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Abstract Contemporary innovations in structural form-finding and fabrication

techniques are leading to design of freeform masonry architecture. These new forms

create new challenges in laying out tessellation patterns, especially if structural,

fabrication and construction requirements as well as aesthetical considerations are

taken into account. Addressing these challenges, we review historic stone-cutting

strategies and their geometric principles, forming the base for the development of

two new discretisation approaches for given thrust surfaces, allowing for various

degrees of user control. First, we introduce a tessellation approach based on primal,

anisotropic triangular meshes and their dual counterparts. Second, an alternative

tessellation approach based on transverse cutting curves is presented. Using a simple

set of geometric rules, both methods enable the design of rigid, staggered bonds

with locally force-flow aligned block configurations to avoid sliding failures. For

this research, the tessellation design of the Armadillo Vault, an unreinforced, dry-

assembled, cut-stone stone shell, served as a case study to demonstrate the feasi-

bility of our methods in the context of a full-scale architectural project.
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Introduction

Historically, stone cutting of masonry architecture involved expertise in structural

and geometric analysis of architectural shapes. Due to the negligible tensile capacity

of stone, the equilibrium of masonry structures is achieved through geometry,

guaranteeing structural form that is in equilibrium predominately through

compression forces (Block et al. 2006). Since cut-stone blocks, also known as

voussoirs, are of course limited in size, masonry structures depend on the assembly

of multiple units to form a stable structural system. Therefore, the precise dressing

and arrangement and individual elements is of great importance for the structural

integrity of masonry. In this context, stereotomy is deeply tied to aspects of statics,

which must be considered for the realisation of stone structures and discrete

funicular structures in general. A particular challenge is the design of structurally-

informed segmentations or tessellations of funicular forms. This research presents

new discretisation approaches based on a simple set of geometric rules, derived

from the analysis of historic techniques, structural requirements and fabrication

constraints. Beyond patterns that fit recognisable topologies or primitives, these new

approaches allow the flexible design of tessellation patterns for freeform masonry

architecture techniques (Fallacara 2006; Clifford and McGee 2013; Rippmann et al.

2012; Schwartz and Mondardini 2014; Rippmann et al. 2016).

This paper is structured as follows: In ‘‘Learning from Historic Stone Masonry

Techniques’’, related research on historic stone masonry structures and digital

discretisation techniques is reviewed. ‘‘Objectives and Approaches to Tesselations’’

states the objectives for this research. Based on the defined objectives, ‘‘Tessel-

lations Based on Triangular Meshes’’ and ‘‘Tessellations Based on Transverse

Cutting Curves’’ presents two new discretisation approaches for given thrust

surfaces. In ‘‘Case Study: Tessellation of the Armadillo Vault’’, the feasibility of our

methods is verified in the context of a full-scale architectural project. Finally,

conclusions are drawn in last section.

Learning from Historic Stone Masonry Techniques

To ensure the stability of masonry structures, their design has always been based on

rules of geometry (Huerta 2001; Aita 2003). These rules have been applied to design

the overall form of vaulted structures, but also to determine the respective cutting

strategies for voussoirs constituting such discrete assemblies. A particular problem

was the determination of the inclination of the joints with respect to the intrados and

extrados of a masonry structure. In general, early theories for the design of joint

configurations, as illustrated, for example, in Fig. 1, do not represent an ideal

structural solution. They only approximate this ideal solution, in which all joint

lines are aligned perpendicular to the line of thrust to avoid sliding between

voussoirs when considering no friction at interfaces.

Based on Hooke’s study of the catenary curve (1676), the developed

understanding of the line of thrust within an arch allowed for the study of possible

equilibrium solutions. This understanding led to theoretical studies on the ideal
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shape of arches and domes devoted to the design of the thickness of masonry

structures and the ideal orientation of their joint lines (Ageno et al. 2004). By the

end of the eighteenth century, such theories on the design and analysis of arches

were well developed (Heyman 1972). This understanding helped to align joint lines

in section based on structural considerations for simple vaults. However, the

structurally-informed alignment of voussoir courses for geometrically more

irregular structures was not addressed in such theories. In this context, historic

masonry skew arch bridges are an interesting subject of study due to their complex

geometry. A skew arch bridge makes it possible to span an obstacle at some angle

other than a 90�. This geometry is derived from those of symmetrical arches by

distortion in a horizontal plane.

The stability of a skew arch, for which the courses of voussoirs are aligned in the

same manner as for a non-distorted arch (Fig. 2a) is reduced with an increasing

angle of skew. This configuration is known as a false skew arch and increases the

risk of sliding between parallel courses due to the fact that resultant forces between

voussoirs of neighbouring courses are not perpendicular to their load-transferring

faces. For small arches with a small angle of skew and moderate loading, such

configurations proved to be sufficient to guarantee the safety of the structure (Culley

1886). Large spans, a higher angle of skew and heavier loading demand different

tessellation strategies. The tessellation of a helicoidal skew arch (Fig. 2b), features

courses of voussoirs parallel to one another, following parallel helical curves

between the abutments. For arches with constant radius, since the helical courses

run parallel to each other, all voussoirs with the same length have the same

geometry and can be dressed using only one set of templates. The alignment of the

courses of a helicoidal skew arch is only an approximation to the ideal. They are

perpendicular to the thrust at the crown of the arch only, but become more and more

oblique to the local thrust between voussoirs of neighbouring courses the nearer

they are to the abutments. In search of a structurally ideal method, Scottish

Fig. 1 Tracing voussoir joints using a rope for a a pair of arches with a suspended intermediate capital
(Villard de Honnecourt’s Carnet, 13th century); and b using drawing techniques to construct joints
perpendicular to the intrados of an arch (Milliet de Challes 1674)
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mathematician Edward Sang (1805–1890) developed the logarithmic method for

skew arches (Fig. 2c). In this method, voussoir courses follow the ‘‘orthogonal

trajectories of curves of pressure’’ (Rankine 1862) resulting in load-transferring

faces perpendicular to the local resultant force between neighbouring voussoirs. In

such a configuration the courses are called the equilibrated courses, guaranteeing the

static equilibrium of the arch without the need for friction. This approach results in

courses that become thinner towards the side of one abutment and thicker towards

the other. As a result, it is often necessary to introduce intermediate voussoir courses

where the courses become thicker to avoid very large voussoirs, in order to ease

fabrication and handling (Fig. 2d) (Rankine 1862).

In his book A Manual of Civil Engineering (1862), Scottish engineer William

John Macquorn Rankine (1820–1872) provided a valuable summary of the

structural considerations for general stone masonry construction applied in civil

engineering at that time. He states that in masonry structures a series of courses

should be ‘‘perpendicular or as nearly perpendicular as possible to the direction of

the pressure which they have to bear; and to avoid all long continuous joints parallel

to that pressure…’’ (Rankine 1862: 52) Certainly for contemporary structural

masonry, but also for other discrete assemblies built from alternative material,

using, for example, prefabricated concrete elements, Rankine’s assumptions are still

valid today. However, to generalise such geometric rules for the discretisation of

complex funicular shapes a profound understanding of related computational

discretisation methods is essential. Such methods will be discussed next.

Fig. 2 Types of skew arches: a false skew arch, b helicoidal skew arch, and c logarithmic skew arch
(Culley 1886). d Intermediate voussoir courses to avoid very large voussoirs in logarithmic skew arches.
Images: (Rankine 1862: 431, Fig. 184)
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Structurally Informed, Computational Discretisation

This review of computational discretisation methods focuses on algorithms to

determine the orientation and arrangement of structural members by optimising

mesh topologies and nodal positions to obtain structurally efficient grid configu-

rations. Mostly, such methods, as, for example, presented in Schiftner and Balzer

(2010), are designed for the layout of gridshell configurations and thus cannot be

directly applied to generate tessellation patterns for discrete funicular shells.

Nonetheless, some methods, as, for example, presented in Pietroni et al. (2015),

suggest interesting applications of a hexagon-dominant layout for discrete

assemblies due to its inherently staggered configuration. Another approach to find

optimised staggered bonds has been presented in Bärtschi and Bonwetsch (2013).

Addressing brickwork, their approach can be used to find sufficient overlaps of

bricks in neighbouring courses with differing lengths. However, it is limited to

structures for which all courses are horizontal and consist, with a few exceptions, of

standard-sized elements. A combination of requirements to generate tessellations

that are locally aligned to the force flow and structurally bonded by a staggered

layout is discussed in Panozzo et al. (2013) and Oval et al. (2017). Similar to

approaches presented in Schiftner and Balzer (2010), the methods include the

generation of a force-aligned quadrilateral meshes based on an assumed force flow

for a given shell surface (Fig. 3a), but uses a greedy algorithm that converts the

quad mesh into an hexagon-dominant, staggered tessellation by removing ‘‘every

second edge’’ (Fig. 3b).

The approach can be used to quickly generate structurally feasible tessellations

on complex surfaces. However, due to competing constraints during the process of

removing of edges, continuous joints over two or more course are likely to occur,

locally weakening the structural bond. Additionally, abrupt direction changes in the

tessellation pattern cannot be avoided because of the 90� orientation constraint on

the initial quadrilateral tessellation. Lastly, the control over the width-length ratio of

(a)     (b)     

Fig. 3 Tessellation for a discrete masonry model: a a force-aligned mesh consisting of predominantly
quadrilateral faces, transformed into b a structurally informed, staggered tessellation by removing ‘‘every
second edge’’. Image: Author, after (Panozzo et al. 2013)
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the resulting hexagons, and thus over the dimensions of the discrete elements, is

limited.

Objectives and Approaches to Tesselations

Despite the existence of various historic and computational methods to discretise

shell surfaces, none of the approaches reviewed above meets all requirements for

flexible, structurally informed tessellations of funicular shells. Most methods

discussed focus on fully automated processes, leaving little flexibility for the user to

actively control the design process of such tessellations. Therefore, our objective is

to develop new computational strategies to explore tessellation designs for cut-stone

vaults and discrete funicular structures in general, while taking into account

structural requirements and fabrication constraints. Based on the review of historic

stone masonry, these requirements were identified and translated into a set of simple

geometric rules that can be summarised as follows:

• Voussoirs should be aligned such that the load-transferring contact faces are as

perpendicular as possible to the local force flow to prevent sliding failure.

• The tessellation pattern should be staggered or similarly laid out to ensure an

interlocking voussoir arrangement.

• The size of voussoirs should be as uniform as possible over the entirety of the

surface.

Applying these rules means controlling the layout and spacing of courses as well

as the subdivision of each course into a certain number of voussoirs. The basic

principle of these geometric operations and their interdependencies is illustrated in

Fig. 4 by showing variations of tessellations for a circular and elliptical boundary.

Figure 4a shows a basic tessellation of a circular dome by generating equally spaced

rings as transverse cutting curves offset to the boundary. They are locally

perpendicular to the force flow, defining the courses and hence the height of the

voussoirs. A staggered tessellation is generated by dividing each ring into an equal

number of parts and then connecting every second division point pair per course.

This approach leads to a relatively large variation in the length of the voussoirs.

Especially for structures with a larger number of courses, the approach results in

infeasible voussoir dimensions towards the centre or support. Figure 4b shows a

possible solution to avoid the small voussoirs in the two inner courses by connecting

only every fourth point pair. The approach results in a structured tessellation but

cannot be generally applied to complex shapes. Figure 4c shows the result of a more

general approach, in which each course is individually divided based on a specific

voussoir target length while aiming for a sufficient spacing between vertical joints

of neighbouring courses and hence guaranteeing a staggered bond. Besides these

approaches to keep the length of voussoirs as uniform as possible, additional

strategies are necessary to keep the height of voussoirs within a specific range. For

example, the elliptical transverse curves in Fig. 4d are unequally spaced to

guarantee their local, perpendicular alignment to the force flow. This results from

competing constraints, i.e., the heights of voussoirs cannot be uniform while
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enforcing their load-bearing contact faces to be normal to the local force direction.

To accommodate the large gaps between the transverse curves along the major axis

of the elliptical boundary, additional courses are locally added as shown in Fig. 4e.

Based on this analysis and the rules defined above, two alternative tessellation

approaches for discrete funicular shells were developed and implemented as

software tools using the programming language Python and the compas framework

(Van Mele 2017). Both approaches will be discussed in the following subsections.

(a) (d)

(b) (c) (e)

Fig. 4 Study of tessellation geometries facilitating a staggered bond and uniform voussoir dimensions
for a a circular and d elliptical dome through examination of historic structures: b entrance dome at the
Basilica of the Sacré Coeur, Paris, France (1914), c elliptical dome of the Chapelle de l’Oratoire,
Avignon, France (1749), and e the grand staircase at the Palais Rohan, Bordeaux, France (1784). Photos
and images: authors

Computational Tessellation of Freeform, Cut-Stone Vaults



Tessellations Based on Triangular Meshes

The tessellation design process presented in this section is based on primal,

triangular meshes and their dual counterparts. The discretisation approach uses

triangular meshes to generate hexagon-dominant tessellations that inherently form a

staggered bond. However, besides the staggered configuration, the stability of such

hexagonal structures depends on the orientation and alignment of the tessellation

based on the local force flow. For example, a closed, funicular dome structure, based

on an isotropic, hexagon-dominant tessellation, continuously supported at its

circular boundary, is not likely to collapse due to sliding failure (Fig. 5a).

Despite its arbitrarily oriented tessellation, any significant, local sliding of

voussoirs is blocked by their neighbours, thanks to their mutually kinematically

constraining configuration (Estrin et al. 2011; Tessmann 2013). In contrast,

structures based on regular, hexagonal tessellations with openings and open edge

arches (Fig. 5b), generally have no self-interlocking configuration. Voussoirs of the

barrel vault shown might start sliding in the direction of least resistance, i.e.,

towards the closest ‘‘unsupported’’ edge arches, which results in a propagating

collapse of the structure. In such a case, the friction angle between the local force

vector and load transferring faces determines whether sliding occurs. The friction

angle is defined as

tan h ¼ ls;

where h is the angle between the normal of the load-transferring face and the local

force vector and ls is the static coefficient of friction between the elements. For

example, ls for masonry is 0:6� 0:7, which results in a friction angle of approx-

imately 31� � 35�. Consequently, hexagonal tessellation geometries need to be

modified based on the force flow in the structure such that the angle between the

normal of a load-transferring face and the local force vector is well below the given

friction angle. The vault in Fig. 5c shows that an anisotropic, hexagonal tessellation,

stretched in the direction perpendicular to the force flow, minimises this angle and

thus the risk of sliding failure.

Extending the work of Botsch and Kobbelt (2004) on the isotropic remeshing of

triangulated meshes, an anisotropic triangulation method was developed and

implemented in a design framework for anisotropic, hexagon-dominant tessellation

geometries. The fundamental idea of the presented approach is to locally control the

Fig. 5 Isotropic, hexagonal-dominant tessellation geometries for a a dome and b a barrel vault.
c Anisotropic, hexagonal-dominant tessellation geometry for a barrel vault. Images: authors
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distortion of a triangulated mesh based on the local force flow such that its dual

mesh results in a structurally informed and fabrication-aware tessellation geometry.

The flow diagram in Fig. 6 provides a visual overview of the successive steps of the

approach, briefly introduced as follows:

(a) A NURBS surface as initial input geometry represents the funicular shape. A

sufficiently dense force vector field represents the flow of forces.

(b) The user defines supported and unsupported boundaries.

(c) The supported boundaries are divided based on a user-defined voussoir target

length, and the unsupported boundaries are divided based on a user-defined

voussoir target height.

(d) Based on these division points on the defined boundaries, an initial mesh is

generated using Delaunay triangulation.

(e) Before the mesh is refined, target valencies are assigned to all boundary

vertices.

(f) The initially generated mesh is refined based on the input surface, the force

vector field, the given target valencies and a user-defined height and length for

the voussoirs.

(g) Based on the refined mesh, a hexagon-dominant dual mesh is computed by

connecting centroids of neighbouring triangles.

(h) Post-processing procedures are applied to complete the dual mesh by adding

special faces along the boundaries. Mesh-smoothing techniques can optionally

be used to improve the size uniformity of faces in the resulting dual mesh.

The vector field representing the force flow can be obtained by analysing the

local principle strain of an input surface assuming the structural behaviour of a

continuous shell (Schiftner and Balzer 2010), directly from a Thrust Network

Set Valencies
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(a)     (b)     (c)     (d)     

(e)     (f)     (g)     (h)     

Fig. 6 Flow diagram showing the sequential steps of the developed tessellation algorithm based on
anisotropic, triangular meshes
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Analysis (TNA) form-finding process (Block et al. 2014) or from using a geometric

approach based on structural heuristics (Panozzo et al. 2013). The other operations

in steps (a)–(d) of the tessellation design process are straightforward and will not be

discussed in this paper.

The target valencies defined for the initial mesh in Fig. 6e play an important role

for its refinement. This refinement process, which will be discussed in detail below,

optimises the topology of the initial mesh by minimising its valency error. The

valency error is the absolute difference between the target valencies and the actual

valencies for all vertices. For example, the target valencies for an isotropic,

triangular mesh is 6 for internal vertices and 2–5 for boundary vertices depending on

their inner corner angle (Tam and Armstrong 1991). The initial Delaunay mesh in

Fig. 7a results from the division points along the unsupported boundaries (left/right)

and the fixed (supported) boundaries (top/bottom). Based on the general definition

of vertex valencies, the initial mesh and the unidirectional force vector field, a

refined anisotropic mesh is computed (Fig. 7b). The resulting triangulation and its

dual, hexagon-dominant mesh are stretched perpendicular to the force vector field.

However, the alignment and staggered configuration of the tessellation (dual mesh)

are not ideal due to the poor interlocking of the elements along unsupported edges.

To avoid this, we use an alternative set of target valencies, as shown in Fig. 7c. The

vertices on support boundaries and boundary corners are defined as before, whereas

the valencies of vertices along unsupported boundaries are alternatingly assigned to

three and five. This specific valency assignment results in more suitable tessellation

geometries with better interlocking properties along the unsupported boundaries.

Note that the assigned target valencies can differ from the actual valencies of the

refined and optimised mesh.

After the initial mesh has been computed and the valencies for the boundary

vertices set, the mesh refinement process starts. The remeshing algorithm used for

this research extends the work of Botsch and Kobbelt (2004) to facilitate the

generation of anisotropic meshes based on a local force vector field. The iterative

algorithm uses three simple mesh operations commonly used in triangular mesh

optimisation: collapsing an edge to a point, splitting an edge by inserting a new

vertex and two adjacent edges, and swapping an existing edge (Hoppe et al. 1993).
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Fig. 7 a The initial mesh in refined using the developed anisotropic meshing approach based on
b standard and corner target valencies (Tam and Armstrong 1991) and c alternating target valencies (3, 5)
for unsupported boundaries, as defined in this research. Images: authors
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Using the thrust surface, the force vector field, the initial coarse mesh, the target

voussoir width w and the target voussoir height h, the following steps are performed:

1. Split all mesh edges that are longer than 4/3 lt at their midpoint. As described

later, lt is the determined, local target length based on w, h and the angle

between the edge and the interpolated, local force vector.

2. Collapse all edges shorter than 4/5 lt to their midpoint.

3. Flip edges in order to minimize the deviation from valency 6 or the predefined

valency for boundary vertices.

4. Relocate vertices on the surface by directional smoothing based on lt.

These steps are repeated until the mesh topology no longer changes for several

iterations or until a defined number of iterations is reached.

Whether an edge is split or collapsed throughout the iteration steps depends on

the difference between its local target length lt and its actual length l. Note that lt
ranges between the target voussoir width w (Fig. 8b) and the target voussoir height h

(Fig. 8e) based on the angle between the corresponding edge and the local,

interpolated force vector at its midpoint. The simple examples in Fig. 8 illustrate

how the length of a particular edge changes when altering the global direction of the

force field. Figure 8a shows a regular mesh containing six equilateral triangles and

its central dual polygon, representing the hexagonal voussoir outline. This

configuration is isotropic and all edges have the same length. The meshes in

Figs. 8b–e are stretched perpendicular to the unidirectional vector fields using

anisotropic scaling.

The two mutually perpendicular scaling axes are aligned with the force vectors.

For such transformations, the independent scaling factors x and y for a particular

edge are

x ¼ m
1

2
�w � hð Þ þ w

� �
þ w þ h

2
; and

y ¼ m
1

2
�w � hð Þ þ h

� �
þ w þ h

2
; and

where m is the interpolated force magnitude in the force vector field based on the

midpoint of the edge. This normalised magnitude, ranging between 0 and 1, is not

necessarily proportional to the actual forces in the structure, but can be actively

α = 0° α = 30° α = 60° α = 90°

lt lt lt

lt

lt = w (voussoir width) lt = h (voussoir height)

(a)     (b)     (c)     (d)     (e)     

Fig. 8 Based on a an isotropic mesh, b–e anisotropic meshes are obtained, using direction-dependent
transformations, informed by the local force flow (arrows)
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defined to locally control the intensity of the anisotropic scaling. This makes it

possible to have uniform, non-stretched faces (Fig. 8a) in areas where no directional

constraint can be applied, for example, at and close to singularities (Schiftner and

Balzer 2010). For the presented method, the two scaling factors x and y are identical

for regions where m ¼ 0. With x and y defined, the local target length for an edge is:

lt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2y2

x2 ê � f̂
� �2

þy2 1� ê � f̂
� �2

� �
vuuut

where ê is the normalised direction vector of the edge and f̂ is the normalised force

vector at its midpoint based on the local force flow. Note that lt is the radius of an

ellipse with the semi-major (x) and semi-minor axis (y) at a specific angle based on ê

and f̂ (Fig. 8). These target lengths are only computed for non-boundary edges and

determine if an internal edge needs to be split or collapsed. For edges adjacent to

exactly one vertex with a defined valency of 3 on an unsupported boundary, a

special target length 1=2lt is applied to meet the geometric requirements of the

staggered topology along open edge arches (Fig. 7c). Whether an edge is swapped

depends on the valencies of the vertices of both its adjacent triangles (swapping is

not allowed on boundary edges). An edge is swapped if its updated orientation

would result in a lower valency error for these four vertices.

To allow this mesh refinement process to converge and avoid oscillation effects,

the vertices need to be redistributed in each iteration. This relaxation process is

performed on the input surface and based on the computed edge target lengths using

directional smoothing.

Figure 9 shows this tessellation method applied to two irregular thrust surfaces to

structurally improve their tessellation patterns according to the presented geometric

rules. All interior edges with a deviation angle \30� (based on ls � 0:6 for

masonry) with respect to the ideal local orientation (perpendicular to the local force

flow) are highlighted. Comparing these results with isotropic, non-directed

tessellations for the same vaulted shape shows that the total edge length of edges

below the defined deviation angles can be increases by � 65% when using the

presented anisotropic remeshing method, i.e., the risk of sliding failure can be

reduced significantly. The method requires little manual modelling and makes it

relatively easy for less experienced designers to generate structurally informed

tessellation geometries.

Tessellations Based on Transverse Cutting Curves

Applying the method described in ‘‘Tessellations Based on Triangular Meshes’’ on

various thrust surfaces revealed that a more controlled tessellation design process is

often desirable and led to the development of an alternative tessellation approach.

This user-driven procedural method allows controlling the layout of courses and

thus the arrangement of voussoirs. The flow diagram in Fig. 10 provides a visual

overview of the steps of the method, which can be summarised as follows:
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(a) The initial input geometry is the funicular shape represented as NURBS

surface. A sufficiently dense force vector field represents the force flow.

(b) Based on the force vector field, the user defines triangular or rectangular

regions on the thrust surface. These regions serve as controllable patches to

facilitate the subsequent discretisation of complex surfaces with multiple

singularities (e.g., at global and local minima and maxima, and saddle points).

(c) Based on a user-defined voussoir target height, the patch boundaries aligned

parallel to the local force flow are divided, determining local start and end

points to generate the transverse cutting curves (step d) of the respective

patches.

(d) The transverse cutting curves are generated on the surface based on the defined

division points per patch and the force vector field. The transverse curves

Deviation angle < 30°               Deviation angle > 30°

(a)
anisotropic

isotropic

(b)
anisotropic

isotropic

Fig. 9 Visual comparison of anisotropic and isotropic tessellation meshes for two (a, b) irregular thrust
surfaces. The edges with deviation angles\ 30� with respect to the ideal local orientation are highlighted.
Images: authors
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define voussoir joints orientated as perpendicular as possible to the local force

flow.

(e) Each seed curve lying in between two neighbouring transverse curves is

divided based on a specified voussoir length to define the location of equally

spaced joint lines. These lines are aligned parallel to the local force flow and

define joints between voussoirs in the same course. All joint lines are used to

establish an initial starting topology representing the tessellation.

(f) The starting topology can be modified manually.

(g) A balanced staggering is enforced through an automated procedure that

maximises the distance between joints of neighbouring courses. The resulting

tessellation geometry can be visually and numerically checked by the designer

and optionally refined by simply going back to step (f). For changes

concerning the dimension of the voussoir, the tessellation process needs to be

repeated starting from step (c) or (e).

(h) Post-processing routines can be applied to modify the geometry of faces such

that they, for example, have convex boundaries to facilitate certain fabrication

techniques.

The initial vector field on the given thrust surface is obtained as previously

discussed in ‘‘Tessellations Based on Triangular Meshes’’. The regions defining the

course layout are based on structurally-informed block decomposition techniques

(Oval et al. 2017) or simply drawn manually by the user.

The layout of the transverse cutting curves based on the boundary curves between

neighbouring regions is shown in Fig. 11.

Figure 11 shows two surface patches containing three patch curves parallel (a, b,

c) and four curves perpendicular (d, e, f, g) to the local force flow. All curves

Transverse and
Seed Curves

Thrust Surface
Force Flow

Generate
Divisions

Generate
Initial Topology

Apply
Post-Processing

Regions

Modify Manually 
(Initial Topology) 

Enforce
Staggered Bond

(a)     (b)     (c)     (d)     

(e)     (f)     (g)     (h)     

Fig. 10 Flow diagram showing the sequential steps of the developed tessellation approach based on
transverse cutting curves
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parallel to the force flow are divided based on their individual geodesic length and a

defined voussoir target height, resulting in three sets of division points A, B, C. Due
to the elliptical shape, the division number is different for curves a and b, making it

necessary to ‘‘fork’’ transverse cutting curves. Figure 11b shows a simplified

connectivity graph, illustrating the transition between two patch curves with

different numbers of divisions points. The connectivity is computed using a

shortest-path algorithm. The interpolated seed curves (grey), which are used in a

later step to generate equally spaced joint lines for a staggered voussoir bond, and

the transverse curves (black) are alternately generated, requiring the doubling of the

number of divisions per patch curve. Based on the computed connectivity,

transverse curves are generated per patch using an optimisation method (Rippmann

2016) to ensure their local alignment perpendicular to the vector field. The dotted

transverse curves in Fig. 11 represent alternative curves, which can be generated by

simply moving their input points along the corresponding patch curves. The distance

and direction of the respective point displacement can be parametrically defined by

the user in order to control the resulting transverse curves, resulting in the shape of

the corresponding voussoir courses (Fig. 12). The resulting tessellation variations

have different consequences regarding fabrication and can be freely adjusted to

match the requirements of a particular project.

To form a stable, three-dimensional structural surface, an interlocking, staggered

voussoir arrangement is necessary. This is achieved by avoiding alignment of side

joints of voussoirs in any course to side joints in the course below. Ideally, a
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Fig. 11 Transverse cutting curves on one quarter of an elliptical dome (partly shown), based on patch
curves (a–e) with different divisions for two patches and their connectivity shown in a graph. Images:
authors

(a)     (b)     (c)     (d)     

Fig. 12 Parametric changes in the generation of transverse cutting curves result in a–c alternative
tessellation geometries. d Optional post-processing can be used to simplify the pattern, or to optimise the
voussoirs for fabrication. Images: authors
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voussoir should overlap its neighbours by half of its length. However, this ideal

configuration is not generally possible for tessellation geometries applied to doubly

curved surfaces, while simultaneously guaranteeing voussoirs of equal lengths, as

discussed previously (see Fig. 4). An automated approach was developed to

maximise the distance between joints of neighbouring courses, while minimising the

difference in length among all voussoirs. For this approach, an initial topology of

the tessellation is generated based on the defined voussoir target length to generate

equally spaced vertical joint edges. Special alternating division start points are

assigned for neighbouring courses perpendicular to openings to guarantee an initial

staggered topology along all unsupported edge arches. All parallel joint edges

together with the transverse curves form a tessellation mesh topology that is

hexagon-dominant to facilitate a staggered pattern. However, the joint edges are

poorly distributed, which results in insufficiently overlapping voussoirs, demanding

an additional procedure to optimise the staggered bond. The steps of this iterative

procedure are shown in Fig. 13 and briefly introduced here:

(a) The initial configuration and starting topology for a tessellation mesh is

generated using the previously discussed method. The vertices fv1; . . .; vng are

constrained to their corresponding transverse curves, which function as guide

curves. The three, exemplary vertices vi, vj and vk are used throughout the

subsequent steps and highlighted in Fig. 13.

(b) The location of all non-boundary vertices is optimised such that the spacing of

joint edges of neighbouring courses is maximised. For example, the position of

vertex vj is updated to the projected centroid of its adjacent vertices vi and vk

on the same guide curve.

(c) The lengths of edges connecting vertices on the same guide curve are bound to

a minimum of a third of the voussoir target length and to a maximum of half of

the voussoir target length. For example, after performing step (b), the distance

between vi and vj falls below the defined minimum. Consequently, both
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(c)     (d)     
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Fig. 13 a–d The steps of one iteration of an automated procedure to redistribute a given tessellation
topology, aiming for an aligned, staggered tessellation geometry with sufficiently overlapping voussoirs.
Images: authors
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vertices are spaced further apart on the guide curve, aiming for a distance that

exceeds the allowed minimum. This process is performed simultaneously for

all edges exceeding or falling below the defined length bounds.

(d) Joint edges connecting two neighbouring transverse curves shall be parallel to

the local force flow, i.e., corresponding edges must be as perpendicular as

possible to both transverse curves. This is guaranteed by projecting their

midpoints on both transverse curves. Subsequently, the coordinates of the end

vertices of these edges are updated based on the projected midpoints.

Steps (b) to (d) are repeated, using a time step t, until the magnitudes of all

residuals 8 ið Þ 2 1; . . .; nf g; vt
i � vt�1

i ¼ ri fall below a defined threshold value.

Using this method, the voussoirs of neighbouring courses overlap by at least a

third of their lengths and their overall dimensions remain relatively uniform. In the

example shown in Fig. 13, the number of vertices of one face deviates from the

ideal of six vertices per face, i.e., the voussoir overlaps not just two but three

neighbouring voussoirs. These required irregularities in the pattern explain why the

lengths of edges connecting vertices of the same transverse curve are bound to a

minimum of a third of the voussoir target length.

The method has been tested through numerous tessellation designs for various

thrust surfaces. Four test shapes with corresponding discretisation layouts are shown

in Fig. 14. The resulting patterns are smoothly distributed and comply with the

defined structural requirements. Figure 15 shows the exploration of a series of

(a)    (b)     

(c)    (d)     

Fig. 14 a–d Resulting tessellation patterns for four freeform thrust surfaces with varying boundary and
support conditions
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patterns, demonstrating the flexible control of the tessellation design by changing

various input parameters.

Case Study: Tessellation of the Armadillo Vault

The Armadillo Vault was an unreinforced, dry-assembled, cut-stone stone shell

constructed by the Escobedo Group in the Corderie dell’Arsenale for the 2016

Architecture Biennale (Fig. 16). The doubly curved vault consisted of 399

individual limestone voussoirs assembled without mortar or other structural

connections (Rippmann et al. 2016). The vault stands in compression and spans a

total area of 75 m2 with three supports along its boundary and one support in the

middle.

The voussoir geometry results from a tessellation geometry designed using the

methods presented in this paper. One of the most challenging aspects of the design

of the structure was to generate a structurally informed tessellation pattern that

eliminates the risk of sliding failure. Additionally, the design of the tessellation

pattern must take into account the following fabrication constraints. First, the

maximum allowed weight of the voussoirs was limited to 45 kg on the top and

135 kg close to the supports, resulting in face size constraints for the final

tessellation mesh. Second, the use of circular blades demanded a convex cutting

geometry along the interfaces, and thus convex mesh faces, to avoid self-

intersections with the blade trajectory.

(c) (d)

(a) (b)

Fig. 15 a–d Exploring different tessellation patterns for the same thrust surface by changing various
input parameters. Images: authors
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Fig. 16 The Armadillo Vault in the Corderie dell’Arsenale of the 2016 Architecture Biennale in Venice.
Photo: Iwan Baan, used with permission

(a) (b)

(c) (d)

Fig. 17 Overview of the tessellation design: a the quadrilateral patches and course lines on the thrust
surface, b the initial staggered topology, c the optimised tessellation bond, and d the final tessellation of
the thrust surface with convex mesh faces. Images: authors
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Due to the number of constraints and the need to be able to carefully control the

appearance of the prominently exposed tessellation pattern, we decided to use the

tessellation approach based on transverse cutting curves discussed in ‘‘Tessellations

based on transverse cutting curves’’. Figure 17 shows the steps performed during

the process of designing the tessellation geometry starting from the structural

surface of the vault. With the help of block decomposition techniques, 32 patches

were defined, forming a coarse quad mesh with three internal singularities based on

the force vector field and support conditions (Fig. 17a). Within these patches, the

course lines were generated based on a variable voussoir target height of 80 cm at

the supports and 40 cm at the top. Subsequently, an initial staggered topology was

generated based on a voussoir target width of 50 cm (Fig. 17b). Subsequently, we

improved the geometry of the mesh using our iterative optimisation method to

obtain a nicely balanced tessellation bond with sufficient overlaps between

voussoirs in neighbouring courses (Fig. 17c). With small manual adjustments on

the initial topology, this optimisation step was repeated until a satisfactory result

was found. Finally, post-processing operations were applied to enforce the

convexity of all mesh faces (Fig. 17d). This was achieved by scaling the joint

lines aligned parallel to the force flow based on a user-defined scale factor and

proportional to the course height. As a result, the degree of convexity was increased

towards the top, forming smoother transitions around the singularities.

Conclusions

We have reviewed and analysed historic stone-cutting strategies in order to define a

set of geometric rules to be considered in the design of tessellations for freeform

masonry vaults. This research has shown that there is no single, most optimal

tessellation design for such shapes, since, in addition to technical constraints, more

subjective architectural requirements need to be considered as well. Hence, two

alternative approaches were presented to account for the various degrees of user

control and interaction. First, we introduced a tessellation approach based on primal,

anisotropic triangular meshes and their dual counterparts, which require only

limited manual modelling due to the increased level of automation. Second, a

procedural tessellation approach based on transverse cutting curves was presented,

which can be controlled carefully through individual, computer-assisted, stepwise

optimisation. Finally, we verified the feasibility of our approach by designing the

tessellation geometry for a full-scale, freeform masonry vault.
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