
Proceedings of the International Association for  

Shell and Spatial Structures (IASS) Symposium 2013 
„BEYOND THE LIMITS OF MAN” 

23-27 September, Wroclaw University of Technology, Poland   

J.B. Obrębski and R. Tarczewski (eds.) 

 

 

Equilibrium of Spatial Structures Using 3-D Reciprocal Diagrams 

Masoud Akbarzadeh
1
, Tom Van Mele

2
, Philippe Block

3
 

1 Research Assistant, BLOCK Research Group, Institute of Technology in Architecture, ETH Zurich, Switzerland, akbarzadeh@arch.ethz.ch 
2 Post-doctoral Researcher, BLOCK Research Group, Institute of Technology in Architecture, ETH Zurich, Switzerland, van.mele@arch.ethz.ch 

3 Assistant Professor, BLOCK Research Group, Institute of Technology in Architecture, ETH Zurich, Switzerland, block@arch.ethz.ch 

 

Summary: Based on Rankine's proposition for equilibrium of polyhedral frames in 1864, this research provides a clear illustration of the theory of 

reciprocity between form and force diagrams in three dimensions. It explores the geometric relationship between three-dimensional networks to 

determine the equilibrium of general spatial frames. It extends graphic statics to a fully three-dimensional method to design and analyse spatial frames 
such as tree structures, curved frames, cellular structures, etc., under non-parallel, external loads or self-stressed, compression- or tension-only 

conditions.  
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1. INTRODUCTION  

This paper presents a method for describing the equilibrium of 

polyhedral frames starting from a given force polyhedron. It is the first 

step in the generalization of graphic statics to fully three-dimensional 
problems. Graphic statics is a technique for structural design and 

analysis that solves the static equilibrium of structures by means of 

geometric construction. It is an important tool for architects and 
engineers who try to unify design with analysis to improve the 

economics of construction [1] and aesthetics of design.   

The key feature of graphic static is the geometric relationship between 
the shape of a structure and the corresponding system of forces, 

represented by form and force diagrams. This relationship enables 

designers to observe the changes in one diagram as a result of a 
modification of the other, and provides them with direct control over the 

form and the forces of structural systems.   

The theoretical framework for graphic statics was established by 
Rankine [2] and Maxwell [3]. Rankine proposed the idea of reciprocity 

between the form of the structure and the diagram of forces. Maxwell 

provided a geometrical procedure for drawing these reciprocal 
diagrams. Since then, many people have contributed to the further 

development of their framework, but graphic statics as we know it today 

is often attributed to the contributions of Culmann [4], who gathered the 
mathematical proofs of a projective relationship between a funicular 

polygon and its force polygon, introduced earlier by Pierre Varignon 

[5], and Cremona who formulated graphic statics as a series of recipes 
for dealing with specific structural problems [6]. 

1.1. Problem statement  

Today, by means of available computational tools, architects and 
engineers explore the geometric possibilities of design more than ever. 

Meanwhile, the arguments of structural efficiency, unity of design and 

analysis, and the economy of construction remain valid. Therefore, 
many designers are looking for tools that provide them with control over 

both the shape of a complex three-dimensional structure and the forces 

in it.   

Holistic approaches to structural design, such as graphic statics, seem 

particularly suited for this purpose. However, existing methods in 

graphic statics cannot deal with three-dimensional problems, with the 
exception of a few limited developments only applicable to very specific 

problems (see e.g. [7]). Therefore, in the past, structural designers have 
addressed such problems by decomposing them into a series of 

equivalent 2-D problems, or, in some cases, by treating horizontal and 

vertical equilibrium separately [8].  

 

 

1.2. Objectives 

The overall objective of this research is to extend graphic statics to 
three-dimensional problems, thereby providing the basis for tools that 

allow (structural) designers to address the geometrical and structural 

challenges of contemporary projects in an integrated and efficient 
manner. In this paper specifically, as the first step, we will describe a 

method for exploring the equilibrium of spatial frames starting from a 

given (or chosen) force polyhedron. 

The outline of the paper is as follows. In Section 2, we revisit and 

visualize the fundamental proposition for the equilibrium of polyhedral 

frames by Rankine, and discuss Maxwell’s geometric solution for 
specific cases. In Section 3, we establish some definitions that form the 

basis for our approach. Section 4 of this paper includes an overview of 

the computational implementation of the procedure for finding the 
reciprocal polyhedral frame from a given force polyhedron, as well as a 

more detailed description of the major steps in the process. Section 5 

shows how the presented approach can be used for form finding of tree 
structures, spatial frames, and cellular structures, starting from a 

given/chosen force distribution.  

2. RECIPROCAL FIGURES IN THREE DIMENSIONS  

In this section, we revisit the theory of reciprocity between the form and 

the force diagram proposed by Rankine, as well as the geometric 

procedure of constructing such reciprocal figures for specific cases, 
described by Maxwell’s.    

2.1. Rankine’s principle of equilibrium of polyhedral frames 

Rankine proposed the idea of reciprocity between form and force 
diagrams in his ‘Principles of the Equilibrium of Polyhedral Frames’ 

[2]. He states that forces acting on a point perpendicular and 

proportional to the areas of the faces of a polyhedron are in equilibrium. 
The theory is limited to a short paragraph, and, to the knowledge of the 

authors, there is no complementary illustration. Since the text is not very 

well known and not readily available, and since it is short, we repeat it 
here as it appeared in the Philosophical Magazine:  

 “If planes diverging from a point or line be drawn normal to the lines 

of resistance of the bars of a polyhedral frame, then the faces of a 
polyhedron whose edges lie in those diverging planes (in such a manner 

that those faces, together with the diverging planes which contain their 

edges, form a set of contiguous diverging pyramids or wedges) will 
represent, and be normal to, a system of forces which, being applied to 

the summits of the polyhedral frame, will balance each other- each such 
force being applied to the summit of meeting of the bars whose lines of 

resistance are normal to the set of diverging planes that enclose that 

face of the polyhedron of forces which represents and is normal to the 
force in question. Also the areas of the diverging planes will represent 

the stresses along the bars to whose lines of resistance they are 

respectively normal. 



It is Obvious that the polyhedron of forces and the polyhedral frame are 

reciprocally related as follows: their numbers of edges are equal, and 
their corresponding pairs of edges perpendicular to each other; and the 

number of faces in each polyhedron is equal to the number of summits 

in the other.” 

 

Figure 1.  Two polyhedral frames with their reciprocal polyhedrons: a) 
planes perpendicular to each bar diverge from a line (top), or a point 

(bottom), their intersection forming an open polyhedron; b) The plane 

normal to the direction of an applied, external force closes the 
polyhedron and creates equilibrium; and c) The pipe diagram represents 

the magnitude of each force, calculated from the area of the 

corresponding (perpendicular) face in the force polyhedron. 

 

Figure 1 visualizes and, thereby, clarifies the contents of Rankine’s 
impressively dense paragraph. It depicts the application of his theory to 

two polyhedral frames, consisting of three and four bars, respectively. 

Figure 1.a represents the planes that are perpendicular to the bars of the 
frames, and diverge from a line (top) or a point (bottom). In both cases, 

the planes make a polyhedron with an open face. The face perpendicular 

to an additional force (for example, an applied load) then closes the 
polyhedron (Fig. 1.b), and creates force equilibrium for the node. Note 

that each choice for the closing face results in a different distribution of 

forces in the frame. The areas of the faces of the closed polyhedron are 
proportional to the magnitudes of the forces in the corresponding, 

perpendicular bars of the frame (Fig. 1.c).  

2.2.  Maxwell’s reciprocity in three dimensions 

Rankine, however, did not provide a method by which a polyhedral 

frame and its reciprocal force polyhedron may be constructed. Maxwell 

proposed to address this problem in a purely geometrical manner and 
stated some of the properties of reciprocal figures, and the condition of 

their existence [3].  

According to Maxwell’s (geometric) definition, reciprocal figures both 
consist, solely, of closed reciprocal polyhedrons such that:  

i. each figure is made up of closed polyhedrons with planar faces;  

ii. every point of intersecting lines in one figure is represented by a 
closed polyhedron in the other; and 

iii. each face in each figure belongs to two and only two 

polyhedrons. 

According to Maxwell, the simplest figure in space that fits this 

definition and for which thus a reciprocal can be found, is the group of 
tetrahedral cells resulting from five points in space (Fig. 2.a). These five 

points are connected with ten lines, which form ten triangular faces, 

which make up five tetrahedrons. Each face of this figure is shared by 
only two tetrahedrons (Fig. 2.b).  

The reciprocal of this figure can be found through strictly geometric 

operations. Indeed, connecting the centres of the circumscribing spheres 
of each tetrahedron results in a figure in which the edges are 

perpendicular to the faces of the original figure (Fig. 2.c-d). Maxwell 

mentions that these reciprocal figures are the same as the reciprocal 

figures of Rankine, and calls one the force figure and the other the form 

figure. He furthermore states that, indeed, a mechanical interpretation of 

the relationship between these figures is that the area of a face in the 
force figure represents the magnitude of force in the line perpendicular 

to that face in the form figure such that the entire system is in 

equilibrium. For instance, in Figure 3, the area of the face that is made 
up by the three vertices v’2, v’4 and v’5, is proportional to the magnitude 

of the force in edge e21. 

 

 

Figure 2.  a) Five points in space connected by ten lines; b) Ten 

triangular faces and five tetrahedrons including the external tetrahedron 
and four internal tetrahedral cells; c) Force tetrahedrons d) Form 

tetrahedrons resulted from connecting the circumscribing spheres. 
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Figure 3. The area of the face between vertices v’2, v’4, v’5, in the force 

figure is proportional to the magnitude of the force in e21 in the form 
figure. 

 

3. FORM AND FORCE POLYHEDRONS 

In this section, we define the form polyhedron and the force polyhedron 

that allow more general structural systems to be modelled. Then, we 

describe how this definition can be used to control the equilibrium of 
both statically determinate and indeterminate structures. 

3.1. Structural reciprocity in three dimensions 

Although Maxwell provides an elegant solution for the specific cases 
delimited by his definition of reciprocity, his method cannot be applied 

to general polyhedral frames; for example, it does not allow the 

inclusion of external forces. In our definition, the form and the force 
polyhedrons have the following characteristics: 

i. the force polyhedron consists of a (group of) closed 

polyhedron(s), representing and assuring equilibrium of the form 

polyhedron;  

ii. the form polyhedron is an open spatial network, which allows the 

representation of external loads;  

iii. each edge in the form polyhedron is perpendicular to its 

corresponding face in the force polyhedron. The magnitude of the 

force in that edge is proportional to the area of the face in the 
force polyhedron; and 

iv. each node which is the intersection of at least four edges in the 

form polyhedron corresponds to a closed cell in the force 
polyhedron.  

Here, we define the related notations that will be used throughout the 
paper. We label the elements of the form polyhedron with lowercase 

letters: ei, vi, fi and pi denote the ith edge, vertex, face and polyhedral 

cell, respectively. We name the elements of the force polyhedron in the 
same way, but suffixed with a prime symbol: e’i, v’i, f’i and p’i. 

Edge ei of the form polyhedron is reciprocal to face f’i of the force 

polyhedron. Additionally, vertex vi of the form polyhedron is reciprocal 
to polyhedral cell pi of the force polyhedron.  

In accordance with these definitions , the simplest force polyhedron in 

space is a single tetrahedron. It represents the equilibrium of a single 
node in 3-D with four applied forces, as seen in Figure 4. The number of 

faces of the tetrahedron is equal to the number of forces applied to the 

node. Each edge, ei, in the form polyhedron is perpendicular to its 
corresponding face, f’i, in the force polyhedron, and the magnitude of 

force, Fi, along the edge, ei, in the form polyhedron is equal to the area 

of the perpendicular face, f’i, in the force polyhedron.  Next, we will 
discuss how force polyhedrons can represent determinate and 

indeterminate systems of forces in space.  

 

 

Figure 4. Equilibrium of a single node in space: a) a single tetrahedron 
as force polyhedron; b) its reciprocal form polyhedron consisting of four 

lines and the applied forces; c) a piped representation of the magnitude 

of the applied forces proportional to the areas of the faces of the 
tetrahedron. 

 

3.2. Statically determinate system of forces in 3-D 

Any aggregation of force tetrahedrons represents the equilibrium of a 

statically determinate spatial bar-node structure with applied loads and 

reaction forces. Uniformly scaling the force polyhedrons will change the 

magnitude of the forces in the system without changing their 

distribution or resulting in a frame with different geometry (Fig. 5). 

 

 

Figure 5. a) A force polyhedron consisting of two tetrahedrons; b) The 

reciprocal form polyhedron with the magnitude of forces shown as 

pipes; c) Scale transformation of the force polyhedron; d) Updated 
magnitude of forces. 

 

3.3. Statically indeterminate system of forces in 3-D 

Reciprocal form and force polyhedrons can also represent a possible 

equilibrium of an indeterminate system of forces. For example, Figure 6 

depicts a system with force polyhedrons that are cubes. For the same 
geometry of the form polyhedron, changing the area of some of the 

faces in the force polyhedron changes the force distribution in the form 
polyhedron while allowing its geometry to stay fixed.  



 

Figure 6. a) A force polyhedron consisting of two cubes; b) The 
reciprocal form polyhedron with the magnitude of forces shown as 

pipes. Transformations c) and e) maintain the reciprocal relation 

between force faces and form edges, and therefore result in different 
force distributions for the same form polyhedron, as shown in d) and f). 

 

4. IMPLEMENTATION 

In this section we describe how the reciprocal form polyhedron can be 

constructed from a given force polyhedron.  The algorithm requires as 

input a set of connected lines representing the form polyhedron. This set 
should be such that each line is connected to at least two other lines at 

both ends, and such that the represented polyhedron has planar faces.  

4.1. Identification of the closed polyhedral cells 

First, the topology/connectivity of the network is determined by 

identifying the vertices and edges. Then, a search for the shortest 

possible, planar, convex loops around each node in the network 
identifies the faces. Finally, the relationship between vertices, edges and 

faces are stored in a winged-edge data structure [9]. A breath-first-

search (BFS) algorithm is used to find the faces belonging to the same 
polyhedral cell.   

4.2. Initial form polyhedron  

In this step, we construct a form polyhedron that is topologically the 
same as the desired final form polyhedron, but simply place its one-

valent vertices at the centroids of the external faces of the force 

polyhedron and the other vertices at the centroid of each corresponding 
cell. This means that the edges of the form polyhedron will generally 

not be perpendicular to the faces of the force polyhedron.  

First, we construct the adjacency list of the polyhedral cells, and 

compute the centroid of each cell. The centroid of each cell is then 

connected to its immediate neighbours in the adjacency list. Finally, the 
centroid of each cell is connected to the cell’s external faces, if any 

exists. A face is external if it is not shared with any other cell.  

4.3. Imposing perpendicularity 

In order for the form and force polyhedrons to be reciprocal, the edges 
of the form polyhedron should be perpendicular to the corresponding 

faces in the force polyhedron.  

We impose perpendicularity through as iterative procedure in which all 
iterations consist of two steps. At the start, we compute the normal 

vectors of the faces of the force polyhedron. Then, in the first step of all 

iterations, we rotate the edges such that they are parallel to the normal 
vectors of the faces. This requires the edges of the form polyhedron to 

be disconnected. Therefore, in the second step of all iterations, we 

reconnect the edges, which then results in a form polyhedron that is 

‘slightly more perpendicular’ to the force polyhedron. The procedure is 

repeated until all the edges are perpendicular to their reciprocal faces up 

to a chosen tolerance.   

Finally, we visualize the distribution of forces by adding thickness to the 

edges of the form polyhedron, proportional to the area of the reciprocal 

faces.   

 
I. Identification of closed polyhedral cells  

Input: force polyhedron drawing (Network of connected lines) 

Steps  

1. Identify vertices and edges. 

2. Identify faces. 

3. Construct winged-edge data structure. 

4. Identify faces belonging to a single cell. 

 

Output: closed polyhedrons (cells) 

 

II. Extract form topology  

 

Input: Closed polyhedrons 

Steps  

1. Compute adjacency of the cells. 

2. Compute cell centroids. 

3. Connect centroids of adjacent cells. 

4. Connect the centroid of each cell to its external faces. 

 

Output: Initial form polyhedron 

 

III. Impose perpendicularity  

 

Input: Initial form polyhedron 

Steps  

1. Calculate normal vectors of the faces of the force polyhedron. 

2. Repeat until convergence 

1. Rotate edges of form polyhedron to become parallel to normal 

vectors. 

2. Reconnect edges of the form polyhedron 

3. Assign the area of each face of the force polyhedron as thickness to 

its perpendicular edge in form polyhedron. 
 

Output: The reciprocal form polyhedron.  

Table 1. Simplified algorithm of form finding and its major steps. 

 

5. Applications in design and analysis of spatial structures 

To illustrate the versatility of the technique developed in this paper, we 

applied it to the design of 1) a tree structure, 2) a polyhedral frame with 
non-parallel loads, and 3) a cellular structure.   

5.1. A tree structure 

In this example, the force polyhedron consists of five polyhedral cells. 
Three of these cells are five-sided polyhedrons and two of them are 

tetrahedrons (Fig. 7 top). Therefore, as seen in Figure 7, the reciprocal 

form polyhedron of this force polyhedron is a tree structure that has two 
five-valent and three four-valent nodes. Note that the area of the largest 

face corresponds to the lower branch of the three to which all the loads 

from the upper branches are transferred (Fig. 7 bottom).   
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Figure 7. top) Five different polyhedral cells of a force polyhedron; 
bottom. a) Force polyhedron and its reciprocal tree structure; b) Tree 

structure reciprocal to the force polyhedron. 

 

5.2. A spatial frame with non-parallel loads 

Another application of this technique is the design (and analysis) of 

curved, spatial frames with non-parallel loads. Figure 8 represents a 
force polyhedron that has a reciprocal structure that can be interpreted 

as a frame with non-parallel external loads. Similar to the other 

examples, the areas of the faces are proportional to the magnitude of the 
forces in the frame. In this example, the areas of the top faces represent 

the magnitude of the external forces with which the frame is in 

equilibrium.    

5.3. A cellular structure 

Finally, figure 9.a represents a force polyhedron that has a cellular 

reciprocal form diagram with non-parallel external loads (Fig 9.b). This 
form diagram can be interpreted as two polyhedron cells under tensile or 

compressive external forces.       

 

6. CONCLUSION 

This paper clarified and illustrated the proposition of Rankine’s 

reciprocity of form and force diagrams in three dimensions. In addition, 
it presented clear explanations and illustrations for Maxwell’s 

procedures for constructing reciprocal diagrams in three dimensions in 

special cases. 

  

Figure 8. Force polyhedrons as groups of wedges and its reciprocal 

polyhedral frame; a) The force polyhedrons; b) Polyhedral frame with 
non-parallel loading; c) The magnitude of the forces represented by 

tubes with various thicknesses. 

 

 

Figure 9. A force polyhedron and its reciprocal, cellular form 
polyhedron. 

We established a definition of reciprocity for form and force 

polyhedrons that allows including the external forces in three 
dimensions.  

We presented the computational procedures for constructing a form 

polyhedron from a given force polyhedron, and described the major 
steps in the form-finding process in more detail.  

We implemented the presented approach in a CAD environment and 

used this implementation for the design of a tree structure, a spatial 

frame, and a cellular structure, starting from a chosen force polyhedron 

in each case.  

We used the technique provided in this paper in an interactive 
environment to explore, and clarify the effects of the changes of the 

force polyhedrons on the geometry, and the distribution of forces in the 

form polyhedrons.   

The next step in this research is to solve the problem in the reversed 

direction.  
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