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PHYSICAL AND COMPUTATIONAL DISCRETE
MODELLING OF MASONRY VAULT COLLAPSE

Tom Van Mele', James McInerney, Matthew J. DeJong’, Philippe Block'

ABSTRACT

Masonry structures have demonstrated remarkable capacity to withstand large displacements and
remain stable. For structures with single curvature (e.g. barrel vaults), which can be readily simplified
to two dimensions, stability under large support displacement has been well described using analytical,
numerical and physical methods. Structures with double curvature, however, have typically been
analysed in two-dimensions in a similar fashion, despite their truly three-dimensional behaviour.

In this paper, the three-dimensional mechanisms formed during large support displacements of
a doubly curved masonry groin vault are investigated using physical and computational models. The
study focuses on three aspects: 1) evaluation of three-dimensional mechanisms, 2) determination of
the displacement magnitudes that lead to collapse, and 3) evaluation of the ability of computational
methods to predict the experimental results.

The collapse of a 3D-printed groin vault scale model under actuator-controlled support displacements
was captured with an optical measuring system, and the measured displacement capacities were
compared with Discrete Element Modelling results.

The physical and computational results both predict the expected large displacement capacity, and the
sensitivity of the discrete element results to a variety of parameters is quantified. In addition, a more
complete understanding of the stability of masonry vaults is obtained, particularly of the relation between
support movements and three-dimensional collapse mechanisms. More generally, the research method-
ology introduces new, promising improvements in the analysis of complex masonry structures.

Keywords: Masonry, Vaults, Collapse, Discrete Element Modelling, 3D-printing,
Scale model testing, Stability

1. INTRODUCTION

1.1. Equilibrium analysis

Unlike modern structures, stability and not stress is of primary concern for many historic masonry
structures [1, 2]. Because masonry often has no, or very little, capacity to resist tension, it has to be
shaped such that it acts in compression only. To apply equilibrium analysis for the assessment of the
stability and safety of masonry structures, Heyman [3] formalized the limit analysis framework, based
on three key assumptions: masonry has no tensile capacity, sliding does not occur at voussoir
interfaces, and the masonry itself is considered rigid. These assumptions have been widely used to
successfully predict two-dimensional stability of complex vaulted structures.

1.2. Physical and computational methods for discrete modelling of masonry

1.2.1.  Physical (scale) modelling

If the stability of masonry structures is mainly a question of geometry and not of material failure, the
behaviour of these structures can be considered independent of scale, and can thus be investigated and
understood using scale models [3, 4]. Ancient builders allegedly used this scale independency in
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different ways: small scale models were used to investigate and understand the stability of new
structural designs and geometries, whereas scaled versions of tried-and-tested designs were often
reused in new projects. Similarly, drawings by Danyzy [5] indicate the use of arch and buttress plaster
models to investigate collapse mechanisms due to support displacements.

More recently, physical scale models have been used to investigate the collapse behaviour of two-
dimensional masonry structures subjected to differential support displacements [6, 7], or seismic
loading [8]. However, studies of the equilibrium of three-dimensional masonry structures using scale
models are less common. The first detailed assessment using 3D-printed scale models addressed the
equilibrium of cracked masonry domes [9, 10].

1.2.2.  Computational modelling

Discrete element modelling (DEM) has emerged as an important computational method in
understanding the behaviour of masonry structures, as it has the capacity to treat masonry blocks as
separate units. Unlike continuum analysis techniques, DEM considers systems of separate interacting
bodies and is designed to deal with contact and stability.

DEM methods fall into two primary categories, those with ‘compliant contacts’ and those with
‘unilateral contacts’. Compliant contact formulations use contact springs to determine contact forces,
while unilateral contact methods use non-smooth contact formulations which do not allow any
penetration between adjacent blocks. Both methods have been used to model masonry structures. In
particular, numerous researchers have used two-dimensional compliant contact methods for the
investigation of arch bridges (e.g. [11]), retaining walls (e.g. [12]), and the response of various
structures to seismic loading [13, 14]. Fewer studies consider three-dimensional stability, although
Lemos [15] investigated the 3D stability of intersecting masonry arches under static and dynamic
loading. Critically, relatively few studies which use DEM to investigate large displacements and
collapse have compared modelling predictions with experimental results.

1.3. Objectives

While two-dimensional stability is well-understood, there is a need for more robust and more accurate
methods for 3D equilibrium analysis of masonry structures (and rigid block assemblies in general)
especially for large displacement analyses. In this paper, the capacity of masonry cross-vaults to
withstand differential support displacements will be investigated using both physical and
computational models, using a generic groin vault geometry. The aim is to quantify the displacement
capacity, and more importantly to compare the modelling methods and evaluate the validity of both
approaches, including the assumptions, advantages, limitations and challenges. This research is part of
a larger research project that aims to develop better understanding in the three-dimensional (collapse)
behaviour of masonry structures, and to improve physical and computational methods for analysis of
existing masonry structures.

2. METHODOLOGY

2.1. Physical modelling

The physical model experiments were conducted in a custom-made testing laboratory developed by
the BLOCK Research Group at ETH Zurich [16]. The facility has the capability to accurately measure
the displacement and collapse behaviour of 3D-printed scale models under applied loads and
differential support movements. The set-up consists of two main components: an actuated testing table
and a high-speed, non-contact, optical measuring system, as seen in Figure 1.

The surface of the testing table is divided into 28 segments that can be displaced independently and
continuously by horizontal and vertical linear actuators (FESTO [17]) with £0.05 mm and £0.07 mm
accuracy, respectively, at a speed of 0.1 up to 30 mm/s. The ball-jointed base with two large actuators
also allows for global tilt tests to simulate combined horizontal and vertical loading. The optical
measuring system is the PONTOS dynamic 3D motion analysis system by GOM [18].

The individual blocks of scale (vault) models are printed with a ZPrinter 650 by 3D Systems [19]. This
high-resolution, colour 3D-printer with an accuracy of 0.1 mm allows printing the dotted targets
required by the measuring system directly onto and together with the blocks (Fig. 1). Each block is
labelled with minimum three dots forming a unique pattern among all the blocks in the model. These
patterns are recognized by the analysis software as a representation of a rigid body of which the
movement can be traced and reconstructed.
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Fig. 1 Actuated testing table and measuring equipment in the BLOCKIlab at ETH Zurich (left),
and a collection of 3D-printed pieces with unique dot pattern (right)

2.2. Computational modelling

The response of the cross-vault to displacement loading was simulated computationally using the
three-dimensional DEM software 3DEC [20], which is based on the compliant contact formulation of
Cundall [21]. In this modelling framework, contact is controlled by normal and shear joint stiffness,
the blocks can be either rigid or deformable, and an explicit solution procedure is adopted for both
static and dynamic analyses.

For the cross-vault modelling, rigid blocks were used with a specified material density, friction angle,
and normal and shear joint stiffness. The explicit solution procedure uses a time-stepping procedure
which requires specification of quasi-static modelling, in which the model is over-damped, or dynamic
modelling, which enables dynamic simulation. While ‘dynamic’ modelling was used for the primary
results, the effect of ‘quasi-static’ versus ‘dynamic’ modelling was also investigated (see Section 3.2).

2.3. Model geometry

The cross-vault geometry, used for both experimental testing and computational simulation, was
generated by two intersecting semi-circular barrels with inner radius of 150mm, as shown in Figure 2.
The thickness of the vault is approximately 24.4 mm. The symmetric geometry results in relatively
few unique blocks. The vault consists of two types of regular blocks (i.e. a full block and a half block)
and 10 different types of groin blocks (see Fig. 1). In total, there are 32 half blocks, 112 full blocks
and 40 groin blocks. Thin support blocks were fixed to the base to prevent sliding between the base
and the vault. These support blocks were not initially included in the DEM simulations, but their effect
was later investigated and is discussed in Section 3.2.

Fig. 2 3D-printed scale model (left) and DEM model (middle) of the cross vault, and the three displacement
directions which were investigated (right): transverse (T), diagonal (D), and vertical (V) movement of one
of the supports

A digital model of this structure was constructed in Rhinoceros [22] which then served as a basis for
the physical and numerical models. For the physical model, custom scripts were written to generate
and place unique dot patterns and identification labels on all blocks, produce an optimized stacking for
printing, and generate the machine code for fabricating the formwork automatically.
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2.4. Material properties and loading

The individual blocks of the physical model were 3D-printed using a composite of zp150 powder and
zb61 clear binder [19]. After printing, the blocks were impregnated with Z-Bond 101 [19] for
improved strength and durability during the tests. The density and friction angle of these blocks were
determined for 10 random samples. The density was measured to be 0.598 +0.0297 g/cm’ and the
friction angle 43 £3.464°. The standard deviation on both the measured densities and friction angles
can be explained by the fact that there was no possibility to control the amount of hardening fluid that
got absorbed by any one block during the impregnation process.

Initially, the experimentally determined average friction angle and material density were used as
input for the DEM simulations, along with normal and shear joint stiffness of 100G Pa/m and
70 GPa/m, respectively. The specified joint stiffness is relatively large, allowing negligible inter-
penetration between adjacent blocks. Sensitivity of the response to these parameters is discussed in
Section 3.2.

Three different displacement directions were investigated: transverse (T), diagonal (D), and vertical (V)
movement of one of the supports (Fig. 2). In both the computational and physical experiments, the
displacements were applied at low velocities and in small increments to replicate, as closely as possible,
the quasi-static support settlement process and allow the models to re-establish static equilibrium
between each increment.

3. RESULTS

>~
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v

Fig. 3 Collapse mechanisms caused by diagonal displacement of the support. Physical model (top) at 10 mm,
15 mm, 20 mm and 24 mm. Computational model (bottom) at 6 mm, 12 mm, 18 mm and 23 mm

Fig. 4 Collapse mechanisms caused by transverse displacement of the support. Physical model (top) at Smm,
10 mm, 11 mm, and 12 mm. Computational model (bottom) at 6 mm, 12 mm, 18 mm, and 23 mm
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Fig. 5 Collapse mechanisms caused by vertical displacement of the support. Physical model (top): 5 mm,
10 mm, 12 mm, and 13 mm. Computational model (bottom): 12 mm, 18 mm, 24 mm, and 29 mm

The results of the physical experiments and computational simulations are summarized in Table 1,
where the applied displacements are recorded both when the first block fell and when the entire vault
collapsed. The physical simulations were repeated three times per displacement direction. Figures 3 to
5 give a visual comparison of several stages of the displacement until collapse for the different
displacement directions. In all images the displaced support is closest to the camera position.

Table 1 Experimental and computational modelling results

1° block fall Collapse
Displacement [mm] [mm]
direction
physical 3DEC physical 3DEC
diagonal 10.75 10.23 | 12.01 11 23.41 24.97 23.79 23
transverse - - - 19 12.23 10.0 12.45 23
vertical - - - 20 14.49 11.8 12.56 29

3.1. Observations

The displacement values and the formed mechanisms at collapse of the physical model are consistent
for the different tests in each displacement direction. They result in an average collapse displacement
of 24 mm in the diagonal, 12 mm in the transverse, and 13 mm in the vertical direction. In the
diagonal case, this compares remarkably well to the computational simulation, which predicted
collapse at 23 mm. Also the formed mechanism, i.e. crack pattern and location, is almost identical, as
seen in Figure 6.

Fig. 6 In the case of diagonal displacement, the collapse behaviour of the physical (left) and computational
model (right) is remarkably similar. The hinge locations and crack patterns are almost identical
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However, for the transverse and vertical displacement directions, computational simulations predict
displacement capacities of 23 mm and 29 mm, respectively, which are significantly higher than the
physical modelling results. In the transverse case, the formed mechanism is also different. In the
physical model it is clearly the instability of the left support that causes the collapse, whereas in the
computational model it is the instability of the displaced support itself. Furthermore, the crack pattern
in the computational model clearly runs from the left to the right support, whereas in the physical
model it follows the diagonal from the displaced support to the support on the opposite side. The
‘premature’ collapse of the physical models seems to be caused by the rotational instability of some of
the edge blocks. This instability occurs much later (i.e. at much higher displacements) or not at all in
the computational models.

Table 2 Results of DEM sensitivity study

Friction N.o r.mal - Base
joint Shear joint . 1st block fall Collapse
Angle f . . Analysis support
[degrees] stiffness | stiffness [GPa/m] blocks [mm] [mm]
[GPa/m]
43 100 70 dynamic no 20 29
30 100 70 dynamic no 25 25
43 10 7 dynamic no 21 29
43 100 70 quasi-static no 20 32
43 100 70 quasi-static yes 23 41

3.2. Sensitivity study

The sensitivity of the DEM results to various modelling parameters was also investigated. Results are
shown in Table 2 for applied displacement in the vertical direction. The first row of Table 2 shows the
baseline results from Table 1.

Using limit analysis [6], friction is considered sufficient to prevent sliding. While this is a reasonable
assumption in two-dimensions, sliding is involved in the formation of mechanisms for doubly curved
vaults. The effect of reduced friction was investigated, and caused a slight decrease in the collapse
displacement (29 mm to 25 mm), but a slight increase in the displacement at which the first block fell
(20 mm to 25 mm). The reason for this is depicted in Figure 7. For the reduced friction case, sliding
occurs just above the left (and right) supports. This enables the vault to expand (in plan) while one
support moves downward, which better maintains the thrust through the blocks near the vault apex.
However, this also reduces the displacement capacity at total collapse.

Although a challenge in DEM is accurately defining the joint stiffness, this difficulty is somewhat
alleviated when simulating scale model tests, where contact forces are low. The effect of joint stiffness
on the response is shown to have negligible effect for a reduction in stiffness of one order of
magnitude. Continued reduction in stiffness would only have an effect when block inter-penetration
becomes significant.

Fig. 7 Comparison of DEM results at 24 mm of vertical displacement: friction angle = 43 (left), 30 (right)

Dynamic simulations were used to achieve the baseline prediction values above, but quasi-static
simulations were also conducted and caused an increase in the displacement capacity. This was
expected, as the over-damped quasi-static simulations remain standing in remarkably precarious states.
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For example, the vault in Figure 8 is in equilibrium, although it would not stand in that state in reality.
The smallest imperfection or vibration would cause failure.

Fig. 8 Unrealistic, heavily displaced state obtained with perfect geometry and quasi-static simulation in DEM

Finally, the effects of the base support which prevent sliding were investigated. Adding support base
blocks caused a remarkable increase in the displacement capacity, and the reason for this seems to be
largely computational. Due to the large thrust at the base, the friction at these base blocks is also large,
and thus sliding is prevented. Due to the perfect geometry, the bottom block of the vault is
unrealistically ‘locked’ in place.

4. DISCUSSION

While the experimental and computational results compare reasonably well, computational results
generally over-predicted the displacement capacity. The primary reason for this discrepancy is that the
computational model is a ‘perfect’ assembly of ‘perfect’” blocks and contact surfaces. As a result, the
interlocking between blocks in the computational assembly will be perfect; none of the blocks will be
initially loose. While the 3D printed model was remarkably accurate, the assembly, which was done
manually, was not perfect. Even slight dislocations can cause very minor hinges and offsets between
blocks, which affect the initial geometry and could slightly reduce the effective thickness.

While these reasons account for general differences between the methods, there was particular
discrepancy between the displacement values predicted for the transverse and vertical directions. The
reason for this is less obvious. For diagonal displacement, the formed mechanism allows the vault
joints to open up with less sliding; the vault basically spreads similar to an arch on spreading supports.
However, the vertical and transverse displacements force the vault joints to shear and twist. This is
evident in the computational collapse mechanism in Figure 4, where the section of vault on the front is
twisting and hinging, and in Figure 7, where the vault is shown to spread in plan under vertical
displacements when the friction is reduced. Therefore, it seems that this ‘shearing’ of the vault may
have caused the local instability at the left corner of the physical model (Figs. 4 and 5). This might
have been due to an extremely slight initial local imperfection at this point, or to a concentration of
displacements. Regardless, the perfect geometry in the computational model seems to have prevented
this localized failure.

It thus seems that the perfect conditions of the computational simulations generally result in an
overprediction of the displacement capacity of the physical scale models. Note, however, that the
reduced displacement capacity of the physical models as a result of assembly inaccuracies is most
likely magnified due to the scale in comparison to full scale structures. In large structures stresses tend
to be higher and therefore contacts more distributed. Additionally, mortar tends to distribute contact
pressures even further. On the other hand, in large structures stress concentrations will cause local
material failure (i.e. ‘crushing’). As a result, point contacts become area contacts and this in turn could
reduce the displacement capacity.
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5. CONCLUSIONS

This study has used both physical and computational modelling to confirm the relatively large
displacement capacity of masonry vaults, and to provide new insights regarding three-dimensional
collapse behaviour. The validation of DEM simulations is critical and often overlooked, and physical
modelling is vital to determine the confidence that can be placed in computational modelling results.
The results show that initial slight imperfections in scale models may play a different role in the
outcome of collapse simulations depending on the direction of support displacements. For spreading
problems, imperfections seem to have less effect. In fact, in the case of diagonal displacement, the
computational and physical results were almost identical. On the other hand, in cases with more
shearing of the vault (i.e. the transverse and vertical displacement direction cases) the effect of initial
imperfections seems to be larger. These observed discrepancies demonstrate that, at present, the results
of analyses with either approach should be interpreted with care.

Further research should focus on how to deal with imperfections and incorporate them into the
modelling process. A possible approach might be to change the testing procedure such that both
simulations start with equally imperfect models; for example, by running the computational
simulations on the measured geometry of the assembled physical model rather than the perfect
geometry of the CAD model.
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