges much more accurately as expected.

6.3.1.2 Constraining support force magnitudes

In some structural design applications, the magnitude of the reaction force
at a support may be more important than its location or orientation. In the
second set of examples in Figure 6.6, the orientation of the reaction forces at
the supports are allowed to change freely. Unlike the examples in Figure 6.5,
all support faces can be assigned target areas, and the correct orientations
of the faces will be found that satisfies the target area constraints. In these
examples, the resulting polyhedron satisfies the target area constraints, but
the supports are relocated to new positions.

6.3.2 Design scenario

The presented construction method can be particularly useful in computing
the geometry of Λ⊥ during early stages of design, when the only information
known to the user might be the location and magnitudes of the external
forces and basic support conditions and constraints. This section presents a
simple design scenario, where various boundary condition constraints result
in different geometries of the Λ⊥.

Suppose that a shell structure with five supports is being considered for a
hypothetical site shown in Figure 6.7-a. The client has requested for two
of the supports to be on piers 1 and 4. For the first iteration, a solution
was found where all of the supports had the same magnitude of reaction
forces (Figure 6.7-b). However, it became evident that the two piers may
be susceptible to high horizontal thrusts. By limiting the horizontal thrusts
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Figure 6.5: Examples where the orientation of the support faces are not allowed to change.

on piers 1 and 4 to not exceed a certain amount, a much shallower Λ⊥ was
found (Figure 6.7-c). As a last constraint, the client requests that none of the
supports land on the water front area. By constraining the supports 2, 3, and
5 to stay clear of this zone marked by the red lines shown in Figure 6.7-d,
while satisfying the force constraints imposed in Figure 6.7-a and b, a new Λ⊥

found. Once a Λ⊥ has been found that meets the main boundary condition
criteria, the designer can then proceed to applying various subdivision and
transformations to Λ⊥ to explore more specific forms and topologies of
the structure (presented in the next chapter), knowing that the required
boundary condition criteria have already been satisfied.
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Figure 6.6: Examples where the orientations of the support faces are free to change, and target
areas can be assigned for all faces.

6.4 Outlook

This chapter presented how the EGI and the arearisation algorithm can
be used to construct a global force polyhedron, Λ⊥, from a given set of
boundary condition constraints. There are a couple of key directions for
further research and improvements.

First, it is uncertain how the arearisation algorithm will behave when all of
the external forces are parallel, and therefore all of the target normals are
parallel. This means that during the iterative geometric computation, the
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Figure 6.7: a) hypothetical site for a shell-like structure with five supports; b) Λ⊥ where all the
reaction force magnitudes are equal; c) Λ⊥ where all the reaction force magnitudes are equal, but
the horizontal components of the reactions at piers 1 and 4 are limited to stay below a desired
amount; and d) imposing constraints from both b) and c), while keeping all of the supports clear
of the water front area.

edges between a pair of faces can move freely on the plane since the two
corresponding target planes are coplanar and do not have an intersection. As
a result, there needs to be an additional process for enforcing the necessary
constraints for the edges during the construction of flat polyhedral cells.

In addition, resolving non-concurrent configurations of forces remains
challenging. Further steps will need to be investigated to address “resultant
couple” forces in order to generalise the presented method to address a wider
range of loading conditions.



7 Generating new topologies

This chapter presents form-finding explorations through geometric trans-
formations and modifications of polyhedral force diagrams. First, the
setup and workflow of the methodology are presented, describing how
various polyhedral transformations and manipulations available through
compas_3gs can be applied in different combinations for this particular
design application. Second, 3D design examples are presented where the
spatial topologies are generated solely by manipulating the geometry of
force diagrams. Because 2D equilibrium is a special cases of 3D equilibrium,
the proposed methodology of this chapter is also applicable for 2D design
applications. Finally, the chapter concludes by discussing potential future
applications of the presented methodology, particularly in combination with
data driven design and machine learning techniques.

Contents of this chapter are based on the following publication by the author:

• Form-finding explorations through geometric manipulations of force polyhe-
drons (Lee et al., 2016)

• Disjointed force polyhedra (Lee et al., 2018)

7.1 Goals

In a conventional “top-down” design workflow, a structure is typically
sketched by hand, translated into a digital model, then analysed using a finite
element software to check its equilibrium. Even if an equilibrium of a spatial
structure is achieved, it is difficult to make modifications to the geometry
in an interactive manner; a substantial re-modelling and re-analysis are
required for any design changes. Subsequently, it is difficult to explore new
spatial typologies efficiently, and the resulting spatial structures are often
arrays or accumulation of known, two-dimensional solutions.

The goal of this chapter is to propose a new structural design paradigm,
where solutions can be generated through transformations of the geometry
of force diagrams. Because forms are generated as a result of force diagrams,
the entire structure can be easily controlled and modified without breaking
its spatial equilibrium. Generating the structural form by manipulating the
force diagram also means that the structural typology is an unknown at
the start, resulting in feasible designs that are not biased towards known
solutions or predefined typologies. Built-in equilibrium constraint of all the
solutions means that the user can focus on designing and exploring, and less
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on analysing. The design examples in this chapter will demonstrate how the
generative nature of this approach can lead to the emergence and discovery
of new typologies without any biases towards conventional solutions.

7.2 Setup

First step of the proposed methodology is to formulate the boundary
conditions by defining the magnitudes and locations of the applied forces,
and the location of the supports. The global force polyhedron Λ can
be constructed using the procedure described in Section 4.2.9.2. For an
indeterminate system of external forces, the user will need to determine
an initial distribution of reaction forces to start the transformative process,
which can be modified later. From a set of polyhedral transformations and
modifications, either a vertex, face or cell—individually or in groups—can be
chosen to apply the geometric operations. These operations can be applied
iteratively in any order, until a desired design criteria is reached. After each
operation, the reciprocation algorithm can be used to form-find the geometry
of the equilibrated structure. The described workflow is summarised in the
flowchart in Figure 7.1. Figure 7.2 shows some of the geometric operations
that are available in compas_3gs, which can be used for this design
application.

Figure 7.1: Flowchart of the form-finding exploration workflow.

7.3 Results

This section presents variations for three design scenarios generated using
the presented method: a horizontally spanning structure with one point load
and three vertical (two roller and one pinned) supports (Figure 7.3); a vertical
cantilever structure with three pinned supports and a horizontal point load
(Figure 7.4); and a bay of a large roof with a single tower support at the centre
and a suspended roof (Figure 7.5). The same operations can be applied to
prismatic polyhedral cells to explore two-dimensional structures. Figure 7.6
shows how the same operations can be used to generate a two-dimensional,
discrete Michell truss.
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Figure 7.2: Three categories of polyhedral edits: modification, decomposition and transforma-
tion.

7.4 Outlook

Shape grammars (Stiny and Gips, 1972; Stiny, 2008) is a rule-based com-
putational design methodology where the generation and transformation
of shapes can be automated to explore a wide range of diverse designs.
Because of its generative property, new and unexpected design typologies
can emerge, allowing designers to explore new design spaces in an unbiased
manner. The ability to embed intelligence to the grammar rules allows shape
grammars to be applied in architectural design for a variety of purposes:
analysis and generation of geometric patterns (Stiny, 2008); qualitative
investigation of architectural styles (Stiny and Mitchell, 1978; Koning and
Eizenberg, 1981); and function and performance-aware design explorations
(Mitchell, 1991).

Shape grammars can also be very powerful in engineering applications as
well. Within the context of structural design, shape grammars can be used to
generate new structural typologies that are not only feasible but also unique
in its visual aesthetics. Furthermore, when combined with optimisation
procedures such as shape annealing (Reddy and Cagan, 1995; Shea et al.,
1997), the generation of designs can be guided by a performance criteria
(Cagan and Mitchell, 1993; Shea and Cagan, 1999). The form-based grammar
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Figure 7.3: Design example 1: a vertical cantilever with horizontal point load.
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Figure 7.4: Design example 2: a horizontally spanning structure with three supports.
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Figure 7.5: Design example 3: a bay of a suspended roof structure with a central tower.
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Figure 7.6: Sequence of manipulations to generate a discrete Michell truss.
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rules either introduce new members or group existing ones. During each
iteration, rules are randomly chosen and applied. The rule is only accepted
if the resulting structure performs better than the one from the previous
iteration. This evaluation is performed with external finite element software
at every step. The procedure continues until the rate of improvement from
iteration to iteration has fallen under a desired convergence rate. Using
different combinations of rules, different topologies can emerge for the same
given design problem (Figure 7.7).

Rather than modifying the geometry of the structure which requires a
feasibility and equilibrium check with a finite element software at every
iteration, grammar rules can be formulated and applied to the geometry of
the force diagram (Figure 7.8). If the external forces are in equilibrium (which
can be verified by constructing the global force polygon or polyhedron), a
series of subdivisions or transformations of each polygon or polyhedral cell
of the force diagram will result in a structure that is already in equilibrium
(Akbarzadeh et al., 2014, 2015c; Lee et al., 2016). As a result, equilibrium
solutions to a given design problem with an established boundary conditions
can be generated rapidly and automatically (Lee et al., 2016).

By the virtue of the existence of the form and force diagrams, the perfor-
mance criteria (internal axial forces) can be easily calculated through simple
multiplications without any external finite element software. Evaluation
criteria such as the structure’s total load path can be used to sort the results,
and only show the user feasible and realistic solutions to a problem. From
a selection of designs that are new in its typology and also efficient, the
user can first explore the design space visually before choosing an optimal
solution from a set of possible designs (Balling, 1999; Mueller, 2014). In
this way, new typologies can emerge without the bias of the user, and
subsequently lead to new design discoveries.

Although a large number of solutions can be generated automatically, the
randomness of rule applications can often lead to inherently bad solutions.
And because each solution has a different topology (different number of
nodes and members), it is difficult to perform any optimisation procedures
during the rule applications to guide the evolution of the solutions.
Aforementioned shape annealing could be applied at each iteration, but

Figure 7.7: Generation of truss designs using shape, size and topology transformation rules in
combination with shape annealing (Shea and Cagan, 1999).
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Figure 7.8: Automatic generation of an equilibrium structure for a simple loading case, using
graphic statics and shape grammars (Lee et al., 2016).

when exploration and discovery of new typologies is the objective, optimally
guided generation of a single solution may not be of priority. Only after tens
of thousands of solutions have been generated, can they be sorted using a
performance criteria metric for any meaningful, comparative evaluations.
Such brute force method can be inefficient and unproductive for more
complex design problems. In addition, any small change in the boundary
conditions will require an entirely new set of solutions to be generated and
sorted. The computational setup also does not learn or store any knowledge
from the previous generations or sorting results, meaning it is ultimately
a trial-and-error process where any meaningful information gathered from
one problem cannot be used for any other problems.

Rather than sorting the raw data of the results for every design problem, the
data could be used to extract certain patterns or sequence of grammar rules
that tend to result in good solutions. For a human, it is impossible to extract
any meaningful patterns, if there are any, from such a large and complex data
set. In order to analyse and draw any meaningful conclusions from large data
of multi-layered information, machine learning techniques such as sentiment
analysis can be used. Sentiment analysis, or also referred to as opinion
mining, is a natural language processing (NLP) technique for computational
analysis of text, and systematically identifying, extracting and quantifying
the underlying subjective information from the text (Liu, 2015). Sentiment
analysis is widely applied in internet marketing and customer service sectors
to analyse the voice of the customer through the online reviews, surveys
and social media data. By analysing the choice and the sequencing of words,
and the grammar that holds the text together, the overall subjective tone or
attitude of the text can be quantitatively evaluated. The analysis can also
happen at different levels of granularity within the text: document level,
sentence level or aspect level. With the advent of machine learning and
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deep learning techniques, various computational approaches and methods
for sentimental analysis have been proposed (Goldberg, 2016; Zhang et al.,
2018).

Within the context of structural design with shape grammars, the structures
can be considered as the “document” and the grammar rules and their
parameters as the “vocabulary” (Shea, 1997). From the large number of
solutions that can be rapidly generated, the machine learning algorithms
can analyse the sequence of rules and detect any patterns as they relate to
the structural performance or efficiency of the eventual solution. As with
sentimental analysis of texts, the analysis can also happen at various levels
within the structure; it could be global patterns that influence the overall
behaviour of the structure, or it could be at the local level of a single node or
a neighbourhood of nodes.

With the transformations presented in this chapter formulated as grammar
rules, the rule history for each solution can be analysed and evaluated using
the similar algorithms used in sentimental analysis applications. In addition,
specific combinations and sequencing of grammar rules can be formulated
to address particular design problems. A catalogue of good recipe of
structural grammar rules could be useful for designers in developing
new design aesthetics and styles, but also in gaining new insights as to
which combination and ordering of grammar rules tends to improve the
performance of structures.



8 Exploring non-polyhedral structures

This chapter presents force-driven design applications through a more
precise control of the face areas of force diagrams. It demonstrates how
3D graphic statics can incorporate more quantitative constraints. Using cell
networks, the examples presented in this chapter showcase new structural
typologies that are not realisable with methods that are based on multi-cell
polyhedrons. First, the goals and computational setup of the methodology
are described. Then, a wide range of examples are presented, each showcas-
ing a new design opportunity: improvement of visualisation; new structural
design typologies; addressing boundary conditions; and interactive force-
driven design. Finally, the chapter concludes by discussing potential future
applications particularly within the context of structural engineering, and
discuss how the presented methodology can offer key advantages over
conventional tools.

Contents of this chapter are based on the following publication by the author:

• Disjointed force polyhedra (Lee et al., 2018)

8.1 Goals

The goal of this chapter is to demonstrate how controlling the face areas of
force diagrams (and therefore the force magnitudes in the spatial structure)
expands the range of 3D graphic statics applications. In contrast to the
previous chapter where the primary objective was to generate new structural
shapes and discover new topologies, this chapter focuses on addressing
more realistic, force-driven constraints that are commonly used in structural
engineering practice.

8.2 Setup

While geometric transformations of Γ⊥ are ideal for initial form generation
and explorations, Ψ⊥ provides a means for designers to interactively
incorporate force-driven constraints. The unique features of both Γ⊥ and Ψ⊥

can be incorporated into one coherent workflow.

First, the boundary conditions of a design problem are clearly identified
by the designer, from which the initial Λ⊥ can be generated using the
EGI and the arearisation algorithms (Figure 8.1-a). The designer then can
proceed to subdividing or transforming the Λ⊥ (Figure 8.1-c). Using the
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reciprocation algorithm, the designer can interactively generate Γ, and
explore the geometry of the structure in real-time (Figure 8.1-d). During this
interactive exploration, the designer can set various form-driven constraints
such as node locations, fixities, edge lengths and orientations (Figure 8.1-b).

Once a general form and topology of Γ have been determined, the designer
can proceed to disjointing Γ⊥ into Ψ⊥ using the EGI and arearisation
algorithms (Figure 8.1-e), which converts Γ to Ψ. Because the internal force in
every member is already known from Γ⊥, the construction of the initial Ψ⊥ is
straightforward. The designer can now set various force-driven constraints
such as target force magnitudes or orientations for specific members of the
structure (Figure 8.1-f). At this point, the designer can still apply any form-
driven constraints to Ψ, or polyhedral transformations to the cells of Ψ⊥.

Because Ψ and Ψ⊥ have an interdependent relationship, the geometry of
Ψ needs to be updated at each iteration as each of the cells adapts to the
new force constraints (Figure 8.1-h). At the end of each iteration, the two
corresponding faces of a member may not necessarily be parallel or have
the same areas. For members that do not have target member forces or
orientations, the average of the two contact face normals and areas are used
as targets for the next iteration.

The iteration is terminated when the desired tolerance or a designated
iteration count has been reached. The edges of Ψ and the corresponding
cell faces of Ψ⊥ should now be close to being perpendicular to one another,
unless the form and force constraints input by the designer in the previous
steps caused the polyhedral reciprocal diagrams to be over-constrained and
a solution satisfying all of the constraints could not be found. In this case, the
designer will need to consider eliminating some of the constraints.

As the final step, the designer has the option to visualise the unified diagram,
Ψ⊥(α), which aids in understanding the force magnitudes and distributions
relative to Ψ (Figure 8.1-i). The designer can also go back to the previous
steps to continue the design exploration.

8.3 Results

Using cell networks, new 3D graphic statics applications are now possible.
This section presents examples that demonstrate these new potentials.

8.3.1 Improved visualisation for 3D graphic statics

Complicated self-stressed structures, such as the Jessen icosahedral tenseg-
rity (Figure 8.2-a), are used commonly in literature to demonstrate the
need for “zero-volume cells” and “zero bars” to construct a complete Γ⊥

(Figure 8.2-b) (McRobie, 2016b,a; Konstantatou and McRobie, 2016). All of
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Figure 8.1: Overview of the main steps of the force-driven design workflow using cell networks.
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the complex faces of the central, “zero-volume cell” highlighted in Figure 8.2-
b have areas of zero. While necessary for constructing a complete Γ⊥, such
overlapping elements only make Γ⊥ more difficult to read and understand.
For a designer who is interested in rapidly exploring the design space using
Γ⊥, clusters of complex polyhedral cells with additional “zero-volume cells”
and “zero bars" can be distracting and confusing.

The geometric properties of the Jessen icosahedron is well known (Jessen,
1967; Fuller, 1975; Robert William Burkhardt, 2008), and since tensegrity
structures are self-stressed and self-equilibrated, the construction of Ψ⊥ is
simple and straightforward once the vertex locations have been determined.
Ψ⊥(α) shown in Figure 8.2-c is drawn with the same α as the Γ⊥(α) in Figure
8.2-b, but without the “zero-volume cells” and “zero bars” and therefore
reducing significant amount of visual clutter.

With the equilibrium of the external loads and reactions always being
verified by Λ⊥ and the individual polyhedral cells being generated and
visualised per node-by-node basis, Ψ⊥ can be constructed for any structure
in static equilibrium with minimal number of complex cells and without any
additional fictitious nodes or prisms. This example shows that Ψ⊥(α) can be
used as a simplified and improved visualisation alternative to a complete but
often more complicated Γ⊥(α).

Figure 8.2: a) Γ of a Jessen icosahedral tensegrity structure; b) the complete Γ⊥(α) using
complex cells and “zero bars” (after McRobie (2016b)); and c) Ψ⊥(α), without the use of any
complex cells, “zero-volume cells” or “zero bars.”

8.3.2 New structural typologies

In this section, new structural typologies are presented, for which Γ⊥ cannot
be constructed despite the static equilibrium of the structure. It is shown
how Ψ⊥ can be constructed for such structures and how they can be used in
context of 3D graphic statics.
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8.3.2.1 2D-3D combined structures

Using prismatic polyhedral cells with virtual faces to represent 2D nodes
in equilibrium as described in Section 4.2.7.2, Ψ⊥ for structures with both
2D and 3D nodes can now be constructed. Figure 8.3 shows a twisting arch
bridge, with 2D nodes along the arch, and point loads applied to the deck.
Combination of 2D and 3D nodes in the same structure means that the
members that form a face of Ψ are not necessarily planar, and thereby allows
incorporation of twisted faces and features into the structure.

Figure 8.3: Twisting arch bridge with non-planar faces, and the corresponding Ψ⊥(α).

8.3.2.2 Overlapping structures

A complete Γ⊥ can be constructed only if Γ is a planar graph (Van Mele and
Block, 2014). In 2D, this means that a viable form diagram can be rearranged
on the plane so that none of the edges are crossing another edge or traversing
over a face. In 3D, this means that a viable form diagram Γ can be untangled
in space so that none of the edges are crossing a face. Otherwise, a topological
dual of that diagram does not exist, and the corresponding Γ⊥ cannot be
constructed.

The example in Figure 8.4 is a layered shell structure with overlapping verti-
cal support elements. Although this structure is in equilibrium, the complete
Γ⊥ cannot be constructed. However, a cell network Ψ⊥ can be constructed
to represent the equilibrium of this structure, where the individual cells
represent the local equilibrium at each of the nodes while being constrained
at the periphery by the global force polyhedron representing the external
forces.

8.3.2.3 Non-polyhedral structures

The dual and reciprocal relationship between Γ and Γ⊥ means that both
diagrams are polyhedral in their geometric properties. Subsequently, any
structure generated through subdivisions or transformations of Γ⊥ has
subspaces that are also polyhedral. The spatial tree structure shown in Figure
8.5 was generated by node-by-node transformations or polyhedral cells,
which result in an equilibrated and yet non-polyhedral form diagram, Ψ.
Ψ⊥ allows exploration of equilibrated structures that do not have polyhedral
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Figure 8.4: A layered and self-overlapping shell structure supporting a flat surface that is
uniformly loaded.

Figure 8.5: Tree structure with non-polyhedral subspaces, as a result of additive, node-by-node
transformations of Ψ⊥.

geometries, and investigation of free-form designs that are more organic
in their aesthetic is now possible. Furthermore, any force equilibrium of
structures generated with other form-finding methods such as force density
method and TNA can be translated into Ψ⊥.
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8.3.3 Force-driven design

This section presents how polyhedral cells and cell networks in combination
with the arearisation algorithm, can be used to incorporate more force-driven
constraints, especially with regards to the boundary conditions.

8.3.3.1 Placing point loads anywhere

One of the main limitations of previous graphic statics applications is that
the external loads must be applied at the periphery of the structure, meaning
there cannot be any “inner leaves” (Van Mele and Block, 2014). This is also
true for 3D graphic statics, where any inner leaves or crossing members mean
that a topological dual does not exist. With Ψ⊥, point loads can be placed
anywhere in the structure.

Figure 8.6-a shows an indeterminate truss with four horizontally restrained
supports (1-4) and one pinned support at the bottom (5). If a point load
were to be applied to the inner, central node of the structure, a complete
Γ⊥ cannot be constructed as there does not exist a topological dual for such
configuration of edges. However, in Figure 8.6-b, a point load of 0.25P is
applied to the central node at an arbitrary angle, from which a new Ψ and
Ψ⊥ were found. The new added freedom to place loads anywhere in the
structure, allows investigation of irregular loading scenarios, asymmetric
loading conditions, and potentially incorporate self-weight loads into the
structure.

Figure 8.6: a) An indeterminate truss with four horizontally restrained supports (1-4) and one
pinned support (5), and the corresponding Γ⊥(α); and b) the same truss with a point load
applied to the interior node, and the corresponding Ψ and Ψ⊥(α).

8.3.3.2 Tributary area

While polyhedral subdivisions and transformations allow generation of
intricate spatial structures, the resulting distribution of applied loads on the
structure does not end up representing realistic loading scenarios.
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Consider the spatial tree structure shown in Γ of Figure 8.7-a, which is
designed to support a triangle-shaped roof that weighs P . Suppose that the
points on top and the bases of the structures are finalised by the design team,
and are fixed for the remainder of the design exploration. As shown in Γ
of Figure 8.7-a, the distribution of applied forces as a result of polyhedral
transformations of Γ⊥ often do not correctly reflect the true tributary areas
of the structure. With the top and the base points fixed, and the correct
distribution of applied loads imposed, the new shape of the design is found
(Figure 8.7-b).

A designer is typically concerned with rapid shape explorations during early
stages of design. As the design is gradually finalised and a specific topology
of the structure is chosen, the designer can begin to adjust the design load
case of the initial Γ⊥ to a more correctly calibrated loading scenario to
continue developing the design towards a more realistic version of the initial
concept.

Figure 8.7: a) A tree structure generated through polyhedral subdivisions and transformations
of Γ⊥, with a distribution of applied loads that do not reflect the correct tributary areas; and b)
the same structure with correct distribution of applied loads according to the actual tributary
areas, and the subsequently form-found, new tree structure.
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8.3.3.3 Interactive force-driven design

Cell networks can also be used in an interactive modelling environment and
allow designers to explore various spatial structures based on specific force-
driven constraints in real-time. Consider a vertically loaded column in Figure
8.8-a, with a fully pinned support at the bottom and a horizontally restrained
support at the top. Any combination of edges in Ψ or cell faces of Ψ⊥ can be
selected to input specific target force magnitudes.

In general, Ψ for a given force distribution is not always unique, and is
subject to certain geometric constraints such as maximum and minimum
length of edges allowed, and node location constraints during the form find-
ing process. Consequently, a design problem can become over-constrained
and an equilibrium solution may not be found that satisfies all of the input
constraints. In such cases, the converged solution then provides the designer
with the closest solution given the input constraints, and indicates where
certain constraints can be removed or modified. The presented framework
allows designers to interactively set different combinations of constraints to
explore various equilibrium solutions.

8.4 Outlook

With the ability to control the face areas, and therefore the force magnitudes
within the structure, polyhedral reciprocal diagrams can potentially be
utilised for numerous other engineering applications. One particular area of
relevance is strut-and-tie modelling (STM).

STM is a method of shear analysis of deep concrete structures in bending
by constructing an equivalent truss. In practice, it is primarily used for
designing discontinuity regions (often referred to as D-regions in literature)
in reinforced and prestressed concrete structures to determine the layout
scheme for reinforcements. D-regions are parts within the concrete block
where the geometrical discontinuities cause strain distributions to be non-
linear.

By constructing a triangulated truss structure within the boundaries of the
concrete mass or block, one possible load path is assumed, from which the
designer can begin to understand the complicated internal force flow as a
simplified series of compression struts and tension ties. By calculating the
forces in the tension ties, the reinforcements can be sized and laid out along
the tensile members. STM is based on the concept of lower-bound, theory of
plasticity; the capacity of the equivalent, internal truss that is in equilibrium
with the applied loads, will be greater than or equal to the collapse capacity
of the concrete mass. It is a well-established method in structural engineering
of concrete structures. STM standards and guidelines can be found in most
major building codes.
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Figure 8.8: Interactive design explorations of a vertically loaded column using various
combinations of target force magnitudes in specific members of the structure. Each example
shows: the initial structure with the target force magnitudes; the corresponding Ψ⊥(α); and the
form-found Ψ.

Although the building codes provide detailed rules and guidelines on
how rebars should be laid out, the method of generating the initial truss
model is not clearly established in practice. It is generally dependent
on the experience and intuition of the engineer. From built projects and
known solutions, an engineer can develop his or her own a set of rule-of-
thumb techniques which can be used to make an educated guess on the
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internal force flow of the concrete blocks (Schlaich and Schäfer, 1991). The
engineer then typically sketches out the equivalent truss model by hand.
Alternatively, the internal force flow can be approximated through topology
optimisation or stress field analysis. Although a more accurate internal force
flow can be approximated, the conversion of pixel or vector-field data to a
discretised truss model still requires human interpretation (Beghini et al.,
2013) or an entirely separate computational procedure. Even after a logical
interpretation has been made, the static equilibrium of the truss model is not
always guaranteed. Most importantly, if some tensile members of the strut-
and-tie model is over-stressed and an alternative truss model needs to be
investigated, the entire process must be restarted.

Graphic statics can be particularly useful in constructing suitable strut-
and-tie models for generating reinforcement layouts, as demonstrated by
Alic and Persson (2018) for 2D cases. For 3D STM problems where the
connectivity interpretation can be much more challenging, the algorithms
and various functionalities of compas_3gs can facilitate the engineers in

Figure 8.9: Conventional workflow for 2D strut-and-tie modelling: 1) boundary conditions
including the extents of the concrete mass and the location and magnitudes of the externally
applied loads; 2) generation of the internal force flow patterns using stress field analysis with a
FE software or topology optimisation; 3) interpretation of the internal force flow patterns as a
discretised truss model; 4) equilibrium analysis of the truss model; 5) calculation of the forces in
the tension members; and 6) sizing and lay out of the reinforcement.
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ways conventional FE methods cannot. In 3D, the setup of the problem
is generally the same as the 2D case. The formulation of the boundary
conditions consists of volumes and volumetric voids as opposed to 2D
polygons and voids (Figure 8.10-1). If topology optimisation is used to
interpret the force flow, the result is made up of voxels as opposed to the
pixel information for 2D cases (Figure 8.10-2). This voxel information can be
used to generate the initial truss model.

Rather than manually guessing the node and member locations, a skeletoni-
sation algorithm can be developed in the future that automates this process
(Figure 8.10-a). Discretisation of pixel or voxel clusters into lines or curves is
a well-researched topic in medical imaging (i.e. tractogrphy of X-ray image
information for tracking brain’s white matter bundles for neurosurgical
planning) and computer graphics (i.e. handwriting recognition). Within the
context of STM, this process is in principle the same as discretising pixel
or voxel information as a result of topology optimisation. Various strategies
have been proposed regarding this procedure in the literature, with more
recent application to 3D problems by Cuillière et al. (2018).

The result of skeletonisation can be considered as the initial form diagram
of the truss model, which is not guaranteed to be in equilibrium or
necessarily polyhedral in its geometry (Figure 8.10-3). From this initial form
diagram, the cell network Ψ⊥ can be generated using the EGI for each node
(Figure 8.10-b). The initial Ψ⊥ can then be modified with the appropriate
boundary condition constraints (i.e. applied and reaction force locations and
magnitudes) (Figure 8.10-c). Reciprocation of the modified Ψ⊥ then yields an
updated form diagram Ψ which is now in equilibrium.

The modified Ψ which is now in equilibrium, can be used to analyse the
forces within the tensile members. Another benefit of using 3D graphic
statics for STM applications is that the forces can be constrained within
the truss model. If some of the tensile members are over-stressed, the
form diagram can be easily modified or transformed to reduce the stresses
in specific areas of the structure by enforcing maximum force magnitude
constraints, or by altering the geometry of the structure to diffuse the stress
concentrations through subdivision or transformations of the force diagram.
In this way, cell networks can be used to equilibrate discretised truss models
in space while enforcing necessary boundary condition and other force-
driven constraints.

In addition to having direct relevance and applicability for STM and rein-
forcement design for concrete structures, the equilibrated spatial structures
generated through this workflow can also be used as the structure itself. The
concrete block can be considered as the design domain, where the topology
optimisation and skeletonisation generate the initial topology of the form
diagram, with which the designer can use as a good starting place for further
design explorations.
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Figure 8.10: Potential workflow for 3D strut-and-tie modelling: 1) boundary conditions in space;
2) voxel data from 3D topology optimisation (image source: (Shobeiri and Ahmadi-Nedushan,
2017)); 3) initial form diagram; 4) polyhedral reciprocal diagram; and 5) further applications.
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This chapter presents fabrication-related applications of 3D graphic stat-
ics. These applications are demonstrated through the form finding and
fabrication design of the MycoTree project for the 2017 Seoul Biennale of
Architecture and Urbanism. As the main designer and developer of the
structural geometry and the fabrication process, the author was able to
test, verify and improve various functionality and features of the presented
computational framework. First, the motivations behind the project and
the use of cultivated building materials are discussed. Second, the design
and development of the structural geometry is presented. Additionally,
detailed description of the fabrication geometry of the moulds and various
components of the project will be provided. This chapter concludes by
making conjectures on other potential applications.

MycoTree was exhibited in Seoul, Korea from September, 2017 until April,
2018 as the centrepiece of the “Beyond Mining – Urban Growth” exhibition at
the 2017 Seoul Biennale of Architecture and Urbanism curated by Hyungmin
Pai and Alejandro Zaera-Polo. MycoTree is a result of collaboration between
the following partners:

• Sustainable Construction, Karlsruhe Institute of Technology (mate-
rial research)

Karsten Schlesier, Felix Heisel, Dirk Hebel

• Block Research Group, ETH Zürich (structural geometry, form finding
and fabrication design)

Juney Lee, Matthias Rippmann, Tomás Méndez Echenagucia, Andrew
Liew, Noelle Paulson, Tom Van Mele, Philippe Block

• Alternative Construction Materials, Future Cities Laboratory, Singa-
pore ETH Centre (material testing and development)

Nazanin Saeidi, Alireza Javadian, Adi Reza Nugroho, Robbi Zidna
Ilman, Erlambang Adjidarma, Ronaldiaz Hartantyo, Hokie Christian,
Orion Tan, Sheng Yu, Kelly Cooper, Dirk Hebel

• Mycotech, PT Miko Bahtera Nusantara, Indonesia (production part-
ner)

Contents of this chapter have been published in (Hebel et al., 2017; Heisel
et al., 2017, 2018)
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9.1 Goals
The goals of this chapter is to demonstrate how the inherent, polyhedral ge-
ometric properties of polyhedral force diagrams can be exploited to enhance
the fabrication design and process. The three specific goals highlighted in
this chapter are as follows.

The first goal is to enable explorations of branching, funicular structures
in space beyond arches and domes. Such compression-only structures
drastically reduce the internal forces, and therefore the stresses on the
materials. As a result, weak materials can be used in full-scale, structural
applications.

The second goal is to bring to light the importance of calibrating polyhedral
reciprocal diagrams to realistic boundary conditions. As discussed in
Section 8.3.3.2, a structure that is form-found through polyhedral reciprocal
diagrams is only in equilibrium with loads of specific magnitudes that
are applied at specific locations. These load magnitudes and locations
typically do not coincide with the actual tributary area of the structure. Such
boundary condition criteria must be taken into account to ensure that the
computationally form-found geometry will sufficiently stand in reality with
realistic loads.

The third and last goal is to take advantage of the planar geometry of the
polyhedral form and force diagrams and directly use it to facilitate the
fabrication and production process. In contrast to 3D printing and milling
operations which can be time consuming and expensive with increasing
scale of projects, polyhedral geometric processing allows realisation of
complex spatial structures using modest sheet materials and relatively
inexpensive 2-axis CNC and laser cutting.

Ultimately, the practical application of the presented computational frame-
work for 3D graphic statics provides insights into the challenge of translating
academic, pavilion-scale projects to real building applications. Scaling up of
digital fabrication is not entirely dependent on high-tech machines, but can
also be facilitated by high-tech geometry that allows realisation of complex
geometry through comparatively cheap materials and processes.

9.2 MycoTree
This section describes the motivation, design of structural geometry, devel-
opment of fabrication process and on-site assembly of the MycoTree project.

9.2.1 Motivation

As populations and urban aspirations grow, so does the demand for
materials and resources to support them. Although such demands were once
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satisfied by local and regional hinterlands, they are becoming increasingly
global in scale and reach. This phenomenon has generated material flows
that are trans-continental in scope and has profound consequences for
the sustainability, functioning, sense of ownership and identity of future
cities. However, the focus of the global construction industry on only a
few established building materials results in a high consumption of specific
and limited natural resources (Frondel et al., 2007). In this respect, the built
environment of the future city demands the utilisation of new resources.

The 21st century will face a radical paradigm shift in how materials are
produced for the construction of future habitats. The linear concept of
“produce, use, and discard” has proven itself unsustainable in the face
of scarce resources and exponentially growing urban populations (Hebel
et al., 2014). Instead, to achieve a cycle of production, use, and re-use, we
must explore alternative materials and approaches to construction. Materials
that were previously considered unwanted and low-strength may present
possibilities to end this undesirable state of affairs.

MycoTree, the prototypological structure described in this chapter, consists
of organic building components made from agricultural waste, which are
stabilised only by the grown matrix of mushroom mycelium. Its geometry
was designed using 3D graphic statics, utilising compression-only form to
enable the weak material to perform structurally. The resulting expressive
and provocative structure demonstrates that the combination of newly
developed building materials—which can be effectively grown locally or
even on-site—with informed structural design and engineering may bring
about the changes that are desperately needed.

9.2.1.1 Depleting finite resources

Over the last few centuries, the global construction industry has grown
increasingly more dependent on mined resources. Today, steel-reinforced
concrete is the most produced construction material on an industrial scale
worldwide, with more than 50% of all man-made objects containing cement-
bearing materials (Scrivener, 2015). Mining, in contrast to cultivating, has a
significant disadvantage: excavated materials do not regenerate themselves.
The aggregates used in a concrete mix, i.e. sand and gravel, are forever lost
and transformed without the possibility to recover them in their original
form. In the case of sand, the ruthless exploitation of this natural resource
already shows dramatic consequences.

Sand is the product of millions of years of natural decomposition of rocks
from mountainous areas that is flushed through streams and rivers into the
oceans. Yet, the ever-growing building industry mines this natural resource
at an alarmingly unsustainable rate; today, twice as much sand is being
consumed as it is produced naturally in the same amount of time (Milliman
and Syvitski, 1992). The global market for sand is estimated at 15 to 30 billion
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tonnes per year, with a value of more than 70 billion US Dollars (SRF TV,
2014; Peduzzi, 2014). Drastic forms of sand mining are appearing all around
the globe: the sands of North African beaches are being illegally harvested,
with one out of two beaches in Morocco affected; rivers are being dredged
and ocean floors scraped; and landmasses are collapsing and islands are
eroding away. The consequences reach far beyond the actual mining areas
and leave behind devastating traces. Water levels fall in dredged rivers of
India, Thailand, and Cambodia, destroying traditional settlements and their
modes of life. Dredging seafloors not only harms the local ecosystems, but
also has lasting effects on distant sea regions with sediments suspended in
the ocean currents. Marine sand mining has irreversible ramifications that
will haunt generations to come. Sand shortages lead to increasing illegal
mining practices and trade in developing countries (Delestrac, 2014).

Other finite minerals and metals in the earth’s crust, are equally affected by
today’s mining-centric standards and practices of the building industry. In
2005, the German Federal Ministry of Economic Affairs and Energy (BMWi)
prognosticated that the global reserves of lead, zinc and tin will be depleted
in less than 25 years with then-current rate of mining and consumption
(Frondel et al., 2007). Even copper and iron deposits are in danger of
depletion if today’s ‘take, make and dispose’ mentality continues (Reller and
Graedel, 2009). At the same time, global material extraction has more than
doubled in the past 30 years, and is estimated to continue rising: from 65
billion metric tons of raw materials entering the economic system in 2010 to
about 82 billion metric tons in 2020 (WU Global Material Flows Database,
2015).

In recent decades, the building industry has reacted to this increasing scarcity
of mined resources by aiming for a reduction of construction material use
through higher efficiency. An alternative pathway is being presented by the
concept of circular economy, a framework ‘that is restorative and regenera-
tive by design and aims to keep products, components, and materials at their
highest utility and value at all times, distinguishing between technical and
biological cycles’ (Ellen MacArthur Foundation, 2012). By closing the loop,
the circular economy aims to recirculate material resources that are currently
being diverted to and lost in landfills, oceans or through incineration.

9.2.1.2 Towards circular material application

In regard to the building industry, the circular economy’s design imperative
relates to a key requirement: building components must be designed, manu-
factured, and constructed so that all components used can be disassembled,
separated and cleanly returned into their respective technical or biological
material cycles to maximise the recovery and reuse of construction materials
after a building’s life cycle. This may necessitate the redesign of standard
building components, the development of innovative new joining systems or



9.2. MycoTree 169

an avoidance of glues and un-recyclable composites. The past 40 years have
seen the development of various design guidelines and manuals in an effort
to move towards a more sustainable building environment and practice.
Notable examples include Walter R. Stahel’s Performance Economy (Stahel,
1982), Werner Sobek’s Triple Zero (Sobek and Trumpf, 2008) guidelines or
William McDonough and Michael Braungart’s Cradle to Cradle (McDonough
and Braungart, 2002). In these guidelines, materials are considered as
borrowed goods, which the client only uses for a certain amount of time and
then gives back to the construction market or the natural environment to be
reused, recycled, or decomposed.

The development of today’s high-performance materials and their assembly
are still largely based on the linear economic model, typically aiming to
decrease material use by increasing the component’s strength. A common
result are irreversible (and often non-recyclable) material composites. The
paradigm shift towards a circular economy thus not only requires a
rethinking of material selection and assembly, but also a new approach
towards their structural application, which fully activates the potential
of circular recycled or cultivated materials despite their sometimes more
challenging material properties. MycoTree addresses both of these aspects by
activating a weak material through informed structural design. The utilised
new generation of cultivated building materials based on mycelium as a
self-assembling glue certainly adapts the above described circular economic
model; a buildings that is built from organically grown materials, also can be
composted after its initial use and become the source for a new cultivation
and building cycle.

9.2.2 Mycelium

Mycelium is the root network of fungi, a fast-growing matrix that can act
as a natural binder. It consists of individual hyphae, which grow from
mycelium fungal strain spores and consume feedstock containing carbon
and nitrogen (Carlile, 1995). Digesting plant-based waste products, such as
sawdust, mycelium’s dense network binds the substrate into a structurally
adequate material.

The advantages of such materials as a potential alternative to traditional
building materials are significant. As mycelium-bound building components
are organic in matter, they can simply be composted after their original
use. Furthermore, mycelium-bound building components can act to reverse
carbon emissions through the absorption of carbon. On the other hand,
the production of mycelium-bound materials, which is based on locally
produced wood and agricultural waste products could address a wide
range of economic, environmental and socio-cultural issues. Mycelium can
transform low-strength waste products into a high impact, affordable and
sustainable material, which could be used in the construction sector.
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9.2.2.1 Cultivation

For the MycoTree, the mycelium strain Ganoderma Lucidum (G. lucidum) of
Basidiomycetes, commonly known as Lingzi mushroom was chosen. This
particular strain grows quickly and sturdily in a typical tropical climate.
Material engineering and production of building elements for the MycoTree
were conducted in collaboration with the company Mycotech in Indonesia.

The use of agricultural waste products was investigated as an alternative to
substrates consisting of waste products from wood, as commonly used in
the production of mycelium-bound materials. The recipe of the mycelium-
bound material was developed regarding the composition of its substrate
as well as the conditions of the mycelium growth aiming at maximising
its compressive strength and rigidity while minimising its growth and
production time. Waste from sugarcane and the tapioca starch production,
specifically the roots of Manihot esculenta (cassava), were selected as basis
for the production of the final MycoTree components. A mycelium-bound
material grown under the same conditions on a mix of woodchips and
sawdust of the plant Albizia Chinensis wood species (which is widely
available in Indonesia) was used as a reference for comparison. The substrate
mixtures were inoculated using pre-grown spawns cultivated on corn.

Since mycelium-bound materials have only been introduced recently, no
international standard currently exists that prescribes the production and
testing methods for such materials. Therefore a modified production method
was developed at FCL Singapore using inputs from agricultural mushroom
farms (Stamets, 2011) and previous published works (Travaglini et al., 2013;
Lelivelt et al., 2015; Pelletier et al., 2017). The process of producing mycelium-
bound material can be summarised as follows:

1. Fiberising agricultural waste products into smaller pieces;
2. mixing the substrates with further supplementary nutrition;
3. adjusting the water content to 60-65% in the substrate mixture;
4. autoclaving the substrate in 121°C for 30 minutes to avoid contamina-

tion by other competing microorganisms;
5. inoculating the sterilised substrate with G. Lucidum spawn;
6. incubating the inoculated substrate in climate conditions of 28°C and

80% relative humidity for 8-12 days for initial colonisation;
7. crushing the colonised substrate and placing them into moulds for

further incubation in the same climate conditions for another 6-9 days;
8. removing the incubation moulds and exposing the mycelium-bound

material to air for chitinous skin development;
9. transferring the fully grown specimens into a ventilated oven with the

temperature of 80°C for 24-48 hours in order to reduce the moisture
content to less than 10% and consequently preventing further growth.
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Figure 9.1: Production of the mycelium components: a) collection and processing of substrate
such as agricultural waste or saw dust; b) packaging of substrates in bags and inoculation
of mushroom hyphae; c) sterile environment to keep out competing bacteria or mushroom
spores, and sufficient watering of the samples; d) monitoring of ideal conditions in terms of
humidity and temperature; e) incubation in bag logs; f) breaking down the colonised substrates;
g) transferring the broken down substrates into the moulds; and h) final growth in a humidity
controlled bags.
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9.2.2.2 Testing

Mechanical properties of the various mycelium-bound materials including
compressive stress (σ) and modulus of elasticity (E) were determined
under static compressive loads using a Shimadzu 100 kN Universal Testing
Machine (UTM) and cubic specimens of 50 x 50 x 50 mm. Tests were
conducted according to ASTM D3574, a standard for testing flexible cellular
materials (Travaglini et al., 2013).

Several images were taken using Scanning Electron Microscopy (SEM) to
ascertain the cellular structure of the mycelium hyphae, growth patterns
and the porosity of the newly developed mycelium-bound materials. A
JEOL 5410 SEM was used at a setting of 1.0 kV. The samples were coated
with gold-palladium to prevent a charging effect. Compressive stress at
5% deformation of the specimens was recorded during testing as it was
defined as the allowable stress limit in the structural design of MycoTree
components.

Table 1 displays a comparison of density, stress at 5% deformation and
modulus of elasticity of two sets of mycelium-bound composite samples
with two different substrate compositions: (i) sawdust and woodchips, and
(ii) sugarcane and waste of cassava roots. While the first mixture represents
a commonly used substrate for mycelium cultivation, the second substrate
mixture was specifically developed for the components of the MycoTree.

The compressive stress that developed in mycelium-bound samples grown
on (i) woodchips and sawdust at 5% deformation amounts to an average of
0.17 MPa with an average elastic modulus of 3.97 MPa. The mycelium-bound
materials based on (ii) sugarcane and waste of cassava roots developed an
average compressive stress of 0.61 MPa at 5% deformation with an average
elastic modulus of 22.70 MPa, hence achieving superior material properties.

Figure 9.2: Compression test of a mycelium sample: a) mushroom mycelium is a relatively
weak material with a very low bending and tensile capacity. However, tests showed that the
compressive strength of the material is sufficient for certain structural applications; b) physical
and mechanical properties of mycelium-bound material samples with different substrate
compositions.
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9.2.3 Strength through geometry

The advent of advanced computational tools, in conjunction with state-
of-the-art research in recycled or cultivated materials, has the potential to
significantly improve the relevance and applicability of humble, often low-
strength materials in designing of efficient and expressive structures. A mate-
rial’s weakness can be turned into a strength by strategically placing them in
an appropriately designed structural geometry. Through informed structural
design methods, compression-only structures can empower weak materials
to become load-bearing elements at an architectural scale. Compression-
only structures significantly reduce the amount of internal stresses, and
subsequently reduce the amount of material required to carry the applied
loads.

In developing contexts where resources, infrastructure and funds are often
inadequate in supply, designing with locally available materials can be
a solution for the global scarcity of conventional building materials, by
capitalising upon what is usually abundantly available: manpower. When
building with locally-sourced materials like soil-pressed tiles, workers from
the community can be trained to make and install the tiles, as in the SUDU
- Sustainable Urban Dwelling Unit in Addis Ababa, Ethiopia a collaboration
between the Ethiopian Institute of Architecture, Building Construction and
City Development EiABC, Dirk E. Hebel and Philippe Block (Hebel et al.,
2015). Shell structures for the ceilings and the roofs with innovative design
elements such as stabilising fins, drastically reduce the need to import and
transport expensive, engineered materials because the compression-only
structure has been designed for weak materials with low tensile capacity.

In a more urban context, building with recycled materials reduces the rate
at which finite resources are being depleted. For the 2015 IDEAS CITY
Festival in New York City, the teams of ETH Zurich’s Professorship Hebel
and the BRG designed and constructed a temporary vault structure built
from compressed tetra-pack panels. The shape of the vault, which spanned
a neighbourhood park between two buildings in lower Manhattan, followed
the flow of forces and was optimised so that the stresses in the structure
were predominantly compressive, enabling a considerably weak product—
essentially made from discarded beverage containers—to act as a structural
material. Following the festival, the panels and other materials used were
recycled or reused (Heisel, 2015). Research in development and application
of cultivated materials is the next step in these collaborative investigations.

As we learn more about their properties and undiscovered potentials, mate-
rials that were previously deemed undesirable because they were perceived
as vernacular (i.e. bamboo) or even as hazardous waste (i.e. mycelium)
present new possibilities for applications in efficient, compression-only
structures. The MycoTree at the 2017 Seoul Biennale of Architecture and
Urbanism in Korea was built to test, validate and showcase this potential.
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Figure 9.3: Previous collaborations between the KIT and the BRG, showcasing compression-
only shell structures from low-strength materials: (left) the Sustainable Urban Dwelling Unit in
Addis Ababa, Ethiopia; and (right) and WasteVault – the ETH Pavilion at the 2015 IDEAS CITY
Festival in New York City.

9.2.4 Structural design

The development of engineered materials, such as concrete or steel, is largely
focused on making the materials stronger by increasing their allowable
stresses. Mycelium-bound materials offer significant ecological advantages
over established engineered materials on the one hand, but comparably low
structural strength on the other. To build with materials that are weak in
tension and bending, the use of good geometry is essential to guarantee static
equilibrium of the structure through contact only, i.e., through compression.

The MycoTree is designed to be a compression-only structure, where all
of the mycelium components are carrying only compression forces. The
geometry of MycoTree is intended to show that spatial funicular structure
are not limited to arches or vaults, but also can be branching tree structures.
Achieving stability through geometry rather than material strength opens
up the possibility of using weak materials such as mycelium in structural
applications. While the mycelium tree portion of the structure is a metaphor
for a load-bearing component of a building, the bamboo grid at the top of
the structure represents a floor or a ceiling of a building that applies load
to the mycelium structure. The grid is primarily active in tension and is
intended to resolve and internalise the horizontal forces at the top of the
tree. Although the corners of the grid are cantilevering, the grid is designed
to behave conceptually like a rigid slab.

9.2.4.1 Tree structure

The geometry of the tree structure was generated through polyhedral
transformations (Lee et al., 2016) of Γ⊥. Figure 9.7 are some of the initial
design options. Ultimately, the form finding of the structural geometry
was guided by several key constraints. First, in order to minimise the
geometric complexity while maximising fabricability, all nodes were limited
to a valency of four, meaning there are no more than four mycelium elements
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Figure 9.4: Perspective drawing of the completed structure.

coming together at any of the nodes. Second, the angle between any two
linear mycelium members was constrained to be larger than 30 degrees.
In addition, the centre-to-centre distances between any pair of nodes were
constrained to be at least 40 cm such that smooth transitions could be made
between any two directly adjacent nodes. Lastly, the maximum length of any
linear mycelium member was limited to 60 cm in order to avoid potential
buckling.

Figure 9.5 and 9.6 summarises the steps of the form finding process. Γ⊥

of step 8 in Figure 9.6 shows the exploded view of the cells representing
the nodes at the top of the structure. The top cells as illustrated represent
the compression only forces in the entire structure, with external horizontal
forces applying compression to the structure. These external horizontal
forces can also be internalised by converting the top members into tensile
members.
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Figure 9.5: Steps 1 through 4 of the form finding process.
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Figure 9.6: Steps 5 through 8 of the form finding process.
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Figure 9.7: Alternate design options of the MycoTree.

9.2.4.2 Grid structure

The polyhedral form diagrams are in static equilibrium if and only if
specific loads are applied at specific locations of the structure. Since the built
structure is not designed to have any additional applied loads other than the
weight of the grid, it is important to distribute the weight of the grid down
to the structure with the correct proportions to ensure static equilibrium of
the entire structure. The applied design loads for MycoTree is defined by the
top faces of the global force polyhedron, Λ⊥ (Figure 9.8-a1). Each of these
faces have different areas, and therefore represent applied point loads with
varying magnitudes (Figure 9.8-a2). Furthermore, the areas of these faces are
not necessarily equal to the actual tributary area of the corresponding node
in the form diagram.

Especially for this project, where the extents of the square grid does not
match the triangular footprint of the top of the tree structure, the discrepancy
between the design loading and the actual loading is greater. The face areas
of Λ⊥ can be optimised to match and correspond to more realistic loading
conditions, which would result in a Γ with different geometry. Conversely,
the footprint of the grid could be modified to provide the required tributary
areas for each of the nodes. However, the dimensional restrictions of the
exhibition space were the governing factors of the overall design; the room
had a footprint of just 4 meters by 4 meters in plan; a head height clearance
of 180 cm was to be maintained all around the base of the structure; and it
was aesthetically important to spread the outermost branches as much as
possible.

Figure 9.8-b1 shows the square grid, with the tributary area shown for each
of the top nodes of the tree structure. If the grid structure is treated as a
solid “slab” without any openings, the nodes towards the south side of the
structure will be more loaded as expected (Figure 9.8-b2). Instead of a solid
slab, the grid is designed to be made of composite bamboo strips (Figure 9.8-
c1). Bamboo strips are light and have high tensile capacity, which are ideal
properties for the top members that internalise the horizontal forces at the
top of the structure. Because the weight of the grid was intended to act as the
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Figure 9.8: Calibrating the applied loads (2) on the structure to match the initial design
load distribution (a1) from the polyhedral force diagram: a) the top face of the global force
polyhedron (1), and the equivalent applied loads on the structure (2); b) the tributary area of the
grid if treated as a solid “slab” (1), and the equivalent load distribution on the structure (2); c) the
initial grid design with a plan dimension of 3.8 x 3.8 meters, and the equivalent load distribution
on the structure (2) where the south side of the structure is more heavily loaded; d) adjusted
grid design with a plan dimension of 4 x 4 meters (1) with additional weights added at the three
outermost pickup points, and the equivalent load distribution (2) that is more proportionally
closer to the design load distribution (a2).
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main applied load of the structure, the lightness of the bamboo composite
strips actually does not sufficiently provide enough loads, especially around
the periphery of the structure (Figure 9.8-c2).

Within the boundaries of the exhibition space, the footprint of the grid can be
extended in the northwest and north east directions by 20 cm, to distribute
more of the weight of the grid towards the north side of the structure.
Ultimately, the weight of the grid was not sufficient to provide the necessary
amount of applied loads at the three corners of the tree structure. Additional
weights of 15 kilograms at these three points were added above the grid
structure to achieve the correct distribution of the applied forces (Figure 9.8-
d1, 2).

9.2.5 Fabrication

One of the most rewarding benefits of using 3D graphic statics to design
spatial structures is that the geometry of the structure is polyhedral by
construction. Without the need for additional optimisation processes, the
massing of the complex nodes of the tree structure can be developed through
polyhedral transformations that only use planar and flat surfaces (Figure
9.9-b, c, d). As a result, the geometry of the moulds for the nodes can be
materialised using only developable surfaces which can be laser or CNC cut
from readily available and easy-to-recycle sheet materials.

For this project, transparent acrylic sheets were used as the main enclosure
of the mould. Although a more environmentally responsible material is
preferred, transparent plastic was chosen mainly due to the need for the
visual monitoring of the mycelium mixture during the growth process. The
mycelium mixture is prone to contamination during growth, and the earlier
it is detected, the sooner a new batch of growth can be started. However, as
the understanding of the material improves in the future, this contamination
can be better contained and monitored through other, non-visual means,
and transparent plastic will no longer be needed. In order to reduce the
number of mechanical connections and adhesives, teeth-and-slit joints are
used for the walls of the mould for efficient assembly and clean expressions
of the curved edges after demoulding (Figure 9.9-f). For the straight linear
elements, the same procedure can be used to generate the moulds.

Once the mould has been assembled, it can be filled with the mycelium
mixture, which requires incremental compacting and additional filling as
the mixture gradually densifies. Due to the irregular geometry of the nodes,
there is no one, single opening from which the mould could be filled and
compacted. A mechanism that compacts the mixture from all of the openings
simultaneously had to be designed (Figure 9.10). Because it was not feasible
to industrially manufacture such a device or mechanism, an ad hoc solution
using simple kit of modest materials (laser and CNC cut plywood, wooden
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Figure 9.9: Development of the mould geometry: a) the orientation of linear members at a node;
b) convex hull of points that are equidistant along each of the members from the centre of
the node; c) dual transformation of the convex hull; d) extrusion of the dual hull faces along
the orientation of the corresponding members; e) filleting of the edges; and f) the subsequent,
developable surfaces of the node mould.

dowels, strings, etc) was needed. The simplicity of the mechanism and
the constituent parts was important also because the workers at the rural
mycelium production facilities had limited experience and resources with
regards to digital fabrication. Using a set of embedded pipes held together
by a small 3D printed joint in the centre of the mould, a string can be placed
through the pipes and tied into a knot inside the 3D printed joint. The loose
end of each strand of the strings are then tied to a “turnbuckle.” As this
turnbuckle is twisted, the string shortens toward the centre of the mould. The
turnbuckle then presses against the push pipe, which subsequently presses
the push plates inward and compact the mycelium mixture inside.

Because the main enclosure of the mould is made of thin sheet materials,
additional reinforcements and stiffeners are needed to prevent bulging or
busting of the enclosure. As mycelium mixture is compacted repeatedly
over time, more mycelium mixture has to be put into the mould to reach
the ultimate target shape of the component. Once the mycelium is densely
compacted, and the end plates have reached their final target locations inside
the mould, the entire mould is placed inside sealed bags where the final
growth phase takes place.
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Figure 9.10: Cross section view of the mould and the compacting mechanism.

While the mycelium components are designed to carry their self-weight
plus the weight of the grid through compression, the grid on top is acting
primarily in tension; it holds the branching linear mycelium elements at the
top together and prevents them from falling over. For this reason the grid
is also constructed out of the bamboo composite material, utilising CNC-
cut, 8 mm thick bamboo composite boards. For ease of assembly and for
minimisation of steel connections, all joints of the grid are designed with slit-
and-slot connections that can be easily assembled on-site and secured using
simple locking elements and wooden dowels.

9.2.6 Assembly

MycoTree took seven days to assemble on site. All of the elements were pre-
fabricated in Singapore and Indonesia, and were shipped to the exhibition
location a week prior to the opening of the Biennale. The bamboo grid was
first constructed on the floor of the space. The grid was then hoisted up to the
target height, and held in place with crates and boxes from underneath. Once
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Figure 9.11: On-site assembly of the MycoTree.

the base was located on the floor, the mycelium components were pieced
together starting from the base of the structure. Because the structure is in
equilibrium only when every component is in place and the weight of the
bamboo grid has been activated, temporary scaffolding was used throughout
the assembly. Boxes, crates and straps were used as bespoke supports as
needed during the assembly.

To ensure clean connections and even load transfers from one element
to another in the final structure, the ends of each individual mycelium-
bound components are capped with plates of bamboo composite material.
These plates are also used for compacting the mycelium mixture into the
moulds, and are eventually secured to the mycelium-bound components
with dowels. This bamboo composite material has been developed and
optimised over the past five years at FCL Singapore in order to withstand
high tensile and bending forces (Hebel et al., 2014).

9.2.7 Data and facts

The MycoTree supports a four by four meter bamboo grid at a height of
three meter over ground. It consists of 36 linear members of maximum 60
cm in length as well as 15 nodal elements of mycelium-bound material. The
bamboo grid weighs approximately 134 kg in total, the overall weight of
mycelium-bound members amounts to approximately 182 kg.
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The triangular sections of the mycelium-bound members are sized for a limit
stress value of 0.1 MPa. The self-weight of the structure was considered
with a safety factor of 1.35 during design. The structure can withstand an
accidental horizontal point load of 0.7 kN at a height of 1.27 m (arm height)
from the ground at a single node. However, because the structure is designed
to be primarily in compression-only, any type of horizontal loading should
generally be avoided.

9.3 Outlook

The inherent geometric properties of polyhedral force diagrams can be
exploited for informed design of structural geometry, as well as fabrication
geometry. The MycoTree project has shown how the geometry of the
polyhedral cells can be used to develop the mould geometry of the joint and
bar elements of the spatially branching structure. The polyhedral properties
of structures form-found through 3D graphic statics can also be useful for
designing claddings of freeform roofs and facades, where the planarity
constraint is enforced as a byproduct of the form-finding process. A free-
form surface which can be assembled with flat sheet materials such as
glass panels, will significantly improve the efficiency of fabrication and
construction.

The example shown in Figure 9.15 demonstrates this potential. Suppose that
a design for a roof structure generated through polyhedral subdivisions
is being considered. Through polyhedral transformations of Γ⊥, various
equilibrium structures can be explored, while the faces of Γ are inherently
constrained to be planar. This built-in planarity property of Γ is ideal for
both fabrication and construction of the geometry without the need of any
additional optimisation processes.

The roof will be placed on six existing columns, therefore no horizontal
reactions are allowed at the base of the roof. Rather than using straight cable
ties to counterbalance the horizontal thrusts, the designers want to explore
a more integrated cable-net-like design to maximise the visual and spatial
experience from below. Furthermore, the designers want to consider using
two main cables that have constant force throughout their length. Constant
force members in trusses and various other structures are beneficial in that
it allows a single cross section to be used, and the material is utilised to
its full capacity throughout its length (Allen and Zalewski, 2009). Using a
cell network for the cable-net, the force distribution can be controlled more
precisely; the cell faces corresponding to the perimeter cables of the structure
are constrained to have the same areas. At the same time, the geometry
of the primary compression structure above can be constrained to remain
purely polyhedral with planar faces, which is more ideal for fabrication-
driven constraints.
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Figure 9.12: Plan and section of the completed exhibition space. MycoTree is roughly three
meters tall, and four meters by four meters in plan.
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Figure 9.13: Completed MycoTree in the exhibition space.
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Figure 9.14: The rest of the “Beyond Mining - Urban Growth” exhibition.
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Figure 9.15: Combinatorial application of polyhedral design methods for a roof structure with
no horizontal reactions. Transformation of Γ⊥ is used to generate the polyhedral geometry of
the structure and the outer layer of the roof, where the equilibrium and fabrication constraints
are dominant. For the cable-net, Ψ⊥ is used to enforce a constant-force constraint on the two
main cables.
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The designer’s ability to maintain and impose the built-in polyhedral
constraints to either the entire structure or only specific parts of the structure
as needed, is a unique feature that can potentially be applied to constrained
form finding and fabrication-aware design explorations. 3D graphic statics
is primarily a computational form-finding tool, which visualises spatial
structures as a network of lines without any thickness or materiality. In
future research, it is important to start investigating how the inherent
properties of polyhedral form and force diagrams can positively impact the
fabrication geometry and process, so that the complex spatial structures can
be materialised and assembled in a feasible manner and ultimately result in
a meaningful structure.





Part IV

Conclusions

191





10 Conclusions

This dissertation presented a new computational framework for 3D graphic
statics. The framework was implemented as an open-source computational
library, compas_3gs, which makes 3D graphic statics available to a wide
audience for design, analysis, research and educational purposes. The
chapters of this dissertation presented: the motivation for this doctoral
research; the practical relevance and originality of the work; a review
of the relevant literature and state of the art; new datastructures and
operations reinforced by theoretical foundations; and new 3D graphic statics
applications that are now possible with the framework.

This final chapter presents the concluding statements and discussions of
the dissertation. It gives a summary of the unique contributions made,
while reflecting back on the initial problem statements outlined in Chapter
3. The practical relevance of the contributions to architecture, structural
engineering, computational geometry and digital fabrication are discussed.
It also identifies limitations of the presented research and speculates on
directions for future research. The chapter concludes with final reflections
and closing remarks.

10.1 Contributions

The specific contributions of this dissertation as they relate to the problem
statements outlined in Chapter 3, are as follows.

1. Addressing realistic boundary conditions

• Introduction of the Extended Gaussian Image (EGI) as the topo-
logical mapping of a spatial system of forces

• Computational implementation of the EGI, and demonstration of
its usefulness in understanding, processing and manipulating the
topology and geometry of single polyhedral cells

• Iterative method for computing the geometry of global force poly-
hedrons using the EGI and area-targeted planarisation algorithms

• Integration of reaction force location and magnitude constraints
during the construction of the global force polyhedron

193



194 Chapter 10. Conclusions

2. Topology generation method beyond subdivision

• Formulation of multi-cell polyhedrons, a datastructure based
on halffaces for computational modelling and representation of
polyhedral form and force diagrams

• Clarification of the topological structure and organisation of
polyhedral force diagrams as they relate to compression and
tension forces in the corresponding form diagram

• Expansion of geometric and topological transformation opera-
tions beyond subdivision for multi-cell polyhedrons (manipula-
tions and additive transformations)

• Various algorithms for global manipulation of multi-cell polyhe-
drons (planarisation, reciprocation, arearisation and constructors)

• A new workflow and design pipeline for unbiased generation of
new structural topologies

3. Limitation to polyhedral forms

• Theoretical background for cell networks, which contain a collec-
tion of polyhedral cells that individually represent the local equi-
librium of a node, but together represent the global equilibrium of
the entire structure

• Formulation of cell network datastructure, a hybrid datastructure
that can represent the equilibrium of non-polyhedral structures

• Use of prismatic polyhedral cells for the interpretation of 2D equi-
librium, which: 1) extends the concepts and methods presented
in the framework to 2D as well as 3D structures; and 2) allows
exploration of structures with 3D and 2D nodes

• A technique for calibrating polyhedral form diagrams to address
realistic loading cases (tributary area loads)

• The user’s ability to place point loads at any node of the structure

• A design workflow and pipeline for interactive force design,
where polyhedral face areas (internal force magnitudes of the
members in the structure) are explicitly constrained and con-
trolled

• Introduction of non-polyhedral structural typologies that can be
explored with cell networks: 2D and 3D combined structures;
structures with overlapping members; and structures with non-
polyhedral geometry
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4. Materialisation of spatial structures

• Validation of 3D graphic statics as a tool for developing
compression-only spatial structure, enabling weak organic mate-
rials to be used structurally at an architectural scale

• Technique for materialising and developing fabrication geometry
from the polyhedral force diagram, using affordable, flat sheet
materials and 2D CNC cutting

5. Insufficient user control and visualisation

• An algorithm for visualising the unified diagrams for multi-cell
polyhedrons and cell networks

• Techniques for exploiting built-in Rhinoceros visualisation and
dynamic drawing functionalities to enhance the graphical user
interface for 3D graphic statics applications

6. Lack of computational library for 3D graphic statics

• Computational implementation of the presented framework in an
open-source library, compas_3gs

• A detailed online documentation of the library, including: installa-
tion instructions; summaries of the related theoretical background
using texts, diagrams and examples; a forum and reference guide
for future contributors and collaborators; and tutorials showing
how to use various components of the framework for specific
design or research objectives

10.2 Discussions

This section discusses the practical relevance and the potential impact of the
contributions from the perspectives of the relevant disciplines: architecture,
structural engineering, computational geometry, and digital fabrication.

10.2.1 Contributions related to 3D graphic statics

When graphic statics was first introduced during the 1800s, the tools
required to construct reciprocal diagrams were simple: sheets of paper,
a ruler and a pencil. What made graphic statics a revolutionary tool at
the time is how a simple set of tools can be used to analyse complex
structures which would otherwise require tedious, manual calculations.
With the revival of graphic statics through the help of computation, the
tools needed to construct interactive polyhedral reciprocal diagrams in 3D
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require much more than just a CAD software. compas_3gs is intended to
be the computational “paper,” “ruler,” and “pencil” for 3D graphic statics
applications. As 3D graphic statics is one of the emerging areas of research
in computational graphic statics, compas_3gs allows researchers within
the graphic statics community to start using 3D graphic statics ideas and
methods without having to implement an entire computational framework
from scratch. Establishment of a common computational language also
allows researchers to focus more resources and time on developing new
application ideas rather than reinventing the wheel. The common platform
allows researchers to exchange ideas in a more fluid manner, and open
up opportunities for smoother collaborations regardless of the institutional
affiliation, professional background or personal experience.

10.2.2 Contributions related to architectural design

For architectural designers, compas_3gs and presented design methodolo-
gies can be useful for exploring structurally-informed geometries during
early stages of design. With the explicit control of the geometry of both
the form and the internal forces of a structure, architects have the ability to
generate and investigate a wide range of equilibrium structures more rapidly
without having to analyse each variation. The ability to control the geometry
of spatial structures is an important step forward in allowing architects
to sketch and model in full 3D. A pipeline that allows the generation of
the structural geometry solely from the geometry of the force diagram
means that new design typologies may emerge, leading to new discoveries
and ideas that would be difficult to conceive with conventional tools and
the designer’s biases. The manipulation and transformation functionalities
of compas_3gs also allow architects to modify and refine structural
geometries in an intuitive and interactive manner. Graphical representation
of the forces and strategic visualisation of the polyhedral force diagrams
have the potential of improving the architect’s understanding of how the
structure is behaving, and providing insights on how certain design changes
have an impact on the structural performance.

10.2.3 Contributions related to structural engineering

The FE software used by structural engineers today is a powerful analysis
tool, so long as the geometry of the structure is defined and provided
as the input. The presented computational framework offers structural
engineers new methods of addressing certain problems within the discipline
that would otherwise be difficult with conventional tools. The ability to
precisely control the face areas during the construction and transformations
of force diagrams means that the internal forces of the structure can be
controlled more carefully by the engineer. Area-controlled construction of
global force polyhedra provides an explicit method of investigating different
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reaction force distributions while taking into account various load cases and
boundary condition constraints. Generalised cell networks enable engineers
to more precisely control the geometry of polyhedral as well as non-
polyhedral structures, while force-driven constraints are still imposed. As a
result, some of the challenging problems in existing engineering frameworks
such as topology generation and manipulation in strut-and-tie models, and
discretisation of topology optimisation results can be addressed. Generalised
cell networks also allow polyhedral 3D graphic statics to be implemented
in combination with other numerical or form-finding methods. Whereas
conventional FE results communicated through charts, graphs and colour
scales can only inform whether a structure is stable or not, graphical
representations of structural equilibrium can provide an entirely different
way for engineers to visualise and understand a structure’s behaviour.
The geometry based understanding and design of structures can ultimately
provide new insights that make the engineers smarter.

10.2.4 Contributions related to digital fabrication

The reciprocal diagrams in graphic statics traditionally refer to a form and a
force diagram that have a reciprocal relationship between them. However,
the diagrams themselves have no material information within them. The
lines of the form diagram is literally the geometry of the structure, while
the geometry of the force diagram (edges in 2D and faces in 3D) represents
the internal forces of the structure. As a result, the materialisation of the
form diagram is typically a separate process that is implemented after the
form-finding process. Through the design, fabrication and construction of
MycoTree, this dissertation has demonstrated that the geometry of the force
diagram in combination with the geometry of the form diagram can be
directly used to generate the massing and a logical fabrication geometry of
the structure. Due to the inherent planar properties of the polyhedral force
diagram, it opens up many possibilities for digital fabrication applications
based on polyhedral reciprocal diagrams that would typically require an
entire separate optimisation or modelling procedure.

10.2.5 Contributions related to computational geometry

The language of graphic statics is fundamentally based on geometry. As a
corollary, the language of computational graphic statics is inherently based
on theories and applications of computational geometry. The development of
a computational 3D graphic statics framework hence requires a robust and
flexible computational core for processing geometries of polyhedrons and
networks of polyhedrons. The 3D graphic statics related functionalities and
algorithms presented in this dissertation are related to and based on some
of the fundamental concepts of computational geometry. Unlike meshes,
volumetric meshes are not as well understood and researched. The presented



198 Chapter 10. Conclusions

volumetric mesh datastructure and its wide range of utility functions,
transformation operations and algorithms can be adapted for computational
geometry applications to start building a body of research for volumetric
meshes. While the sophistication or in-depth investigation of each of the
computational geometry topics are not within the scope of this dissertation,
the implementation of those concepts in the context of 3D graphic statics
can nevertheless communicate the main ideas and principles used in a
widely-used programming language that is legible and understandable
by researchers from computational geometry. Consequently, compas_3gs
and its online documentation are intended to be the start of a closer
dialogue between graphic statics and computational geometry communities.
Researchers from computational geometry can not only use, test and
implement the contents of compas_3gs, but also make contributions of their
own to improve the computational base for the framework.

10.3 Limitations and future work

This dissertation presented a computational design framework for 3D
graphic statics and new applications that are now possible using the various
components of the framework. While the benefits and advantages of the
presented method have been highlighted, there are also limitations that
require further research and investigation. They are summarised as follows.

1. Constraining cell networks
Cell networks allow force-driven design explorations that are freed
from any global geometric and topological constraints. The topology
of the individual cells can change independently from one another.
However, the explicit dual and reciprocal relationship is lost. Because
there is no longer an explicit geometric constraint that governs the en-
tire force diagram, sufficient constraints need to be imposed manually
by the user to obtain stable solutions. While these constraints can be
used to explore different equilibrium solutions, it may not be obvious
to first-time users what reasonable domains are for various parameters
and constraints. In future investigations using cell networks, a better
means of informing and guiding the user regarding the control and
enforcement of constraints will help address solutions that are over- or
under-constrained.

2. Guided generative design
The new generative design workflow presented in Chapter 7 allows
users to sculpt equilibrium structures in space with a significant
amount of control and design freedom. The examples presented in
this dissertation applied arbitrary sequences and combinations of
polyhedral transformations, as the primary objective was to showcase
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how a wide range of new topologies can be generated and explored
in an unbiased manner. In future research, the sequencing of different
polyhedral transformations can be investigated, to determine which
combinations of transformations tend to result in more efficient and
better-performing structures.

3. Identifying meaningful structures to investigate

In future research, it will be important to identify structural typologies
where the use of 3D graphic statics would be meaningful, and where it
would not. One of the unique features of 3D graphic statics is the form-
finding and exploration of spatial structures with multiple layers (i.e.
cellular structures, spatial trusses). For example, a compression-only
branching structure is an efficient typology where 3D graphic statics
design approach naturally applies and is advantageous over other
known approaches. On the contrary, a complex spatial structure with a
large number of compression and tension members may be generated
using 3D graphic statics, but may have limited merit in practice due
to difficulties related to assembly of the structure and the maintenance
of its highly indeterminate behaviour. By narrowing down the types
of spatial structures where the application of 3D graphic statics design
methods has clear merit and advantages over other known approaches,
the efforts of future researchers can be more focused and impactful.

4. Assembly and construction

Compression-only spatial structure have an invaluable benefit in that
it can drastically reduce the internal stresses. As a result, the overall
amount of material used can be reduced, and unconventional and
organic materials can be used structurally at architectural scales.
As with any designs generated using graphic statics methods, the
structure is a pin-jointed truss that is only in equilibrium once
the entire geometry is complete and a specific load case has been
applied. Each node is essentially a mechanism in space, which requires
perfect alignments of the members carrying specific magnitudes of
internal forces. This means that at any point during the assembly
or construction process, the structure is most likely to be unstable.
Consequently, the construction of spatial structures would require a
complicated organisation and sequencing of scaffolding to support the
structure until the last, “key stone” piece is inserted. Spatial structures
that have multiple layers of elements on top of each other, would
require an even more complicated assembly procedure. Structures
with both compression and tension elements would also require
close monitoring of the internal stresses in the tensile members, as a
slight imbalance of force distribution could cause the entire structure
to become unstable. Additionally, geometric tolerance during the
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construction is an important factor that could drastically influence
the overall behaviour of the structure. In future research, it will be
important to address these construction related issues to demonstrate
that novel structures generated with computational graphic statics can
also be built in a feasible manner.

5. Display and control mechanisms
Despite the presented techniques and methods to enhance the visuali-
sation of polyhedral geometries, the 2D monitors of modern computers
still remain as major obstacles. Regardless of how well a graphical
user interface is designed and implemented, the human designer still
interacts with the computational environment with a mouse, which is
restricted to 2D movements on the plane of the monitor. Innovation
in the medium of visualisation, and incorporation of technologies like
virtual reality (VR) and augmented reality (AR) technologies, are future
areas of research that could drastically enhance and revolutionise how
humans can interact with spatial computational objects.

6. Self weight
One of the the fundamental limitations of graphic statics is that the
external forces must be applied at the extremities of the structure.
This means that the self-weight of the structure cannot be taken into
account. While the negligence of self-weight can be permissible for
small structures and pavilions, any larger scale applications would
need to take into account the self-weight of the structure. Although
this dissertation has demonstrated how point loads can be applied
anywhere within the structure using cell networks, a sub-processes
for computing the self-weight of each member at every step would be
needed.
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10.4 Final reflections

At the 2014 International Association for Shell and Spatial Structures (IASS)
Symposium in Brasilia, there were only five presentations in the Working
Group 15, the session dedicated to graphic statics. During the summer
of 2015, a few months before the start of this research, the number of
presentations at the Graphic Statics session of the IASS Symposium in
Amsterdam grew to eighteen. The overwhelming growth of interest in the
field of graphic statics resulted in there being two separate sessions for
graphic statics for the first time in history of the IASS. By the 2016 IASS
Symposium in Tokyo, there were only six presentations during the graphic
statics session. However, all of them were based on 3D applications of
graphic statics.

The presented research and the development of the computational frame-
work were motivated and inspired by this rapid emergence of 3D graphic
statics. Its invaluable benefits in providing an interactive and intuitive
means of designing spatial structures is unprecedented, with much more
opportunities yet to be discovered. compas_3gs is intended to be a common
platform and computational language through which future researchers can
conduct their own research and experiments, communicate with one another,
exchange their latest findings and collaborate on joint research projects. It is
not meant to be an end result or a finalised computational package. Rather,
it is meant to be the starting point and the initial basic kit of parts for
3D graphic statics, which works out of the box for users of all experience
levels and background. The ultimate hope of this research is to witness the
gradual increase of contributions to compas_3gs from various individuals
and institutions over time, which will help expand, diversify and enrich the
field of 3D graphic statics well after the completion of this dissertation.
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