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Abstract

This dissertation presents a new numerical solver with an assembly-aware
design workflow to help users better design and build discrete shell struc-
tures. Discrete shell structures are aesthetically ravishing but challenging
to design and build efficiently. Although discrete structures can be prefab-
ricated using efficient material and increasing productivity on-site, building
discrete shell structures typically requires extensive scaffolding during their
assembly process, which is associated with massive material and energy
waste. Moreover, discrete shell structures usually require additional design
steps normally not necessary with standard continuous structures, such as
shape discretisation and stability analyses during and after construction.

The state-of-the-art stability solver rigid-block equilibrium (RBE) method
uses quadratic programming with penalty formulation to measure structural
infeasibility. For unstable structures, RBE provides a solution with a tensile
force at the unstable regions, which gives a quantified measure of instability.
Moreover, this dissertation extends the RBE method with some prominent
features to thoroughly understand its optimisation results and mechanical
meanings. Several experiments are performed and studied, including com-
paring the original quadratic with a linear function to illustrate nodal forces
and interface resultants’ roles and reducing the structure’s contact interface
into its kern area to explore different admissible internal stress states.

However, although RBE has various benefits that can be applied to the
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design problem, it incorrectly assesses unstable structures as stable when
complex interface geometries are involved. Therefore, this dissertation pro-
vides insight into the RBE flaws, builds upon its strengths, and presents a
new robust solver that overcomes the problem. Our newly proposed coupled
rigid-block analysis (CRA) solver combines equilibrium and kinematics in a
nonlinear programming problem. Furthermore, similar to RBE, CRA with
penalty formulation makes it possible to measure infeasibility and gives valu-
able information to users to change their design. Comparing a wide range of
benchmarks with commonly used commercial software shows CRA’s robust-
ness and accurate mechanical description of the complex three-dimensional
discrete-element assemblies formed by rigid blocks.

Utilising CRA, this dissertation proposes a stability-aware design process to
iteratively help the user and guide their design towards structurally-sound
assemblies. Embedding stability-aware design process, an assembly-aware
design (AAD) is further proposed to allow the user to consider the assembly
sequence while designing discrete shell structures. Several computational
and physical models were designed and assembled with limited scaffolding
using our proposed workflow to verify our research findings in real-world
scenarios. Finally, our CRA solver is publically available as an open-source
Python package — COMPAS CRA — to help researchers and designers
around the globe to build better discrete shell structures upon our work.

Keywords: 3D assembly, rigid blocks, equilibrium analysis, discrete
element, concave shapes, friction, contact mechanics, computational
physics, nonlinear optimisation, stability-aware design, assembly-aware
design, discrete shell structures, computational fabrication.



Zusammenfassung

In dieser Dissertation wird ein neuer numerischer Löser eines mon-
tagegerechten Entwurfsablaufs vorgestellt, der BenutzerInnen unterstützt,
diskrete Schalentragwerke besser zu entwerfen und zu erbauen. Diskrete
Schalentragwerke sind ästhetisch reizvoll, jedoch schwierig zu entwerfen und
effizient zu bauen. Diskrete Tragwerke können unter Verwendung effizienter
Materialien vorgefertigt werden und erhöhen so die Produktivität auf der
Baustelle. Jedoch erfordert der Montageprozesses diskreter Schalentragw-
erke in der Regel einen umfangreichen Gerüstbau, der mit einer massiven
Material- und Energieverschwendung einher geht. Darüber hinaus erfordern
diskrete Schalentragwerke in der Regel zusätzliche Entwurfsschritte, die
bei herkömmlichen kontinuierlichen Tragwerken nicht erforderlich sind, wie
beispielsweise die Diskretisierung der Form und Stabilitätsanalysen während
und nach Abschluss des Bauprozesses.

Das hochmoderne Stabilitätslösungsverfahren Rigid-Block-Equilibrium
(RBE) verwendet eine quadratische Programmierung mit Straffunktionen,
um die strukturelle Undurchführbarkeit zu messen. Für instabile Tragstruk-
turen liefert die RBE-Methode eine Lösung mit Zugkraft in den instabilen
Regionen, die ein quantifiziertes Maß für die Instabilität darstellt. Darüber
hinaus wird in dieser Dissertation die RBE-Methode um einige bedeutende
Merkmale erweitert, um ihre Optimierungsergebnisse und ihre mechanis-
che Bedeutung gründlich zu verstehen. Experimente untersuchen den Ver-
gleich der ursprünglichen quadratischen Funktion mit einer linearen Funk-
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tion um die Rolle der Knotenkräfte und der Schnittstellenresultierenden zu
veranschaulichen. Des Weiteren wird die Reduzierung der Kontaktflächen
des Tragwerks auf ihren Kernbereich untersucht, um verschiedene zulässige
Eigenspannungszustände zu ergründen.

Obwohl RBE diverse Vorteile hat, die auf das Bemessungsproblem angewen-
det werden können, werden instabile Tragwerke bei komplexen Geome-
trien der Kontaktflächen fälschlicherweise als stabil eingestuft. Daher gibt
diese Dissertation einen Einblick in die Schwachstellen der RBE-Methode,
baut auf ihren Stärken auf und stellt einen neuen robusten Löser vor,
der das Problem überwindet. Unser neu vorgeschlagener gekoppelter
Coupled-Rigid-Block-Analysis (CRA)-Löser kombiniert Gleichgewicht und
Kinematik in einem nichtlinearen Programmierproblem. Ähnlich wie bei
RBE ermöglicht CRA mit einer Straffunktion die Messung der Nichtdurch-
führbarkeit und liefert BenutzerInnen wertvolle Informationen, um den En-
twurf anzupassen. Der Vergleich einer breiten Palette von Benchmarks
mit gängiger kommerzieller Software zeigt die Robustheit von CRA und
die genaue mechanische Beschreibung eines komplex dreidimensionalen, aus
diskreten starren Blöcken bestehenden Tragwerks.

Unter Verwendung von CRA wird in dieser Dissertation ein stabilitäts-
bewusster Entwurfsprozess vorgeschlagen, der BenutzerInnen iterativ un-
terstützt und zu strukturell soliden diskreten Tragwerken führt. Zur
Einbettung des stabilitätsbewussten Entwurfsprozesses wird außerdem ein
Assembly-Aware-Design (AAD) vorgeschlagen, der es BenutzerInnen er-
möglicht, die Montagereihenfolge beim Entwurf diskreter Schalenstrukturen
zu berücksichtigen. Mehrere rechnerische und physische Modelle wur-
den mit limitierten Gerüsten unter Verwendung unseres vorgeschlagenen
Arbeitsablaufs entworfen und montiert, um unsere Forschungsergebnisse
mit realen Szenarien zu verifizieren. Schlussendlich ist unser CRA-Löser
als Open-Source-Python-Paket COMPAS CRA öffentlich verfügbar, um
ForscherInnen und KonstrukteurInnen weltweit zu helfen, bessere diskrete
Schalenstrukturen auf der Grundlage unserer Arbeit zu entwickeln.



Part I

Introduction





Chapter 1

Background

This dissertation develops a new structural solver and workflow for designing
discrete shell structures. Section 1.1 introduces the thesis topic, explaining
discrete-element assemblies and shell structures and how discrete shell struc-
tures can be helpful in architectural contexts. In Section 1.2, we point out
the current inefficiencies of building shell structures and list two significant
obstacles that cause the unproductive designing and building process of such
structures. Section 1.3 explains the arguments for developing tools to build
discrete shell structures efficiently. Lastly, Section 1.4 outlines the structure
of this thesis to give the reader a better overview.

1.1 Introduction

Discrete-element assemblies are structures formed by individual (rigid) units
put together without glue or other joinery. The dimension of these assem-
blies can range from small products to buildings. Designing discrete-element
assemblies that can stand under their self-weights has many applications in
architectural contexts. For example, the unit size can be relatively small
in some masonry structures but large in prefabricated housing. Besides ar-
chitecture, discrete-element assemblies have various applications, such as
designing furniture, 3D puzzles, toys, or even robotic assembly planning.
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Chapter 1. Background

Sometimes, those assemblies can stand in a surprising configuration that is
intuitively hard to believe stable. Figure 1.1 shows two surprising discrete-
element assemblies that stand under their self-weight and rely on only con-
tact and friction. A stone-balancing artist describes that achieving such
stone balancing requires patience and the “feel” of the stone:

Balance requires a minimum of THREE contact points. Luckily,
every rock is covered in a variety of indentations that can act as
a NATURAL TRIPOD for the rock to stand upright. When the
rocks touch, you can feel vibrations or “clicks”, as the surfaces
move against one another. . . Achieving a challenging balance re-
quires patience, and becoming fully in touch with NOW (where
the vibrations live). You must get to know the rocks you are
working with. Some rock characters will coordinate better with
others, vice versa, back, forth, right, left, up, or down. The trick
I’ve found is to PLAY and experiment. Start simple. Step by
step, add complications if you feel.

(Michael Grab, Gravity Glue)

Figure 1.1a shows the artist working on a stone equilibrium. He carefully
puts one or two pieces of stone at a time, ensuring that all stones are sta-
ble. Instead of finding suitable stone shapes in nature, in Figure 1.1b, re-
searchers use computational methods to precise design and 3D-print cus-
tomised unique blocks to achieve a stable configuration. In order to push
the limit and achieve some unbelievable or extreme stable configurations,
whether designed physically or digitally, designers need to be able to “feel”
the equilibrium of the assemblies from design to construction.

A shell is a type of structure with a small thickness compared to its other di-
mensions. Shell structures are structurally efficient and capable of carrying
additional loads. Shell structures usually have long spans relative to their
structural thicknesses, enabling extensive spatial design freedom. They pro-
vide various design flexibility in architectural and engineering practice and
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(a) (b)

Figure 1.1: Surprising discrete-element assemblies are stable in static equi-
librium under self-weight and rely only on contact and friction: (a) Leaf
Catcher: Stone Balance Art created and photographed by Michael Grab
— 27 October 2016 — Boulder, Colorado, USA [Michael Grab, 2008]; (b)
computationally designed and 3D-printed assembly by Frick et al. [2015].

have caught much research attention [Block et al., 2017b; Van Mele et al.,
2022]. Funicular shell structures are a particular type of shell structures in
which all stresses are either compressive or tensile under a defined loading
condition [Rippmann, 2016].

In this research, we focus on discrete shell structures, which combine the
terms of discrete-element assemblies and shell structures. In addition to
their several structural and architectural design benefits, they are also con-
venient to fabricate, assemble, and disassemble. Historically, ancient masons
have designed and constructed masonry structures for a long time. Those
masonry structures are composed of discrete stones and many have been
standing for thousands of years, showing their outstanding structural po-
tential and architectural durability. Learning from the past, Figures 1.2a
and b show an astonishing discrete shell design that comprised 399 cus-
tomised cut limestones, standing without any mortar, reinforcements, or
mechanical joints. In modern construction, building structures with pre-
fab components vastly decreases the construction time and improves con-
struction logistics [Li et al., 2014]. Figures 1.2c and d show the use of
the latest robotic 3D-printing technology to produce prefab unreinforced-
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concrete components for discrete shell structures. However, although recent
advances in fabrication and construction technologies, such as large-scale
additive manufacturing and robotic fabrication, have created new opportu-
nities to design, fabricate, and assemble customised architectural units with
complex geometries, efficiently designing and building such discretised shell
structures remains challenging.

(a) (b)

(c) (d)

Figure 1.2: (a) Armadillo: a discrete shell structure constructed in stone
without any mechanical joints or reinforcements [Rippmann et al., 2016];
(b) one of the stones of the Armadillo vault being CNC cut; (c) Striatus:
3D concrete printed masonry bridge [Bhooshan et al., 2022]; (d) robotic 3D-
printing of a component of the Striatus bridge [Bhooshan et al., 2022].

1.2 Motivation and challenges

This section describes this dissertation’s main motivations and critical chal-
lenges. It tries to address reasons and missing parts that cause shell con-
struction to be inefficient.
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1.2.1 Construction inefficiency of shell structures

In architectural practice, shell structures, such as large-span roofs, are chal-
lenging to design and construct [Block et al., 2017c; Van Mele et al., 2022].
These structures require a lot of (temporary) foundations, scaffolding, form-
work, and falsework during construction. Typically, the formwork for a con-
crete structure is estimated to be 35–60% of the construction cost [Lloret
et al., 2015], and this number can go up to 75% for complex concrete struc-
tures [de Soto et al., 2018]. Besides, building a dense falsework after leads
to a lot of wasted material, consumes a lot of time and complicates project
logistics.

(a) (b)

Figure 1.3: The construction and assembly process of (a) Armadillo
Vault [Block et al., 2017c] and (b) Striatus [Bhooshan et al., 2022] require
dense falsework.

The efficient load-bearing behaviour of a shell structure results from its
doubly-curved geometry, but this also makes it very difficult to construct
them as stability during the assembly is not given (and typically not part
of the design). The Armadillo vault and the Striatus bridge, both built
in Venice (Figure 1.2), show efficient discrete shell structures with com-
plex freeform surfaces, but they both required dense falsework during the
assembly process, as can be seen in Figure 1.3. Rippmann et al. [2016]
present the workflow of the Armadillo vault from design to assembly. Fig-
ure 1.4 shows that assembly is usually the last step in the workflow for such
structures and is indeed not considered in the design cycle. As a result,
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the structure requires much falsework as it is only structurally sound when
the whole structure is built, not during all intermediate stages. Moreover,
typical structural analysis tools require designers to have structural domain
knowledge with extensive experience, and it does not provide information
for better design improvements.

Figure 1.4: Armadillo workflow from design to assemblage (Rippmann et al.
[2016])

1.2.2 Lack of tailored structural solvers

Although there are many software tools for structural design, a proper tool
to design discretised equilibrium structures is lacking and assessing stability
during the assembly process remains difficult. The main challenge in design-
ing such structurally sound or scaffolding-free discrete-element assemblies is
to interactively assess their stability at each design iteration and the modi-
fications needed to redirect the initial design. Unfortunately, quick interac-
tive tools are rarely used in engineering practice due to insufficient accuracy,
while more accurate engineering software suffers from heavy computational
effort and complicated parameter tuning. The generation and analysis of dis-
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crete assemblies can be cumbersome and time-consuming. On the geometry
generation side, usually, discrete element solvers do not offer extensive para-
metric modelling capabilities and standard Computer-Aided Design (CAD)
software do not offer a straightforward analysis toolbox. From an analy-
sis point of view, engineering solvers typically require detailed mechanical
parameter settings, often not known in the early design exploration. There-
fore, there is a need for an integrated design and analysis tool for efficiently
designing and accurately analysing discrete-element assemblies.

1.2.3 Lack of assembly in the design workflow

Design for Assembly (DFA) or Design for Manufacture and Assembly
(DFMA) is a product design process that considers assembly and manufac-
turing constraints. DFA/DFMA is a common idea in mechanical engineering
and is often used to reduce assembly time and costs. Figure 1.5 shows the
typical steps of the DFMA workflow. By applying the method, the user can
iteratively redesign the product to reduce assembly costs. Boothroyd [1994]
shows that productivity is greatly increased by considering assembly at the
design stage, even more effectively than by improving automation. However,
despite the current development of digital fabrication and computational de-
sign, designers are only beginning to consider the manufacturing constraints
in the design process and attempting to automate manufacturing processes.
However, DFA or DFMA is still rarely used in architecture, engineering, fab-
rication and construction (AEFC). Recently, though, the concept has gotten
some traction and is being introduced by the industry (e.g., Laing O’Rourke
in the UK and Implenia in Switzerland) as an essential strategy to increase
labour productivity and resulting profit margins.

Inspired by the DFA and DFMA processes, this thesis is motivated to pro-
pose an assembly-aware design process for discrete shell structures. We aim
to help designers “feel” the equilibrium of the discrete-element assemblies
for shell structures during the early design phase, improving how we design,
build and reduce the time and cost of assembling discrete shell structures.
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Figure 1.5: Typical workflow for Design for Manufacture and Assembly
(DFMA) Boothroyd [1994]

1.3 Potential applications

Assembly-aware design of discrete shell structures can apply to many dif-
ferent contexts. Firstly, it can help to design and construct free-form shell
structures more efficiently. Secondly, it can enable a new way to build self-
supporting formwork for concrete casting. For example, the concrete shell
structures designed by Félix Candela require much support and formwork for
concrete casting [Barrallo and Sánchez-Beitia, 2011]. An easy-to-assemble
and light-weighted (possibly stay-in-place) formwork can increase the pro-
ductivity of building such structures. Thirdly, it can help design and assess
for restoring traditional masonry structures (such as Gothic cathedrals or
traditional vaults). Fourthly, it can help to build shell structures in devel-
oping countries with limited technology. For example, labour costs are low
in such contexts, but materials and expensive technology are not afford-
able; learning from traditional formwork-less masonry vaulting techniques
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can help designers better understand design constraints in various contexts.
Fifthly, it can be used to design and efficiently assemble discrete structures,
such as the funicular concrete floor system in Figure 1.6, to reduce envi-
ronmental impact and embodied carbon emissions. Last but not least, the
assembly-aware design of discrete shell structures can be applied to con-
structing large-span structures that can be self-supporting during assembly.
Potentially, it can be integrated with other robotic feedback systems to have
autonomous construction, see Figure 1.7.

(a) (b)

Figure 1.6: 3D-printed funicular floor system from Block Research
Group [Rippmann et al., 2018; Ranaudo et al., 2021].

1.4 Thesis structure and outline

Some of the contents and results in this thesis are based on the following
first-author journal publications by the author during his PhD studies:

• Understanding the rigid-block equilibrium method by way of mathe-
matical programming [Kao et al., 2021]

• Coupled Rigid-Block Analysis: Stability-Aware Design of Complex
Discrete-Element Assemblies [Kao et al., 2022]

This dissertation consists of five parts. The first part, “Introduction”, lays
out the research topics, motivations, challenges, research objectives, and
reviews relevant research. The second part, “Equilibrium solvers”, presents
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Figure 1.7: Building large-span, self-supporting structure, using autonomous
robots (vision sketch from NCCR DFAB research stream 1B ‘Large-span
self-supporting assemblies’).

the theoretical background and mathematical foundation of a robust method
for solving static equilibrium. The third part, “Applications”, demonstrates
the use of our method for different kinds of applications. In the fourth
part, “Implementation”, our open-source code implementation is presented.
Finally, the fifth part, “Conclusion”, summarises our work and identifies
some further research directions.

Part I: Introduction

Chapter 1: Background

This chapter introduces the research topic, shows the motivations, discusses
the current research challenges and shows potential applications. It intends
to give the readers a thorough explanation of the research topics: assembly-
aware design and discrete shell structures.
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Chapter 2: Literature review

This chapter reviews the relevant works to the topic. We begin with the
reviews of discrete shell structures. We look at ancient masonry, modern
prefabrication constructions, and discretisations for shell structures. After
that, we look deep into different structural analysis methods and all kinds
of scaffolding-free methods. Lastly, we review possible assembly strategies
for assembly shell structures.

Chapter 3: Scope of work

Based on the literature review, this chapter defines the thesis scope. We list
the research statements and highlight the research objectives.

Part II: Equilibrium solvers

Chapter 4: Rigid-Block Equilibrium (RBE) method

This chapter aims to review, develop, and extend the state-of-the-art Rigid-
Block Equilibrium (RBE) method. We first go through the mathematical
details of the problem in depth with a consistent notation. Then we intro-
duce the numerical procedure to calculate the kern formulation in a general
polygon. After that, we explain the calculation of the resultant to prepare
the reader with tools to understand better the optimisation results. In the
end, we utilise a graph-based data structure to store our assembly informa-
tion.

Chapter 5: Coupled Rigid-Block Analysis (CRA) method

This chapter formulates a new nonlinear optimisation Coupled Rigid-Block
Analysis (CRA) method. We first show two simple 2D examples to highlight
RBE in specific scenarios that wrongly predict the equilibrium. Therefore,
we build CRA upon the RBE method’s strengths, appending additional con-
straints to enhance the problem formulations. We also extend the existing
graph-based data structure to blocks with freeform interfaces.
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Part III: Applications

Chapter 6: Stability assessment

In this chapter, we perform several experiments and benchmarks RBE and
our newly-developed CRA methods. After that, we showcase several assess-
ment examples and propose a stability-aware design workflow.

Chapter 7: Assembly-Aware Design (AAD)

This chapter proposes the assembly-aware design workflow. Firstly, we use
a simple example to demonstrate the process of designing scaffolding-free
assembly and formalise the workflow by demonstrating some examples with
step-by-step analysis. Moreover, we describe the necessary steps to create
discrete shell structures, propose a possible assembling strategy, and analyse
stability during assembly. Finally, we perform several examples to demon-
strate the workflow.

Part IV: Implementation

Chapter 8: COMPAS CRA

This chapter demonstrates our open-source software implementation COM-
PAS CRA. We introduce the software package’s code and online documen-
tation structure. In our implementation, we include several solvers and
geometry calculations as we showed in the Part II: Equilibrium solvers. Ad-
ditionally, we also include many examples as we demonstrate in Part III: Ap-
plications.

Part V: Conclusion

Chapter 9: Conclusion

In the last chapter, we summarise all findings and list the main contributions
of this thesis. In the end, we also discuss some limitations and possible future
work.
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Literature review

This dissertation focuses on the discrete shell structures and the assembly-
aware design process for such structures using as less scaffolding as possible.
This chapter provides an in-depth overview of relevant literature to our re-
search topics. Section 2.1 reviews the discrete shell structures from their
geometrical and structural aspects. Masonry structures and some prefab-
ricated projects using computational methods are listed. Afterwards, Sec-
tion 2.2 gives an in-depth review of various structural analysis methods for
assessing complex assembles. Several methods are covered, including the
finite element, physics-based simulation, discrete element, and rigid-block
equilibrium methods. Section 2.3 studies methods to reduce construction
scaffolding from traditional and modern techniques. Finally, Section 2.4
discusses some designs for assembly works related to this dissertation.

2.1 Discretised shell structures

Discrete shell structures are particular types of shells whose surfaces are
discretised with smaller units. In what follows, we look into discrete masonry
and self-supporting structures. We also review some discretisation methods
and prefabrication works that particularly relate to the shell structures.
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2.1.1 Masonry and self-supporting structures

Self-supporting structures are discrete-element assemblies that can stably
stand under their self-weight. In particular, much effort has been devoted to
exploring freeform self-supporting shapes such as masonry structures [Vouga
et al., 2012; Panozzo et al., 2013; Deuss et al., 2014]. Much research is based
on Thrust Network Analysis (TNA), an equilibrium approach developed
by Block and Ochsendorf [2007]. In the architectural design and fabrica-
tion community, RhinoVault, an interactive design tool, has been popular
and broadly used for designing funicular structures [Rippmann et al., 2012;
BlockResearchGroup, 2020], see Figure 2.1. Rippmann [2016] thoroughly
studied funicular form-finding of self-supporting shapes. However, TNA ap-
plies specifically to shell structures. It is not the appropriate tool for design-
ing general discrete-element assemblies. Along with the TNA method, Ian-
nuzzo et al. [2021c] provided a Python-based computational framework with
several solvers, which will be reviewed in Section 2.2, for assessing unrein-
forced masonry structures.

(a) (b)

Figure 2.1: (a) RhinoVAULT 2 is an open-source tool that can help users
perform funicular form-finding and create self-supporting structures [Ripp-
mann et al., 2012; BlockResearchGroup, 2020]. (b) ColomBrick Thin-
tile Vault by López et al. [2014] was designed using RhinoVAULT (image
from Rippmann [2016] and Sergio González).
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2.1.2 Tessellation and prefabrication of shell structures

Tessellation is essential in mathematics, geometry, art, and architecture. It
covers the surface with smaller units with one or more geometrical shapes
and without gaps between them. The tessellation of free-form architec-
ture has been an important research topic for aesthetic and economic rea-
sons. Proper panelisation of architectural elements, i.e., tessellating the
roof of a building with proper panels, such as designing planar panels with
similar sizes or repeated dimensions, can significantly reduce fabrication
costs [Pottmann and Wallner, 2008; Pottmann et al., 2008; Eigensatz et al.,
2010]. Moreover, much research in graphics has been devoted to studying
and optimising constraint meshes that can be applied more intuitively in
the design process and consider fabrication constraints [Yang et al., 2011;
Bouaziz et al., 2012, 2014; Deuss et al., 2015].

In recent years, digital fabrication has assisted the development of robotic-
assisted additive manufacturing in building construction. 3D printing vastly
increases custom component design possibility and the complexity of prefab-
ricated structures [Mitropoulou et al., 2020]. Bhooshan et al. [2022] studied
the non-conventional 3D-printed method for the component of the Striatus
bridge, see Figures 1.2c and d.

In engineering practice, much research investigates plate shell structures.
It takes both tessellation and prefabrication constraints into account. e.g.,
Tangent Plane Intersection (TPI), the biomimetic principles of natural plate
structures for finding the planar plate. The Agent-Based Modelling (ABM)
approach to finding tessellation with plate geometry fulfilling fabrication
constraints. [Li and Knippers, 2015; Krieg et al., 2015; Sonntag et al., 2017;
Bechert et al., 2021], see Figure 2.2.
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(a)

(b) (c)

Figure 2.2: (a) BUGA Wood Pavilion 2019, photograph by ICD/ITKE Uni-
versity Stuttgart [Bechert et al., 2021]. (b) ICD/ITKE Research Pavil-
ion 2015–16, photographs by ICD/ITKE University Stuttgart [Sonntag
et al., 2017]. (c) Landesgartenschau Exhibition Hall, photographs by
ICD/ITKE/IIGS University Stuttgart [Li and Knippers, 2015; Krieg et al.,
2015].

2.2 Structural equilibrium of complex assem-
blies

The study of structural equilibrium and complex assemblies has been a
core topic in many research fields, especially in computer graphics, robotics,
architecture, and structural mechanics. In what follows, we mainly focus on
some research topics relevant to our goal.
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2.2.1 Complex assemblies

The study of complex assemblies is also a popular research topic and much
effort has been paid to designing and creating different types of objects us-
ing smaller units, such as toys, furniture, mechanisms, and architectures.
Such complex shapes are in some cases designed from a pure geometrical
perspective [Fu et al., 2015; Tai, 2012; Wang et al., 2018; Schwartzburg and
Pauly, 2013; Testuz et al., 2013; Song et al., 2016], while, in other cases,
the mechanical stability is also taken into account. Frick et al. [2016] in-
troduced a graph-based data structure to handle complex assemblies for
stability analysis considering imperfections, but it requires convex decom-
position for concave shapes, see Figure 2.4a. Yao et al. [2017] provided an
interactive process to design joinery for furniture and consider structural
stability at the same time, see Figure 2.3a. However, their analysis result
is over-conservative and does not align well with well-accepted analytic or
other numerical solutions. Looking at structurally-informed LEGO design,
Luo et al. [2015] presented a force-based approach that requires physical
experiments to tune the optimisation, see Figure 2.3b.

(a) (b)

Figure 2.3: Embedding structural equilibrium analysis of complex assembly
in the design tool enables various applications, including furniture design:
(a) analysed and fabricated chair joinery design from Yao et al. [2017]; and,
(b) the LEGO table was structurally designed and fabricated by Luo et al.
[2015].
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2.2.2 Finite element method

The classic Finite Element Method (FEM) is the most commonly used
method for analysing structures in many engineering fields. However, much
research shows that the standard use of FEM approaches does not provide
accurate results when assessing unilateral structures [Block et al., 2006a;
DeJong, 2009; Whiting, 2012; Shin et al., 2016]. In recent works, FEM
methods have been used to assess unilateral assembly modelling each block
as a distinct element [Papadopoulos, 2021]. Nonetheless, they can only pro-
vide a yes-no answer and, thus, cannot be embedded into other optimisation
processes such as gradient-based optimisation formulations.

2.2.3 Physics-based simulation

Physics-based simulations and robot grasp planning have been studied in-
tensively [Baraff, 1991, 1993, 1994; Mattikalli et al., 1995, 1996; Guendel-
man et al., 2003; Erleben, 2007; Stewart and Trinkle, 1996]. However, most
research is devoted to giving a visually convincing rather than a physically
accurate result. Contact problems with friction have been recognised as chal-
lenging problems [Mason and Wang, 1988]. Much research points out that
finding an equilibrium solution of unknown contact forces is a necessary but
not sufficient condition [Palmer, 1989; Pang and Trinkle, 2000; Mosemann
et al., 1997], and determining the stability is co-NP complete [Mattikalli
et al., 1996]. Kaufman et al. [2008] proposed a staggered algorithm to sim-
ulate rigid-body dynamics to realistically model the sliding behaviour using
the Maximum Dissipation Principle (MDP) [Goyal et al., 1991]. We, how-
ever, are interested in the static analysis as it is easier to steer the structural
design. Haas-Heger and Ciocarlie [2020] gave good insights into coupling
kinematics and static equilibrium problems in the optimisation constraints
using MDP. However, their approach is based on Mixed-Integer Program-
ming (MIP) to distinguish between sliding and resting frictions and requires
a long computational time and does not apply to general complex assembly
problems with many elements.
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2.2.4 Discrete element method

Masonry structures have been standing for thousands of years, and they
were designed and constructed by ancient master builders without the aid
of modern engineering methods and technologies. Much research has devel-
oped computational methods to understand its structural mechanics. Cun-
dall [1971] developed Discrete Element Modelling (DEM) to analyse struc-
tures composed of discrete particles for granular materials, which was later
used in the software code for 3DEC [Itasca, 2013]. Starting from the work
of Lemos [1995], it became a popular tool to assess masonry structures or to
benchmark new methodologies [Lemos, 1995; DeJong, 2009; Iannuzzo et al.,
2021b; Dell’Endice et al., 2021; Bui et al., 2017; Sarhosis et al., 2016, 2014].
However, DEM solvers require detailed mechanical parameter tunings and
a long computational time. Besides, simulating complex concave shapes
requires an additional convex decomposition step. In general, historical ma-
sonry structures are not modelled using complex block shapes.

2.2.5 Rigid-block equilibrium method

The use of the Safe Theorem of Limit Analysis, as proved by Heyman [1966],
is a widespread approach to assessing masonry structures. It states that a
structure is safe if an admissible stress state can be found in equilibrium
with the external loads and lying within the structural domain [Heyman,
1966; Ochsendorf, 2002; Huerta, 2006a,b; Como, 2013]. Moreover, Limit
Analysis is also a powerful method when the aim is to assess statically
indeterminate structures and, thus, to explore the infinite set of admissi-
ble, internal stress states [Como, 2013]. Many strategies apply such the-
orem computationally to explore different equilibrium solutions. In par-
ticular, Fraternali et al. [2002], Angelillo and Fortunato [2004], Block et al.
[2006a], Block and Ochsendorf [2007], Fraternali [2010], Block and Lachauer
[2014], De Chiara et al. [2019], Gesualdo et al. [2019], D’Ayala and Casa-
pulla [2001], and Mousavian and Casapulla [2020a] modelled the structures
as a continuum, while in Livesley [1978], Livesley [1992], Gilbert and Mel-
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bourne [1994], Orduña and Lourenço [2005], Gilbert et al. [2006], Portioli
et al. [2014], and Portioli et al. [2015] modelled the structure as an assembly
of rigid blocks having a finite friction capacity.

The Rigid-block Equilibrium (RBE) method was developed byWhiting et al.
[2009, 2012], based on the work of Livesley [1978, 1992], who proposed a for-
mulation based on linear programming to analyse the limit load of masonry
structures. Whiting et al. [2009, 2012] added a penalty term to Livesley’s
formulation that measures structural instability such as to enable forward
design. RBE has since been successfully applied to a wide range of prob-
lems, including forward-design tools and shape optimisation [Deuss et al.,
2014; Wang et al., 2019, 2021a; Shao et al., 2014; Hsu and Keyser, 2012;
Beyeler et al., 2015; Frick et al., 2015; Mousavian and Casapulla, 2020b;
Bhooshan et al., 2018]. In particular, Frick et al. [2015] proposed its use for
designing discrete-element assemblies in an interactive CAD environment,
see Figure 2.4b. Shin et al. [2016] gave a thorough comparison between
RBE and FEM approaches. Wang et al. [2019, 2021a] formulated a shape
optimisation of topological interlocking for convex assemblies based on an
RBE stability analysis without using friction. Wang et al. [2021b] stated
that RBE represents one of the best tools in the design process.

In general, the RBE approach is preferable over FEM, DEM, or other dy-
namic simulations because it can more intuitively guide the design from
unstable toward stable configurations. RBE’s strength is its penalty for-
mulation and the possibility of looking at the internal stress state to un-
derstanding the structural response. The penalty formulation provides the
users with the localisation of unstable regions instead of only collapse mech-
anisms that cannot give meaningful structural hints for complex structures.
Therefore, it enables different structural design options, such as changing
discretisation or connection design (i.e., geometry, shape or using rebar).
Although RBE is widely used to design stable assemblies, it suffers from its
limitations when friction is involved. We will review RBE formulation in
detail in Chapter 4 and address its limitation in Chapte 5.
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(a) (b)

Figure 2.4: (a) Assembly data structure proposed in Frick et al. [2016] to
handle complex assembly geometrical information; (b) Surprising design of
discrete-element assembly using the Rigid-block Equilibrium (RBE) method,
image from Frick et al. [2015].

2.3 Scaffolding-free constructions

Shell or vault structures typically require dense scaffolding during construc-
tion. Intensive falsework or formwork leads to a large amount of material
waste. This section reviews traditional techniques from ancient masons and
modern construction techniques to reduce scaffolding.

2.3.1 Traditional techniques to reduce falsework

Although typical traditional vaulting requires intensive wooden frame struc-
ture as falsework, in Figure 2.5a left, traditional masons have developed
several methods to build shell and vault structures with limited support.
Pitched-brick or Nubian vaulting (Figure 2.5a middle, [Allen and Zalewski,
2009]) is an ancient technique that allows structure erection with regular
brick and mortar without centring. It utilises incline masonry courses as
stable sections to support blocks during construction. Mexican vaulting
technique extended the range of vaulted geometries. However, their design
space is highly constrained [Ramírez Ponce and Ramírez Melendez, 2015].
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(a) (b)

Figure 2.5: (a) from left to right: traditional vaulting, pitched-brick/Nubian
vaulting, tile/Catalan vaulting (Allen and Zalewski [2009]). (b) Temporary
supporting using strings (Fitchen [1981]).

On the other hand, tile or Catalan vaulting offers more formal flexibility.
However, it requires fast-setting mortars to provide the local bending ca-
pacity to temporarily hold the lightweight brick until the next stable sec-
tion/arch during the construction (Figure 2.5a, right, [Ochsendorf, 2010]).
Traditional vault construction can be constructed without formwork. Wend-
land [2005, 2007] studied the most common half-stone vault, discussing how
the geometry of the masonry courses and traditional building techniques
could help with scaffolding-free vault construction. Furthermore, Fitchen
[1981] reviewed an ancient Gothic technique using stone-weighted rope to
hold voussoirs in place temporarily, see Figure 2.5b. Although those tra-
ditional techniques allow spanning space with a limited amount of support
from below, they are limited to specific geometry, certain types of brick units
and mortars, additional stone-weighted ropes, or expert masonry skills to
be able to construct the structure stably.

2.3.2 Modern techniques to reduce falsework

Rippmann [2016] thoroughly reviewed some modern techniques for reducing
temporary scaffolding and formwork. This subsection summarises some of
his findings.

Prefabricated shells constructed in the 1950s–1960s typically require tem-
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(a) (b)

(c) (d)

Figure 2.6: Formwork-free and scaffolding-free prefabrication construction,
images from Rippmann [2016]: (a,b) constructing the Sport Palace in Tbilisi,
Georgia (1961) using an overhang method and its prefabricated element in
detail [Kadzhaya, 1966]; and, (c,d) the construction process of a market roof
in Belaya Zerkov, Ukraine (1978) using a cantilevering method [Kaplunovich
and Meyer, 1982].

porary scaffolding. They use post-tensioned precast elements [Matthews,
1955] or as permanent formwork and later form a structural bond by filling

29



Chapter 2. Literature review

it with cast-in-place concrete [Nervi, 1953]. On the contrary, prefabricated
shells constructed in the former Soviet Union in the 1950s–1970s use an over-
hang and cantilever method to reduce intensive scaffolding to support the
cast-in-place element during construction [Sanchez-Arcas, 1961]. Figure 2.6
shows that the two projects’ prefabricated units were installed without any
scaffolding. The previously installed units temporarily support the current
cantilever units with interlocking mechanisms and boltings. Strategically,
two projects were built up from the outer support towards the centre, which
can be seen as a shell structure with a massive opening in the centre.

2.4 Design for assembly

Design for assembly (DFA) is commonly used in the manufacturing indus-
tries to consider assembly in the design process. This section reviews some
assembly sequence planning methods and assembly-aware designs related to
shell structures.

2.4.1 Assembly sequence planning

Assembly and disassembly sequences are closely related. Much research
uses disassembly to predict assembly sequences [Laperriere and ElMaraghy,
1992; Boothroyd and Alting, 1992; Boothroyd, 1994; Yokota and Brough,
1992; Goda and Davis, 2003; Ghandi and Masehian, 2015]. Although it
is a research area that has been studied extensively, instead of considering
the stability of dis/assembly, most research in architecture focuses on the
correct assembly direction or sequence planning [Tai, 2012; Wang et al.,
2018]. Beyeler et al. [2015] proposed a heuristics-based approach to find a
sequence to deconstruct a pile of object step by step without compromising
the overall structure’s stability. However, the heuristics algorithm proposed
by Beyeler et al. [2015] requires a long computational time that only applies
to small-scale problems.
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2.4.2 Assembly-aware design

Assembly-aware design or stability during assembly is a new research area
that has received much attention recently. Kao et al. [2017] proposed a
design process with a heuristic strategy to assemble discrete shell structures
stably without using falsework, see Figure 2.7. They proposed an efficient
way to compute a feasible assembly sequence based on a stable disassembly
sequence. They utilised an existing game engine as a stability analysis tool,
which is not guaranteed to be reliable.

Figure 2.7: Assembly sequence prediction through disassembly: (top) simu-
lated models using a physics-based game engine; and, (bottom) 3D-printed
physical model Kao et al. [2017].

Learning from traditional masonry techniques described in Figure 2.5b, in-
spired by DREW [2013], and utilising RBE formulation, Deuss et al. [2014]
proposed using a sparse set of tensile chains in replacing dense supports. A
more recent study showed the potentiality of using three cooperative robots
to achieve scaffold-free construction [Bruun et al., 2021].
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Scope of work

This dissertation aims to provide designers with a robust tool to assess and
guide the structural design of discrete shells.

Based on the background and literature review in the previous Chapters 1
and 2 respectively, we clarify the research statements in Section 3.1 and list
our research objectives in Section 3.2.

3.1 Problem statements

Essentially, this dissertation aims to answer the following question:

• How to improve how we design and build discrete shell struc-
tures?

As shown in the background review and literature studies, this question has
many aspects. Thus, the previous question can be decomposed into the
following:

• How to improve the RBE method and assess discrete-element
assemblies correctly and efficiently?

The Rigid-Block Equilibrium (RBE) method is a state-of-the-art
method that can guide designers to improve their design of discrete-
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element assemblies. However, Yao et al. [2017] pointed out that RBE
fails to give a reasonable solution when sliding occurs. To improve it
and make it more robust, we need to understand better its optimisa-
tion result related to mechanical behaviour.

• How to better assess the stability of assemblies with complex
geometry?

The existing graph-based data structure for storing equilibrium cal-
culations requires convex decomposition of concave shapes, which re-
quires tedious manual steps or an additional tetrahedralisation algo-
rithm step. Therefore, we aim to find a better and easier strategy for
analysing assemblies with complex shapes.

• Can the shapes of elements improve the stability during as-
sembly?

Different shapes and configurations can affect the assembly’s stability,
so we aim to investigate block shapes that have better stability during
assemblage and aid/allow scaffold-free assembly constructions.

• What assembly strategies are adequate for the discrete shell
structures?

Since both assembly shape and sequencing affect how discrete shell
structures can be assembled, we aim to find one of the feasible assembly
sequences to construct the structure efficiently.

3.2 Research objectives

From the research statement, we list the following research objectives for
this dissertation:

• Better understanding of the mechanical behaviour of RBE
results

The RBE method uses quadratic programming to obtain one of the
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equilibrium solutions. However, that particular solution is incorrect
in some scenarios when sliding occurs. Therefore, this dissertation
investigates some methods for better understanding RBE results’ me-
chanical behaviour.

• New robust structural solver

A new robust solver fixes the existing RBE solver’s flaws and provides
users with quick, accurate, and helpful design feedback.

• Benchmark solver results

This research plans to compare the theoretical solver results with com-
mercial solvers and validate them with physical models.

• Improve assembly data structure

Improve assembly data structure that enables handing assemblies with
complex block shapes.

• Study of geometry and stability

Block shapes play an essential role for the stability during assembly,
so we implement studies of historical stereotomy principles to examine
the relation between block geometry and stability.

• Efficient construction sequencing strategy

We aim to propose assembly strategies that can reduce scaffolding
during assembly. It is worth noting that our tool may only offer a
particular solution that follows what we learn from masonry logic or
historical contexts and that the solution may not be the only or the
optimal solution.

• Workflow for efficient design and construction of discrete
shell structures

A new assembly-aware design workflow should be proposed specifically
for designing and assembling discrete shell structures.
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• Open-source software implementation

Implementation of our research contributions and our new structural
solver will be available to the public. Additionally, thorough docu-
mentation will be published online for practical referencing and usage.
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Chapter 4

Rigid-Block Equilibrium (RBE)
method

This chapter aims to review, further develop, and extend some of the
main features of the rigid-block equilibrium (RBE) method, and interpret
its mathematical optimisation results. RBE is a numerical approach that
frames the equilibrium problem of rigid-block assemblies as an optimisation
problem to compute possible internal and equilibrated singular stress states.
The contact between blocks is considered to have a finite friction capacity
and the unilateral behaviour is modelled through a penalty formulation. In
particular, the penalty formulation widens the standard admissible solution
space of compressive-only forces by allowing for tensile forces to appear in
potentially unstable regions. The RBE objective function minimises the in-
terface forces while the constraints are linear functions enforcing the static
equilibrium of the whole assembly.

In Section 4.1, we first introduce what RBE is and its history of development.
In Section 4.2, we go through the mathematical details of RBE. We define
the problem using a consistent notation and go through the constraints and
objective functions step by step to build a foundation for understanding
mechanical behaviours using mathematical programming. In Section 4.3,
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we summarise the numerical approach to define the kern of generic and
planar polygonal contact interfaces, which can be used to explore safer in-
ternal stress states. Additionally, in Section 4.4, we provide a procedure to
post-process the results of the virtual nodal forces and reduce them to their
resultants on the contact interfaces, which can be used to have a more intu-
itive structural understanding of the RBE results. After that, we review the
assembly data structure in Section 4.5 and explain how to include all block
and contact information in a graph-based data structure computationally.
Finally, we summarise RBE’s pros and cons in Section 4.6.

4.1 Introduction

The Rigid-Block Equilibrium (RBE) method frames the Equilibrium Prob-
lem (EP) [Angelillo et al., 2018] as an optimisation problem that minimises
the total amount of contact forces, having equilibrium relations and friction
conditions as constraints. It is based on a formulation that was first pro-
posed by Livesley [1978, 1992] and later extended by Whiting et al. [2009,
2012] and Frick et al. [2015, 2016].

Livesley [1978] proposes a mathematical model that adapts the analysis of
rigid-plastic structural frames for finding the limit load of masonry struc-
tures formed by rigid blocks. In particular, the solution is obtained as the
result of an optimisation problem, in which the load factor is maximised
subject to the linear equilibrium constraints. Later on, Livesley [1992] ex-
tends his previous work to three-dimensional masonry structures and uses
the lower-bound approach to handle the collapse mechanisms that involve
sliding, hinging, and twisting. In his work, masonry structures are modelled
as discrete elements that connect with planar quadrilateral interfaces and
have a finite friction capacity, Furthermore, he assumes that two surfaces
in contact are slightly concave, and thus only interact through forces at the
corners.
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Whiting et al. [2009, 2012] extend the method by including penalty forces
to enlarge the solution space by allowing infeasible solutions to virtually
provide the tension capacity of an interface as imaginary glue.

Frick et al. [2015] review the work from Whiting et al. [2009, 2012] and
propose some visualisation methods to design discrete-element assemblies
more intuitively. Finally, Frick et al. [2016] propose a computational method
that enables the calculation of arbitrarily-placed assemblies with polygonal
planar interfaces using a combined graph and mesh data structure. Their
method allows “general” contacts, e.g., partial overlaps of faces between
blocks, which were not possible previously in Livesley [1978] and Whiting
et al. [2009, 2012].

4.2 Theoretical background

To provide the reader with a sufficient amount of information to go through
our method in Chapter 5, we provide the state-of-the-art Rigid-Block Equi-
librium (RBE) method in detail and define the problem with consistent
notations.

4.2.1 Assembly, blocks, and contact interfaces

In Figure 4.1, an assembly A is composed of a finite set of blocks B and
contact interfaces C. Each block is a compact closed subset of R3 whose
boundary is defined as the union of finite planar polygons. The interface Cjk
between the block j and k is defined as the intersection of Bj and Bk, which is
a compact polygonal subset of R2. Therefore, for an assemblyA with l blocks
B = {Bj | j ∈ {1, . . . , l}}, the set of all interfaces is: C = {Cjk = (Bj ∩ Bk) |
∃j, k ∈ {1, . . . , l}, with j 6= k ∧ C̊jk 6= ∅}. Let mjk be the total number
of vertices cijk of the interface Cjk with i ∈ {1, . . . ,mjk}. (ûjk, v̂jk, n̂jk)

denotes the unit basis vector representing the local reference system of the
planar interface Cjk where n̂jk is the unit normal vector pointing towards
the block Bk. Note that although Cjk and Ckj denote the same interface,
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the corresponding reference systems are not the same.

Figure 4.1: Notations adopted to describe the equilibrium equations of the
assembly. The pink colour is used for supports, i.e., fixed blocks, and grey
is used to denote free blocks. The assembly data structure is a directed
graph G(V,E), where vertex Vj stores information of block Bj while edge
Ejk stores all information of interface Cjk. f ijk represents the unknown nodal
force acting at the vertex i of interface jk; it can be decomposed into three
mutually orthogonal vectors using the local reference system of the interface
(ûjk, v̂jk, n̂jk).

4.2.2 Unilateral contact

The unilateral contact between blocks is modelled through compressive
forces occurring at the interface vertices. In Figure 4.1, the unknown re-
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action force f ijk ∈ R3 acting at the vertex cijk can be decomposed into three
components f ijkn n̂jk, f

i
jku ûjk, and f ijkv v̂jk. The requirement that only

compressive forces are admitted is modelled as a non-negativity constraint
on the normal force components:

f ijkn ≥ 0 , ∀i, j, k . (4.1)

For simplicity, we use bold symbol f ijkn ∈ R3 to represent f ijkn n̂jk. Similarly,
we consider the nodal friction force f ijkt ∈ R3 combining the two arbitrary,
mutually-orthogonal, in-plane shear components f ijku ûjk + f ijkv v̂jk, where
f ijku, f

i
jkv ∈ R.

4.2.3 Equilibrium equations

Referring to Figure 4.1, for the assembly A with l blocks and h interfaces
to be in static equilibrium requires that every block has to be in static equi-
librium. Unknown internal net forces and torques must balance all known
external and unknown reaction forces and torques. In particular, for each
block six equilibrium equations can be written, three for the net force and
three for the torque. Looking at the block Bk, the equilibrium equations due
to all nodal reaction forces fjk acting on the mjk-sided polygonal interface
Cjk can be compactly expressed as:

Ak,jk fjk =



ajk,x ajk,x · · · ajk,x

ajk,y ajk,y · · · ajk,y

ajk,z ajk,z · · · ajk,z

b1
jk,x b2

jk,x · · · bmjk,x

b1
jk,y b2

jk,y · · · bmjk,y

b1
jk,z b2

jk,z · · · bmjk,z




f1
jk

f2
jk

...

fmjk

 ,

where ajk,ı = [n̂jk,ı ûjk,ı v̂jk,ı], bijk,ı = [(rikj×n̂jk)ı (rikj×ûjk)ı (rikj×
v̂jk)ı], ı ∈ {x, y, z}, and f ijk = [f ijkn f ijku f ijkv]

ᵀ. Particularly, n̂jk,x, ûjk,x,
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and v̂jk,x are the x coordinate of Cjk’s basis expressed in the global reference
system. rikj is the torque arm vector pointing from the centre of mass of Bk
to cijk. The first three rows of Ak,jk collect the translational coefficients,
while the last three rows collect the torque coefficients. These six equilibrium
equations have to be written for all interfaces Cjk between Bk and each of
its neighbouring blocks Bj . Once all equilibrium equations for all blocks are
collected, the global equilibrium of the entire assembly A reads:

A1,1 · · · A1,h

...
. . .

...
Al,1 · · · Al,h



f1
...
fh

 = −


p1

...
pl


A f = − p ,

where row k and column  of sub matrix element Ak, represent the equilib-
rium equations of Bk as coming from interface C. Note that all interfaces
Cjk are collected in a given order through the map g : Cjk ∈ C 7→ C ∈ C
and  ∈ {1, . . . , h}. Typically, A matrix is sparse. Indeed, each column
 only has at most two non-zeros sub-matrices Ak, as each interface is
shared by two adjacent blocks. Besides, if the block Bk is a support, the
corresponding sub-matrix is zero. Specifically, the row k in the equation,[
Ak,1 · · · Ak,h

][
f1 · · · fh

]ᵀ
= −pk, represents the equilibrium con-

dition for Bk respective to all its neighbouring interfaces, where pk is the
vector collecting the external loads acting on the Bk.

To summarise, we can compactly write all equilibrium equations in matrix
form:

Aeq f = −p , (4.2)

where the coefficients of the equilibrium equations are collected in the matrix
Aeq ∈ R6·l×3·s, with s =

∑l
k=1

∑l
j=1mjk the total number of interface

corners; f ∈ R3·s collects all interface unknown forces, and p ∈ R6·l the
external forces lumped at each block’s centre of mass.
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To have stable assemblies, Eq. 4.2 is the necessary condition that needs
to be satisfied. If we cannot find any solution f , we can state that the
structure is not stable. Typically, Aeq is not a square matrix because of
the structure’s indeterminacy, having fewer equations than unknowns; in
general, 6 · l < 3 · s. Therefore, the solution f is not unique, and it does
not necessarily represent the actual force distribution over the interface. For
these reasons, optimisation approaches represent a valid strategy to select
one of the possible internal stress states.

4.2.4 Analysing infeasible structures

For unstable assemblies, equation (4.2) does not have a solution. To extend
the solution space and to measure the corresponding infeasibility, Whiting
et al. [2009, 2012] allowed for tensile capacity through the introduction of
a penalty formulation. Specifically, they decoupled the normal force f ijkn
into its positive f i+jkn and negative f i−jkn parts, such that ∀i, j, k, f ijkn =

f i+jkn− f
i−
jkn, with f

i+
jkn, f

i−
jkn ≥ 0 [Bertsimas and Tsitsiklis, 1997]. Therefore,

an additional unknown for each vertex was introduced. All the unknowns
can be collected in the vector f̃ ∈ R4·s and the equilibrium of the entire
assembly can be written using the same equilibrium matrix in Eq. 4.2 as:

Aeq B f̃ = −p , (4.3)

where the different dimensional f̃ is represented element-wise f̃ ijk =

[f i+jkn f i−jkn f ijku f ijkv]
ᵀ and B is a matrix that maps f̃ to f . We define

this relation as Bi
jk f̃

i
jk = f ijk with:

Bi
jk =

1 −1 0 0

0 0 1 0

0 0 0 1

 ∀i, j, k .
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4.2.5 Linearised friction constraint

To model the Mohr-Coulomb friction cone constraint, the friction is bounded
by the normal forces. Since the normal force is decomposed into two parts,
two strategies can be adopted. The first relates the tangential with the net
normal forces [Whiting et al., 2009, 2012], namely:

∣∣ f ijkt ∣∣ ≤ (µ f i+jkn − µ f
i−
jkn) , ∀i, j, k . (4.4)

The second indicates that the friction is bounded by the positive part of the
normal forces [Frick et al., 2015]:

∣∣ f ijkt ∣∣ ≤ µ f i+jkn , ∀i, j, k . (4.5)

where µ is the static friction coefficient. We call the first strategy (Eq. 4.4)
the friction-net approach; while the second (Eq. 4.5) the friction+ approach.
With the friction-net approach, the optimisation problem can get infeasi-
ble if the friction capacity is exceeded. Indeed, if the net force of Eq. 4.4
is zero, the corresponding tangential force is constrained to be zero. With
the friction+ approach, the problem is always feasible since the solution
in terms of tangential forces affects the nodal normal forces because of the
penalty formulation. In Section 6.1, we illustrate this aspect through a sim-
ple benchmark. Throughout this research, if we do not specifically mention
which strategy is applied, we use friction+ by default because it provides
better feasibility to the problem.

Theoretically, the Mohr-Coulomb criterion is represented by a cone.
Nonetheless, it is common to approximate the original Mohr-Coulomb fric-
tion cone with a pyramid, linearised with a given number of planes, to speed
up the solving process. To have a good proximation of the cone, we detail
the eight-sided linearised friction constraint used in this research. Figure 4.2
shows an eight-sided cone approximation and its vertex coordinates concern-
ing two tangential axes f ijku and f ijkv.
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Looking at an interface vertex, Eq. 4.5 can be rewritten using the following
two inequalities:

−µ f i+jkn + f ijkt ≤ 0

−µ f i+jkn − f
i
jkt ≤ 0 , ∀i, j, k .

If we replace f ijkt with f
i
jku and f ijkv, we can define the eight-sided approx-

imation of the Mohr-Coulomb criterion as:

GBi
jk f̃

i
jk ≤ 0 , ∀i, j, k ,

where matrix G is: 

−µ 1 0

−µ 0 1

−µ −1 0

−µ 0 −1

−µ 1/
√

2 1/
√

2

−µ −1/
√

2 1/
√

2

−µ −1/
√

2 −1/
√

2

−µ 1/
√

2 −1/
√

2



,

matrix Bi
jk is:

Bi
jk =

1 0 0 0

0 0 1 0

0 0 0 1

 ∀i, j, k ,

which can be stacked into a big diagonal matrix considering all vertices of
all interfaces: 

G

. . .

G



Bi
jk

. . .

Bi
jk



f̃1
...
f̃s

 ≤ 0 ,
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where
[
f̃1 · · · f̃s

]ᵀ
are all the nodal forces.

Figure 4.2: Linearised eight-sided friction cone

To summarise, the linearised equations have to be written for all interface
vertices and can be collected in the following matrix form:

Afr B f̃ ≤ 0 , (4.6)

where Afr collects all coefficients in a large sparse matrix.

4.2.6 Optimisation problem

Combining the equilibrium condition (Eq. 4.3) with the linearised friction
constraint (Eq. 4.6), the entire optimisation problem can be expressed as a
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quadratic programming (QP) problem:

min
f̃

1

2
f̃ᵀ H f̃

s.t. Aeq B f̃ = −p

Afr B f̃ ≤ 0

f i+jkn , f
i−
jkn ≥ 0 , ∀i, j, k ,

(4.7)

where H is the square diagonal matrix that collects all weights attributed
to different force components [Whiting et al., 2012], with the tensile forces
highly penalised. Compared to a linear objective function in linear program-
ming (LP) problem:

min
f̃

cᵀ f̃ , (4.8)

the quadratic one returns a linear-elastic force distribution on the interface.
In Section 6.1, we discuss this aspect in more detail. Optimisation problem
(4.7) represents the original RBE formulation as in Whiting et al. [2009,
2012]. It is worth noting that RBE is a strictly force-based approach, with-
out coupling internal stress states with corresponding displacements. As
in Whiting et al. [2009, 2012], an assembly is assumed stable if problem
(4.7) returns a solution without tensile forces (f i+jkn − f

i−
jkn ≥ 0 , ∀i, j, k).

4.3 Kern of a generic polygonal interface

In this section, we present the numerical procedure to define the kern of a
generic, planar polygonal interface, which can be either convex or concave
(in the latter, the convex hull of the interface is used to define the kern).
For more details, the reader is referred to [Hally, 1987; Romano, 2002].
For unilateral materials, the kern of an interface is the area in which a
compressive point load may be applied without producing any tensile stress.

Looking at the vertex local reference system of the mjk-sided polygonal
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interface Cjk (Figure 4.3a), defining a planar contact between two adjacent
blocks, let ςijk be the position vector of the i-th vertex in the local coordinate
system.

4.3.1 The moments of polygons

In this subsection, we briefly summarise the equations of moments of poly-
gons derived from Hally [1987]:

I(n) ≡
∫
∂Ω

ςijk
n
du dv , (4.9)

where the superscript n is the order of the moment, ∂Ω denotes integration
over the interface domain, and u, v are the local coordinate axes.

The following three linear equations express the zero-, first- and second-order
area moments, namely:

I(0) =
1

2

mjk∑
i=1

Dijk , (4.10)

I(1) =
1

6

mjk∑
i=1

Dijk(ςijk + ςi+1
jk ) =

[
Iu

Iv

]
, (4.11)

I(2) =
1

12

mjk∑
i=1

Dijk(ςijk
2

+
1

2
(ςijk ⊗ ςi+1

jk + ςi+1
jk ⊗ ς

i
jk) + ςi+1

jk

2
)

=

[
Iuu Iuv

Ivu Ivv

]
,

(4.12)

where,
Dijk =

∣∣∣ςijk × ςi+1
jk

∣∣∣ = ςijk,u ς
i+1
jk,v − ς

i
jk,v ς

i+1
jk,u ,

ςijk
2

= ςijk ⊗ ςijk ,
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and,

Iu =
1

6

mjk∑
i=1

Dijk(ςijk,u + ςi+1
jk,u) ,

Iv =
1

6

mjk∑
i=1

Dijk(ςijk,v + ςi+1
jk,v) ,

Iuu =
1

12

mjk∑
i=1

Dijk(ςijk,u
2

+ ςijk,uς
i+1
jk,u + ςi+1

jk,u

2
) ,

Ivv =
1

12

mjk∑
i=1

Dijk(ςijk,v
2

+ ςijk,vς
i+1
jk,v + ςi+1

jk,v

2
) ,

Iuv = Ivu =
1

12

mjk∑
i=1

Dijk(ςijk,uς
i
jk,v +

1

2
(ςijk,uς

i+1
jk,v + ςijk,vς

i+1
jk,u) + ςi+1

jk,uς
i+1
jk,v) ,

4.3.2 Position of kern

Let R be the second-order, a skew-symmetric tensor that rotates in the
positive direction (right-hand rule) any vector by π/2:

R =

[
cos(π/2) − sin(π/2)

sin(π/2) cos(π/2)

]
=

[
0 −1

1 0

]
. (4.13)

In Figure 4.3b, the unit normal n̂i to the edge (ςijk, ς
i+1
jk ) can be expressed

as:
n̂i = R (ςi+1

jk − ς
i
jk)/‖ςi+1

jk − ς
i
jk‖2 . (4.14)

Particularly, Eqs. (4.10 - 4.12) can be thought of as a scalar, a 2D vector
and a matrix, respectively. The position of the centroid of the interface rG

(Figure 4.3a) can be evaluated through Eqs. (4.10) and (4.11) as:

rG = I(1) / I(0) , (4.15)
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while the vertex i′ of the kern corresponding to line Li (Figure 4.3b), as:

ri′ = −I(2)
G n̂i / (I(0)(ri · n̂i)) , (4.16)

in which:

I
(2)
G =I(2) − I(0)(rG ⊗ rG)

=I(2) − I(0)

[
ςGjk,u ς

G
jk,u ςGjk,u ς

G
jk,v

ςGjk,v ς
G
jk,u ςGjk,v ς

G
jk,v

]
.

By applying Eq. (4.16) for each edge of the convex hull, it is possible
to explicitly define the kern of a polygonal interface [Romano, 2002]. In
Section 6.1, we will show how the kern of an interface can be introduced
directly in RBE. Furthermore, we will illustrate how, for statically inde-
terminate structures, we can use it to seek one of the infinite, admissible,
internal stress fields that fully activates a set of interfaces.

Remark 1. Instead of adopting a geometric safety factor using the con-
cept of “kern” by shrinking the boundaries of the contact polygon [Whiting
et al., 2009], we implement the explicit kern formulation. The reason for
introducing the “kern” in Whiting et al. [2009] was to prevent potential
high concentrations of compressive stresses/forces just taking into account
reduced interfaces. For a real material having a finite capacity in compres-
sion, high-level, localised compressive stresses can lead to material crushing.
The main consequence of local material crushing is the redistribution of
the compressive stresses over an augmented area, and the corresponding
kinematic effects may be modelled in terms of relative displacements as a
penetration between the original rigid blocks. Nonetheless, in common un-
reinforced, historic masonry structures, the crushing effects on the stability
are usually two orders of magnitude smaller than the common effects due
to the typical crack pattern, e.g., the ones caused by settlements. There-
fore, it is very conservative to consider an assembly with reduced interfaces.
It is more reasonable to take into account these secondary effects in the
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(a)

(b)

Figure 4.3: In (a), a convex, polygonal region Ω on the interface Cjk, whose
generic vertex i is denoted through the vector ςijk with respect to a generic
reference system (o, u, v). In (b), the kern of the polygonal interface, and
the correspondence among the tangent line Li and its pole i′.
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post-processing phase unless the adopted model allows accounting for plas-
tic compressive deformations directly. For a rigid-block model considering
a finite compressive capacity, the reader is referred to Portioli et al. [2015].

4.4 Resultants

In physics and engineering, the resultant force (sometimes called net force)
combines a system of forces to help simplify the problem. As mentioned
in Section 4.2, the optimisation problem selects one of the many solutions
for the indeterminacy structures. By computing and visualising the resul-
tant, we can more intuitively interpret the RBE results and understand the
structural behaviour of the assemblies.

4.4.1 Resultant forces

The normal resultant force Fjkn on the interface Cjk is the sum of all nodal
normal forces:

Fjkn =

mjk∑
i=1

f ijkn . (4.17)

Similarly, we can sum up all nodal friction forces as an in-plane frictional
resultant Fjkt:

Fjkt =

mjk∑
i=1

f ijkt . (4.18)

4.4.2 Position of the resultant

We locate the resultant at the centre of the pressure of the interface Cjk.
Its position Pjk in the local coordinate system can be calculated with the
following relation:

(Pjk − ojk)× Fjk =

mjk∑
i=1

(cijk − ojk)× f ijkn ,
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where ojk is the local reference origin. Pjk is a vector that can be expressed
as
[
Pjk,u Pjk,v 0

]ᵀ
, with:

Pjk,ı = ojk,ı +
1

‖Fjkn‖

mjk∑
i=1

(cijk,ı − ojk,ı) f ijkn,ı , ı ∈ {u, v} . (4.19)

4.4.3 Torque

Since both normal and frictional resultant forces are placed at the centre
of pressure Pjk, additional torque caused by the friction forces in the local
reference system can be expressed as:

Tjk =

mjk∑
i=1

(cijk − Pjk)× f ijkt

=

[
0 0

mjk∑
i=1

((cijku − Pjku)f iv − (cijkv − Pjkv)f iu)

]ᵀ
.

(4.20)

4.5 Assembly data structure

To efficiently handle RBE information, we utilise the assembly data struc-
ture proposed in Frick et al. [2016]. The assembly data structure is a graph-
based data structure where a directed graph G(V,E) is used to represent
the entire assembly A. The vertices V store block geometries information
B, and the directed edges E store all contact information C. The graph
edge is directed. Indeed, although interfaces Cjk and Ckj collect the same
vertices, the unknown forces corresponding to the same corner are reversed
for Newton’s third law. This shows the reason why the axes of the local
reference systems of Cjk and Ckj are pointing in opposite directions. Several
interface typologies are available to model non-perfect contacts such as face-
face, face-edge, and face-vertex contacts. For a more detailed discussion and
implementation of the assembly data structure, we refer the reader to Frick
et al. [2016] and COMPAS Assembly [BlockResearchGroup, 2018].
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4.6 Summary

In this chapter, we have reviewed, explored, and further developed the RBE
method. RBE is a force-based method that solves the equilibrium problem
through an optimisation where the objective function minimises the total
amount of interface forces and the constraints are represented by linear re-
lations enforcing the static equilibrium and the friction failure conditions.
It is worth pointing out that tensile forces are allowed even though highly
penalised: in this sense, RBE enlarges the space of admissible stress states.
After that, we presented the kern of a general polygonal interface and sum-
marised the resultant calculation procedure. We utilised a graph-based as-
sembly data structure to handle all forces and geometrical properties for the
complex assembly.

Compared to other commonly used tools, such as discrete element modelling
(DEM), e.g., using the 3DEC code [Cundall, 1971], RBE is open-source,
fast, explicit, and straightforward. It only needs one mechanical parameter
(i.e., the friction angle, see also Iannuzzo et al. [2020]). On the other hand,
compared to real-time interactive environments such as physics-based game
engine PhysX [Nvidia, 2013] and Bullet [Coumans, 2013], RBE is a static
problem and does not require simulating the movement of the objects, such
that there is no additional time parameter to tune. In general, RBE com-
bines the rigour of both DEM and the interactivity speed of a game engine
in order for it to be used for design purposes. Furthermore, RBE provides
more transparent and accurate results beyond a Yes/No answer, i.e., stable
or collapsing. In this sense, RBE can be used to better guide users during
the design process [Wang et al., 2021b]. Additionally, it can also be further
applied to other optimisation problems as in Whiting et al. [2012].

Although RBE is used to design stable assemblies, it suffers from limitations
in some cases. Yao et al. [2017] hinted that the RBE model has a problem
and is not reliable when sliding is involved, thus developing a different al-
ternative method. However, instead of completely giving up on the RBE
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approach and reinventing or looking for an alternative solver from scratch,
we recognise RBE’s merits, benefits, and advantages for redirecting users’
unstable designs. In the next Chapter 5, we build upon the RBE approach,
clarify its issues, and solve them to propose our newly developed method.
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Chapter 5

Coupled Rigid-Block Analysis
(CRA) method

The rigid-block equilibrium (RBE) method uses a penalty formulation to
measure structural infeasibility or to guide the design of stable discrete-
element assemblies from an unstable geometry. However, RBE is a purely
force-based formulation, and it incorrectly describes stability when com-
plex interface geometries are involved. To overcome this issue, this chapter
introduces the coupled rigid-block analysis (CRA) method, a more robust
approach building upon RBE’s strengths. The CRA method combines equi-
librium and kinematics as a penalty formulation in a nonlinear programming
problem. In addition, we show how CRA enables accurate modelling of com-
plex three-dimensional discrete-element assemblies formed by rigid blocks.

In Section 5.1, we first describe what RBE is missing conceptually and give
some insights to the problem. To introduce the CRA method, in Section 5.2,
we first formulate a pure force-based optimisation problem and then we
couple it with kinematics through specific additional constraints. After that,
we introduce the penalty formulation to measure the level of instability of
the unstable assemblies (Section 5.3). The penalty formulation represents
the extended version of the original RBE method discussed in Chapter 4. In
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Section 5.4, we extend the data structure in Section 4.5 to avoid the tedious
convex decomposition step for analysing complex assemblies. Lastly, we
summarise our proposed CRA method in Section 5.5.

5.1 Introduction

To show when RBE fails to predict stability when friction is involved, we
illustrate in Subsection 5.1.1 two paradigmatic examples, called model H
(shown in Yao et al. [2017]) and A (Figure 5.1). After that, in Subsec-
tion 5.1.2, we explain how we propose to overcome these issues by looking
at a simple 2D wedged model V (Figure 5.2).

5.1.1 Issues of the RBE approach

For model H in Figure 5.1, we can imagine one free block placed between
two parallel fixed walls, which can also represent robot-hand grippers. Re-
gardless of the size of the central block and the friction coefficient, RBE
always finds a solution such that the free block is stable. Indeed, to be in
static equilibrium, all forces have to cancel out. In the vertical direction,
the free block’s self-weight w is balanced by two tangential contact reactions
ft. In the horizontal direction, RBE finds two normal forces fn that cancel
each other out. Thus, for any tangential force distribution with any friction
coefficient, RBE always finds two large enough normal forces that simul-
taneously satisfy the Mohr-Coulomb criterion and cancel each other out.
In other words, those valid static equilibrium solutions always exist in the
constraint solution space defined by Eq. 4.2. However, if the middle block
is not prestressed, e.g., due to robotic grippers, the normal forces should
not exist in a real-world scenario. In fact, such a bizarre equilibrium solu-
tion is not wrong; it is because of the original rigid-body assumption that
a normal force can occur without any deformation. It is a physically unre-
alisable solution when the free block is not prestressed, and generated by a
pure force-based optimisation that does not take those considerations into
account. In the case of associative behaviour, the solution of the force-based
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(a) model H (b) model A

Figure 5.1: Two peculiar examples show some of RBE’s issues. The free
block (grey) is always detected as in equilibrium.

problem is linked to the solution of a dual displacement-based problem, as
shown in Portioli [2020], Portioli et al. [2021] for a finite friction capacity,
or through an energy-based dualisation of an Heymanian material model
in Iannuzzo et al. [2020, 2021a]. RBE returns a force-based solution that
assumes its dual displacement-based solution exists, regardless if it needs
prestress or not. A simple way to avoid the H model’s problem is to couple
equilibrium with kinematics and allow for a negligible numerical overlap-
ping; since RBE assumes all blocks to be rigid and non-deformable, having
two simultaneous overlaps between supports is impossible.

Comparable to model H, the reader can intuitively imagine that in model
A the free block would fall down if it is rigid and not prestressed. However,
if we try to solve this model in the same way used for the H model, RBE
would still provide the solution shown in Figure 5.1b. Therefore, some-
thing is still missing; besides the deformation aspect, all reaction forces,
particularly tangential forces, have to be compatible with possible rigid-
body motions [Weißenfels and Wriggers, 2015], and, all tangential forces are
possible only if the corresponding normal forces are activated. With these
assumptions, model A without prestressing is no longer feasible. In other
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words, all possible rigid-body motions have to be considered. In model A,
the only admissible movement is a downward vertical displacement of the
central block. Once the contact of one of the two surfaces is lost, admissible
force solutions are no longer possible.

As the RBE method is a pure force-based approach, it fails to capture some
scenarios as discussed in the H and A model. The optimiser greedily finds
physically unrealisable solutions (without prestressing) as long as those solu-
tions satisfy equilibrium and friction cone constraints. In some cases, wrong
solutions included in the RBE’s solution space can be taken out by looking
at the admissible dual movements, but in many other cases it is not possible
to simply exclude them from the solution space.

5.1.2 Insight problems

Inspired by Omata and Nagata [2000], we observe that not all forces are
physically realisable concerning rigid-body movements. To be more specific,
the reaction forces are realisable only if we can find a compatible rigid-body
motion. The friction force occurs in the opposite direction of a potential
relative movement to prevent the object from sliding such that the accelera-
tion remains zero. Additionally, the normal reaction force is activated only
if the two adjacent points are in contact. When there is a detachment, the
normal force has to be zero and, consequently, the friction force must be
zero as well (bounded by the Mohr-Coulomb criterion).

Figure 5.2 shows two possible equilibrated solutions of the wedged model V
obtained with RBE. Both models share the same geometry and boundary
conditions but are inclined at a different angle. In Figure 5.2a, we depict a
possible rigid-body motion defined by an in-plane rotation and translation,
collected in the vector δq3 describing the motion of block B3. The nodal
friction forces f1

13t and f1
23t found by RBE are compatible with nodal dis-

placements d1
13t and d1

23t. Similarly, if a contact point tends to detach, the
nodal normal force cannot be activated. Indeed, no reaction force can occur
at vertex c2

23 because of the relative detachment d2
23n.
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(a) compatible nodal forces

(b) incompatible nodal forces

Figure 5.2: Model V : nodal forces have to be compatible with virtual rigid-
body motion; otherwise, those nodal forces are not physically realisable.
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Conversely, Figure 5.2b illustrates how an admissible equilibrated solution
is not compatible with a potential rigid-body motion. The contact forces
obtained using RBE are in equilibrium as they balance the block’s self-
weight. However, these forces are not compatible with a pure translation of
the block B3. Indeed, contact forces f1

23n and f1
23t are not compatible because

of the normal detachment d1
23n. Additionally, this equilibrated solution is

not compatible with the rigid-body motion depicted in Figure 5.2a, as f2
13n

and f2
13t are not admissible because of the dual detachment.

Importantly, in this work, all friction forces are static, while infinitesimal
rigid-body motions represent virtual displacements. The aim is to couple
internal forces with infinitesimal rigid-body motion in order to discard equi-
librated solutions that are not compatible with any rigid-body motion, and
in this sense, not realisable.

The physical limitations highlighted on the H, A, and V models can fre-
quently appear in 3D assemblies, and they are intrinsic in geometries with
multiple planar interfaces (we will call it multi-planar for short). Indeed,
in Figure 6.13d, the interface between free and fixed blocks is multi-planar,
and, upon closer inspection the reader can see a parallelism with model A
or V. Even though the RBE provides proper solutions in some cases, e.g.,
an arch subjected to in-plane loads (see Figure 6.11), we cannot determine
in advance if treating a specific problem with a pure force-based approach
is sufficient. In the worst case, when RBE fails, it falsely claims that a non-
prestressed and unstable structure is safe, leading to wrong design choices or
assessment strategies. Thus, a procedure that correctly accounts for these
aspects is needed. This research aims to tackle these aspects through a non-
linear constrained optimisation problem to discard unrealisable solutions
and provide an accurate approach for discrete-element assembly analysis.
We call this approach the Coupled Rigid-Block Analysis (CRA) method
as it combines the original equilibrium formulation of RBE with kinemat-
ics. In Section 5.2, this new numerical formulation will be introduced and
discussed.
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5.2 Problem formulation

Similar to the RBE formulation in Eq. 4.7, but excluding the penalty tension
parts, the force-based formulation that we start from is:

min
f

‖fn‖22 (5.1a)

s.t. Aeq f = −p (5.1b)

Afr f ≤ 0 (5.1c)

f ijkn ≥ 0 , ∀i, j, k , (5.1d)

where Eq. 5.1b enforces equilibrium only using compressive forces (Eq. 5.1d)
and Eq. 5.1c represents the Mohr-Coulomb material failure criterion. The
objective function represents the squared norm of all contact forces based
on Gauss’s principle of least constraint [Moreau, 1966]. The optimisation
problem returns infeasible if no equilibrium solution can be found.

As mentioned in Section 5.1, in some scenarios such as models H and A,
Eq. 5.1 gives an equilibrated solution but it is a physically unrealisable so-
lution without the existence of prestressing or external forces.

5.2.1 Virtual displacement

As proved in Mattikalli et al. [1996] and Pang and Trinkle [2000], equilibrium
alone does not represent a sufficient condition for stability. To impose the
compatibility between forces and rigid-body motions, we consider virtual
displacements, see Figure 5.3. In particular, the first aspect is to define the
space of all possible infinitesimal admissible rigid-body displacements. We
denote with δqk ∈ R6 the virtual displacement vector of Bk, where the first
three components of δqk are rigid translations

[
δqk,x δqk,y δqk,z

]ᵀ
and

the last three the rigid rotations
[
δqk,rx δqk,ry δqk,rz

]ᵀ
. The piecewise

rigid displacement field describing the motion of the entire assembly is a
function of the Lagrangian parameters collected in the vector δq ∈ R6·l.
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Based on the well-known duality relation for rigid bodies, the kinematic
matrix can be expressed as the transpose of the equilibrium matrix Aᵀ

eq ∈
R3·s×6·l [Pellegrino, 1993]. Therefore, the relative displacement δd ∈ R3·s of
the vertices can be expressed through the following relation:

Aᵀ
eq δq = δd . (5.2)

Similarly to the nodal force f ijk, the relative virtual displacement δdijk ∈ R3

of the vertex cijk can be decomposed into three components δdijkn, δd
i
jku,

and δdijkv, with δd
i
jkn the relative normal displacement, δdijkt the relative

tangential sliding displacement. Next, we introduce two afterwards nonlin-
ear constraints to exclude physically unrealisable forces.

5.2.2 Friction-sliding alignment constraint

Firstly, we need to enforce the compatibility between forces and rigid-body
motions in two directions, tangential sliding and normal detachment. For a
potential sliding motion, we enforce the alignment between the friction forces
and corresponding virtual sliding movements using the following nonlinear
constraints for each contact cijk:

f ijkt = −αijk δdijkt , αijk ≥ 0 , ∀i, j, k , (5.3)

where αijk is a non-negative scalar used to relate the friction force f ijkt di-
rection with the relative sliding displacement δdijkt. Note that friction and
virtual sliding movements are aligned but pointing in opposite directions.
Also, when the virtual sliding movement is zero, the friction force is zero
as well. From a physical perspective, constraints (5.3) ensure only that the
direction of the friction forces have to be compatible with the corresponding
relative virtual tangential displacement. The need for such a requirement
was also pointed out in Omata and Nagata [2000], which stated that enforc-
ing a static friction force in the opposite sliding direction restricts the force
solution space properly, as also shown in Figure 5.2.

66



5.2. Problem formulation

Figure 5.3: Notations adopted to describe the kinematic equations of the
assembly. The pink colour is used for supports, i.e., fixed blocks, and grey is
used to denote free blocks. Similar to Figure 4.1, the assembly data structure
is a directed graph G(V,E), where vertex Vj stores information of block Bj
while edge Ejk stores all information of interface Cjk. δqk ∈ R6 represents
the virtual displacement of Bk, while the relative virtual displacement δdijk ∈
R3 of the vertex cijk can be decomposed into three components δdijku, δd

i
jkv,

and δdijkn using the local reference system of the interface (ûjk, v̂jk, n̂jk).
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5.2.3 Contact complementarity constraint

Secondly, the compatibility between normal forces and corresponding rela-
tive displacements has to be enforced. In other words, we need to ensure
normal forces appear only if two blocks are in contact; otherwise, when de-
tachment happens, they have to be zero. We model this behaviour as a
complementarity constraint:

f ijkn (δdijkn + ε) = 0 ,

f ijkn , (δd
i
jkn + ε) , ε ≥ 0 , ∀i, j, k ,

(5.4)

where ε is a numerically very small overlapping parameter, i.e., from 10−5

to 10−4 of the block dimension. The inclusion of ε assures that the normal
forces occur only when two blocks slightly overlap.

5.2.4 Positiveness of the external work

Not all rigid motions are physically possible, meaning that the space of kine-
matically admissible displacement s has to be defined considering specific
constraints. Beyond the local constraints expressing the non-overlapping of
interfaces, a global requirement is that the work done by the external forces
and the corresponding displacements has to be non-negative:

pᵀ δq ≥ 0 . (5.5)

However, this requirement is implicitly taken into account by Eq. 4.2 and
Eqs. 5.2–5.4. Indeed, applying (4.2) and (5.2) relations, Eq. 5.5 results in:

pᵀ δq = −(Aeq f)
ᵀ
δq = −fᵀ Aeq

ᵀ δq = −fᵀ δd ,

with the last scalar product decomposable into the sum of the work done by
the normal and tangential contact forces and the dual contact displacements,
as:

−fᵀt δdt − fᵀn δdn .
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Note that the first term is always positive because of Eq. 5.3, while because
of the normal coupling (Eq. 5.4) the second term is close to zero. Thus,
Eq 5.5 can be rewritten as:

pᵀ δq =
∑
i,j,k

αijk (δdijkt)
2 ,

which requires that Eq. 5.5 holds as all αijk to be non-negative.

5.2.5 CRA optimisation problem

Finally, combining the original equilibrium formulation (5.1) with the addi-
tional constraints expressed in Eqs. 5.2–5.4, the new QP formulation with
nonlinear constraints is:

min
f , δq,α

‖fn‖22 + ‖α‖22

s.t. Aeq f = −p

Afr f ≤ 0

Aᵀ
eq δq = δd

f ijkn (δdijkn + ε) = 0

f ijkt = −αijk δdijkt∣∣ δdijk· ∣∣ ≤ η
f ijkn , α

i
jk , (δd

i
jkn + ε) , ε , η ≥ 0 , ∀i, j, k .

(5.6)

The objective function here includes the additional term α that collects all
αijk, and we solve the problem in a least square formulation. For simplicity,
we follow the RBE-style formulation to model the linearised friction con-
straints. Alternatively, those constraints can also be modelled with second-
order cone constraints to reduce the computational cost [Portioli et al., 2014;
Cascini et al., 2018]. It is worth noting that problem (5.6) can be thought of
as an optimisation problem with equilibrium constraints. Ferris and Tin-Loi
[2001] proposed a nonlinear programming formulation to define limit states
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of masonry structure composed of rigid blocks. Several differences between
our formulation and theirs can be pointed out: i) the objective function
in (5.6) minimises the amount of the normal contact forces and does not
consider the minimum of the “load factor solutions” as in Ferris and Tin-
Loi [2001]; ii) differently from Ferris and Tin-Loi [2001], problem (5.6) also
models the alignment between tangential displacements and friction forces,
which is key when modelling the mechanics of sharp wedge connections; and,
iii) as will be shown in Section 5.3, formulation (5.6) represents an ideal base
to implement a penalty formulation in order to measure the structural in-
stability.

Additionally, although small displacement fields are used, optimisation prob-
lem (5.6) is nonlinear, so each displacement value δdijk· is bounded to a small
number η (i.e., 10−3−10−2 of the block dimension) to avoid local minimum
solutions that are far from the initial reference configuration. Note that
problem (5.6) is infeasible when a structure is unstable. The additional
constraints combining equilibrium and kinematics reduce the solution space
excluding unrealisable equilibrated solutions. As we will show, this is re-
flected in two aspects: i) it allows for better capturing of the limit states;
and ii) when the structure is in a stable configuration, it provides more re-
alistic results. As a consequence, it represents a good mathematical base to
be used in a penalty formulation.

5.3 Penalty formulation

In comparison with other approaches, one of the true potentials of the RBE
method is that it can analyse unstable structures. As the idea behind our
formulation is similar to the RBE approach, we include the penalty formula-
tion in the same qualitative way (Subsection 4.2.4). We also allow for tensile
forces and decouple the normal force f ijkn into its positive f i+jkn and negative
f i−jkn parts. Thus, the fjkn in Eq. 5.4 can be replaced with the positive part
of normal force f i+jkn.
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5.3.1 Compression-tension complementarity constraint

To avoid the simultaneous presence of both negative and positive parts on
the same vertex, we introduce the following complementarity constraint:

f i+jkn f
i−
jkn = 0 . (5.7)

As f i+jkn and f i−jkn cannot coexist, Eq. 4.5 with constraint (5.7) implicitly
avoids friction when tension force occurs.

5.3.2 Optimisation to analyse infeasible structures

By adding all penalty forces and additional constraints, optimisation prob-
lem (5.6) can be modified to measure unstable structures:

min
f̃ , δq,α

∥∥f+
n

∥∥2

2
+ γ

∥∥f−n ∥∥2

2
+ ‖α‖22

s.t. Aeq B f̃ = −p

Afr B f̃ ≤ 0

Aᵀ
eq δq = δd

f i+jkn (δdijkn + ε) = 0

f i+jkn f
i−
jkn = 0

f ijkt = −αijk δdijkt∣∣ δdijk· ∣∣ ≤ η
γ , ε , η ≥ 0

f i+jkn , f
i−
jkn , α

i
jk , (δd

i
jkn + ε) ≥ 0 , ∀i, j, k .

(5.8)

The tensile forces are introduced in the objective function using a highly
penalised weighting factor γ. As for the RBE formulation, Eq. 5.8 allows
for the description of infeasible stress states still favouring compressive so-
lutions.
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5.4 Extended assembly data structure for com-
plex assemblies

As discussed in Chapter 4.5, we utilise the assembly data structure de-
scribed in Frick et al. [2016] and its computational implementation available
through BlockResearchGroup [2018] to handle all information for complex
assemblies efficiently. For assemblies with non-convex blocks, Frick et al.
[2016] proposed the use of multiple convex blocks to discretise a non-convex
compound block marking the additional new interfaces as internal. This
convex decomposition step of complex assemblies, e.g., freeform shapes, is
not straightforward, as it requires additional and specific algorithms.

Therefore, we propose an alternative procedure that does not require
any the additional convex decomposition step. Specifically, the interface
Cjk is approximated through wjk planar compact subinterfaces Cjko with
o ∈ {1, . . . , wjk} (see Figure 5.4). All subinterfaces along with their cor-
responding local reference systems can be stored in the edge Ejk of the
original directed graph G(V,E). Therefore, constructing the equilibrium
matrix Aeq becomes straightforward, since all interfaces are indexed in a
compatible way. Our current implementation still requires the interfaces to
be discretised either manually or by using an auto-triangulation algorithm.
Compared to the existing assembly data structure that requires the convex
decomposition of the blocks, our extended version only requires discretising
interfaces, making it more straightforward to use.

5.5 Summary

This chapter introduces a new method, named CRA, to assess the stability of
complex assemblies. The CRA method provides accurate results, which can
push structural stability to the limit during assembly, consequently saving
material and allowing for thinner complex structures.

Different from previous methods, CRA provides an accurate evaluation of
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Figure 5.4: The freeform interface Cjk can be approximated through many
sub-interfaces Cjko.

internal stress states and limit scenarios thanks to a nonlinear programming
formulation that couples equilibrium and kinematics. Beyond classical con-
straints representing the equilibrium and the friction capacity of the assem-
bly, two additional and crucial constraints are considered. The first one
is a complementarity condition that relates detachment and normal forces:
normal forces are not allowed when blocks are no longer in contact. The
second constraint aligns friction forces with virtual sliding movements. Its
use is particularly relevant to capture the stability of multiple interfaces and
sharp wedge connections.

Furthermore, this new nonlinear optimisation problem is rewritten in a
penalty formulation, allowing us to evaluate non-equilibrated assemblies and
thus explore a larger configuration space. It allows for the detection of non-
stable regions, providing additional information to stabilise the assembly.
Moreover, the existing graph-based assembly data structure has been ex-
tended to enable flexible analysis of complex shapes with curved interfaces.
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In Part III, we demonstrate the use of both improved RBE and CRA for
the structural assessment and assembly-aware design of discrete assemblies.
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Chapter 6

Stability assessment

In Part II, we laid out the mathematical foundation and implemented tools
for the improved RBE and CRA methods. This chapter demonstrates their
use for structural assessment. To understand the correct usage of the RBE
method, we perform several studies in Section 6.1. After that, in Section 6.2,
we demonstrate the CRA method’s accuracy by comparing its numerical re-
sults with RBE and various commercial software. Section 6.3 proposes a
stability-aware design workflow to help designers iteratively toward a struc-
turally sound design. Section 6.4 demonstrates CRA’s usage for complex
structural analysis and stability assurance during construction with robots.
Lastly, Section 6.5 summarises all structural assessment findings present in
this chapter.

6.1 RBE case studies

In this section, to illustrate, compare, interpret, and give meaning to the
RBE results, we will reduce all nodal forces acting on an interface to their
resultants (forces and torques, if present) applied at the centre of pressure
of the interface as described in Section 4.4. Compressive nodal forces are
plotted in blue, tensile forces in red, interface resultants in dark green, and
interface torques in black. For all examples, we only consider the self-weight
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as applied loads, and we look at three examples with increasing complexity,
and static indeterminacy: an assembly of two stacked blocks, a buttressed
arch, and a dome. In all cases, we adopt both optimisation problems to
clarify the main differences between the two approaches using quadratic (QP
— Eq. 4.7) or linear (LP — Eq. 4.8) programming. Additionally, we will
show how to explore/select different internal stress states on the reference
configuration and how to define the limit state for increasing horizontal
loads.

6.1.1 Two stacked blocks

In this subsection, we look at simple assemblies composed of two stacked
blocks to illustrate some features of RBE. The first analysis illustrates the
role of the normal contact forces by considering two blocks having a hor-
izontal interface in different scenarios obtained by horizontally translating
the upper block. With the second analysis, we show the role of the tangen-
tial contact forces illustrating how the friction capacity can be taken into
account using both friction-net and friction+ strategies.

Horizontal interface

In Figure 6.1, we look at an assembly composed of two vertically stacked
blocks with a horizontal contact interface. The upper block, whose cen-
troid is denoted with a blue dot, is a free block, while the bottom block,
with a red dot, is assumed to be a support. Figure 6.1 shows a first RBE
analysis considering a fully connected interface. The solutions of both QP
(Figure 6.1a) and LP (Figure 6.1b) problems return vertical nodal forces
only. As one can notice, the distribution of the nodal forces obtained with
the QP is different from the one with the LP problem. In this case, we also
highlight the different nodal force distributions over an interface by using a
colour gradient.

Nonetheless, if we reduce the nodal forces to their resultants (in green), one
can see that the same solutions are obtained. These solutions are trivially
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(a) QP (b) LP

Figure 6.1: Two blocks stacked vertically with a horizontal contact interface:
nodal forces and resultants using the QP (a) and LP (b) formulations. The
interfaces are depicted using a blue colour gradient to differentiate nodal-
force distributions. Resultants (in green) from both QP (a) and LP (b)
formulations are the same

in equilibrium, with the resultants going through the centre of mass of the
upper blocks.

If we horizontally translate the upper block, as shown in Figure 6.2, we
always obtain a different distribution of the normal contact forces from the
QP and LP problems. However, their resultants are the same as they indeed
depend on global equilibrium only which remains the same.

This observation also can be noted in the last analyses (Figures 6.2e and f)
where the vertical projection of the centre of mass of the upper block is lying
outside the interface; the tensile nodal forces appear because of the penalty
formulation expressed by Eq. 4.3. This last result represents a key feature
of the RBE approach. Despite other equilibrium approaches adopted in the
limit analysis framework, RBE goes beyond Yes/No answers coming from
the feasibility/infeasibility of an optimisation problem. Indeed, RBE allows
us to describe unstable solutions and, thus, to identify interfaces subjected
to tensile forces. In this sense, the penalty formulation enlarges the space
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of admissible stress fields.

QP

(a)

LP

(b)

(c)

(d)

(e)

(f)

Figure 6.2: Equilibrium results from the RBE when the upper free block is
horizontally translated, both QP (a, c, e) and LP (b, d, e). The problem
is still feasible even when the upper block is in a unstable condition (e, f)
thanks to the tension contact forces (in red).

Inclined interface

In this section, to clarify the main features of both friction-net (Eq. 4.4)
and friction+ (Eq. 4.5), we look at an assembly composed of two vertically
stacked blocks having an inclined interface. The inclination of the interface
is 23.6◦, so the minimum friction value needed to guarantee the static equi-
librium of the assembly is 0.44. The results are visualised in terms of nodal
contact forces, normal and tangential resultants forces, and global resultants
(in green).

It is especially worth pointing out that the friction constraint Eq. 4.6 is
defined on the interface nodes. In this sense, the friction value used is a
local friction coefficient. Therefore, we post-process the friction capacity of
an interface as a global friction capacity, that is, in terms of normal and
tangential interface resultants, to better understand the physical behaviour.
This does not affect the results; if the friction constraint is fulfilled locally
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(i.e., on interface corners), namely:

∣∣ f ijkt ∣∣ ≤ µ f i+jkn , ∀i ∈ {1 . . .mjk},

then, it is also satisfied globally (i.e., over the whole interface):

mjk∑
i=1

∣∣ f ijkt ∣∣ ≤ µ mjk∑
i=1

f i+jkn .

To also overcome potential infeasibility states due to the friction-net ap-
proach, one can adopt a local friction value to be used in the optimisation
and define a threshold to detect if the interface’s global friction capacity is
overcome. In our opinion, the friction+ approach is consistent with the RBE
objective function since penalising the friction forces provides an equilibrium
solution with the smallest tangential forces.

Figure 6.3a reports the RBE results using the friction-net approach. We
assume a local friction value of 0.8 and 0.6 as a global threshold for evaluating
the friction capacity. In this case, the interfaces are depicted in yellow since
the global friction capacity is not overcome. Supposing a smaller global
threshold is chosen (say 0.2) such that the friction capacity is overcome,
the solution (in terms of both nodal forces and resultants) is trivially the
same, but the interface would appear in red. The use of the friction+
approach does not change the results if properly coupled with a threshold
value. Conversely, if the local friction value is set as 0.2, with the friction-net
approach, the problem becomes infeasible as the friction constraints (Eq. 4.4)
are not satisfied anymore. On the other hand, when using the friction+
approach, the problem is still feasible since, as shown in Figure 6.3b, the
tangential forces affect the normal force solution because of the penalty
formulation.

Indeed, Figure 6.3b shows the RBE results using the friction+ approach and
a local friction coefficient equal to 0.2. As one can see, but more evident
in the second case, with both QP and LP approaches RBE finds a tensile
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tangential force in a corner (orange circle in Figure 6.3b). In particular,
referring to Eq. 4.5, at that corner, RBE finds both a non-zero positive f i+kn
and negative f i−kn part, which results in a negative normal component f ikn
(tensile force) with f i+kn < f i−kn . In this sense, the friction constraint, written
as a function of the positive part, is still satisfied.

Remark 1. It is worth mentioning that when no tensile force appears
(i.e., f i−kn is zero), Eqs. 4.4 and 4.5 become identical; hence, friction+ and
friction-net provide the same solution.

Discussion

By looking at the nodal-forces distributions, in all cases, the LP solution
is different from the QP. In particular, the QP approach tends to activate
all nodes selecting solutions whose nodal forces have to be distributed as
smooth as possible. Moreover, while every solution obtained with the QP
approach can be a solution to the LP problem, the contrary may not happen.
Indeed, the value of the QP objective function in the case of Figure 6.1b is
greater than the one assumed for the solution depicted in Figure 6.1a, while
the LP objective function provides the same value for both solutions. For
this reason, it is easy to see that the LP’s solution space is larger compared
to the QP.

The QP approach selects a nodal force distribution that comes from an
elastic interpretation of the equilibrium problem [Angelillo et al., 2010]. The
LP formulation, instead, considers the interface as rigid, which then means
that infinite admissible stress states are possible [Iannuzzo et al., 2020].
From a limit analysis point of view, there is no reason to prefer one over
another, since both represent admissible solutions. Furthermore, in terms
of interface resultants, both are the same since the problem is statically
determined.

In the second benchmark, we have analysed two blocks with an inclined
interface to illustrate the main differences between the friction-net (Eq. 4.4)
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QP LP

(a) friction-net

(b) friction+

Figure 6.3: Solution of the QP and LP optimisation problems with the
friction-net (a) and friction+ (b) approaches. Two blocks stacked vertically
but with an inclined interface (23.6◦); (a) the friction coefficient is equal
to 0.8 and the threshold is set to 0.6: the interfaces are depicted in yellow,
meaning that the friction capacity is not overcome; and, (b) the friction
coefficient here is assumed equal to 0.2: The interfaces are depicted in red,
meaning that the friction capacity is exceeded everywhere.

and friction+ (Eq. 4.5) approaches, solved using QP and LP (Figure 7).
Both are valid strategies, particularly when coupled with a threshold to
evaluate global friction capacity. The main difference is that when the local
friction value is overcome, the problem is infeasible with the friction-net
approach, while with the friction+ approach it is still feasible but the normal
force distribution is affected by the tangential behaviour because of the
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penalty formulation. In this sense, the friction+ approach seems more in-
line with RBE’s aim. Physically, we can imagine that the friction+ approach
activates a tensile capacity (as a glue), which also provides a shear strength.
Nonetheless, for many masonry problems, the friction-net approach is more
useful when the aim is to explore the feasibility of the problem to catch
ultimate equilibrium states. For this reason, in what follows, we adopt the
friction-net strategy assuming 0.8 for the local friction coefficient and 0.6 as
the global friction threshold.

6.1.2 Semi-circular arch on buttresses

In this section, we look at a semi-circular arch on buttresses to illustrate
how RBE can be applied to assess unreinforced masonry structures. The
geometry of the buttressed arch is the same as the one used in Iannuzzo et al.
[2020] where it was analysed to show the peculiarities of the piecewise rigid
displacement (PRD) method, an energy-based limit analysis approach [Ian-
nuzzo et al., 2018; Iannuzzo, 2019]. The semi-circular arch has an internal
radius of 1.0 m, a thickness of 0.3 m, an orthogonal depth of 0.5 m and is
discretised into 15 voussoirs. The two buttresses have a height of 2.5 m, a
base of 0.7 m, a depth of 1.0 m and are partitioned into 12 elements. The
two bottom blocks of the buttresses are considered supports. The structure
has a uniformly distributed mass density ρ = 1800 kg/m3, and we assume
0.6 as friction threshold. In this Subsection, we perform three studies. First,
the initial geometry is analysed. Second, we show how to explore different
equilibrium solutions. Third, we perform a tilting test of the structure.

Initial configuration: LP vs QP solutions

The first study looks at the buttressed arch in its initial configuration. Fig-
ure 6.4 shows the solutions obtained solving the QP and LP problems, re-
spectively. As in the previous examples, the nodal force distributions, high-
lighted by the blue colour gradient, are different. Nevertheless, while the
two stacked blocks of Section 6.1.1 can have only one equilibrated solution
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in terms of interface resultants, as the buttressed arch is statically indeter-
minate, the interface resultants are different. This corresponds to different
thrust lines possible for the same arch [Heyman, 1969]. Both results are
almost identical though. Indeed, both QP and LP problems return solu-
tions close to the minimum thrust. Moreover, as one can observe, thrusts
in the buttresses are everywhere within the kern, meaning that all buttress
interfaces are activated fully in compression.

(a) QP (b) LP

Figure 6.4: A buttressed arch in its initial reference configuration: both QP
(a) and LP (b) solutions return a thrust line which is linked to a minimum
thrust condition of the semi-circular arch. The interface resultants in the
buttresses are everywhere within the corresponding interface kern

Explore different admissible equilibrated stress states

In this second study, we illustrate a procedure that can be used to explore
different admissible, singular, internal, stress states. The idea is to consider
new virtual interfaces, which can be obtained by tightening the original
interface and writing the equilibrium equations (4.3) for these new (reduced)
interfaces. Following this approach, we are looking for a thrust line solving
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the EP that either crosses or is as close as possible to the new, reduced
interfaces. A similar procedure was adopted in Iannuzzo et al. [2020] using
the PRD method. While in Iannuzzo et al. [2020] one we can get only a
Yes/No answer, with the RBE approach, because of its penalty formulation,
one can also select a solution that does not fit the prescribed requirement
completely. In this case, tensile forces on the nodes of the reduced interfaces
can appear, meaning that the thrust line cannot be contained within the
reduced interfaces.

In Figure 6.5a, the key-stone interface is tightened to explore a maximum
thrust condition for the semi-circular arch, which leads the buttresses in the
worst working condition, with the interface resultants outside the kern at the
bases of the buttresses. Figure 6.5b shows the results obtained by enforcing
the thrust line to go through the kern of all interfaces of the arch (kern-
fitting). Both the QP and LP problems return almost identical interface
resultants, so we only visualise the resultant forces.

Moreover, using the friction-net approach, it is possible to select an internal
stress state that fulfils particular requirements on the friction capacity. In-
deed, if we chose a low value for the friction coefficient (thus, without adopt-
ing a threshold strategy), the problem can become infeasible. The lowest
value of the friction angle for which the problem is still feasible represents
the minimum friction value required by the assembly to be in static equilib-
rium. In this case, the minimum value is found to be 0.31. In Figure 6.6a,
the solutions of the corresponding equilibrium problems are depicted both
in terms of nodal forces and resultants. It can be noted that the resultants
are everywhere within the reduced friction cone.

Tilting test: horizontal external forces

A common way to look for the stability of masonry structures when sub-
jected to horizontal static forces is to perform a tilting test [Block et al.,
2006b]. In this third study, we model this scenario by rotating the gravity
vector until tensile forces appear. The maximum value of the tilting angle
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(a) Maximum thrust (b) Arch kern-fitting

Figure 6.5: In (a), the mid-span interface of the semi-circular arch is reduced
to select an admissible internal stress state for which the thrusts exerted
on the buttresses are maximised. The same solution can be obtained by
reducing the two base interfaces of the arch (towards the extrados). In (b),
the interfaces of the semi-circular arch are virtually reduced to their kerns
to seek if there is a thrust line which fully activates the arch in compression.
As one can observe, the thrust is outside the mid-span interface. For both
examples, the results of the QP and LP are almost identical, so we only
visualise the resultant.

for which the thrust line is everywhere within the structural domain is 12

degrees, which corresponds to a horizontal static multiplier of 0.21, which
is very close to the one found in Iannuzzo et al. [2020]. In Figure 6.6b, the
solution is depicted: it touches the structural boundary in four points, three
on the arch and one at the base on the right. These four points suggest a
mechanism that is the same as the one found in Iannuzzo et al. [2020].
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(a) Minimum friction (b) Tilt test

Figure 6.6: In (a), using the friction-net approach, RBE returns 0.31 as
the lowest value for the friction coefficient for which the assembly is still in
equilibrium. The resultants are everywhere in the friction cone. In (b), the
buttressed arch subjected to a tilting test: the maximum angle for which the
resultants are everywhere within the structural geometry is for a tilt angle
α of 12◦.

Discussion

In this subsection, looking at a buttressed arch, we perform RBE analy-
ses using both QP and LP approaches: assessing the initial configuration,
exploring various internal equilibria, finding the minimum friction, and eval-
uating the maximum horizontal static multiplier (i.e., tilting angle) for which
the assembly is still in equilibrium. All analyses show that different nodal
forces can be obtained in solving the QP and LP problems, confirming what
was discussed in Section 6.1.1. Except for case of stacked blocks, which
is globally (in terms of interface resultants) statically determined, the but-
tressed arch is globally statically indeterminate, and for this reason, when
we look at the initial configuration of the QP and LP solutions, in terms of
resultants, are slightly different. Nonetheless, the QP and LP solutions are
the same when approaching a limit state (e.g., at the collapse during tilting
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test) since the solution is unique and using the friction-net approach is dic-
tated by the feasibility of the problem. In the following subsection, we will
show how increasing the global indeterminacy of the system, the differences
between QP and LP can get bigger. Nonetheless, in any case, solutions
coming from both optimisations represent two statically admissible stress
fields, and in this sense, safe solutions in the spirit of the Safe Theorem.

6.1.3 Hemispherical dome

In this subsection, we look at a hemispherical dome with an oculus. It illus-
trates how to apply RBE to assess three-dimensional unreinforced masonry
structures. The centre-line radius R of the dome is 5 m while the thickness
t is assumed to vary linearly from the bottom base (0.5 m) to the top part
(0.25 m). The radius r of the oculus is 1 m.

The dome is discretised using 14 meridian slices and 10 parallel rings; there-
fore, the number of blocks is 140. The bottom ring blocks are assumed to be
supports (Figure 6.7). The structural complexity of the dome is bigger than
the one of the buttressed arch since, in the dome case, the graph G(V,E) de-
scribing the data structure is two-dimensional. Similar to Subsection 6.1.2,
we perform three studies. First, the initial geometry is analysed using both
QP and LP. Second, we use kern-fitting and inner/outer base-fitting analyses
to explore different equilibrium solutions. Third, we assess the dome sub-
jected to horizontal action and define the maximum value of the horizontal
multiplier.

Initial configuration: LP vs QP solutions

In the first study, we propose an RBE analysis of the reference configuration
without considering any further constraints. Figure 6.8 shows results from
the QP and LP optimisations. The interfaces are still coloured using a blue
the gradient colour map. However, the white interfaces denote sections with-
out any nodal force, or with forces less than a threshold value fixed as 10−2

of the maximum compressive force. Even though RBE can provide stress
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Figure 6.7: Cross-section and discretisation of the hemispherical dome: main
dimensions. The mean radius R is 5 m; the radius of the oculus r is 1 m
while the thickness t is assumed to linearly vary from 0.5m (base) to 0.25m
(oculus).

solutions with tensile forces, it returns a purely compressive internal stress
state for which part of the meridian interfaces are affected by zero hoop
forces, which is the to-be-expected behaviour, as shown in Heyman [1997].
Nonetheless, the QP and LP solutions show different nodal force distribu-
tions, which illustrates how the difference in terms of interface resultants
is more evident in the present case than in the previous ones (Figure 6.8).
Moreover, the QP resultants are radial-symmetric, while the one from LP is
not.

Exploring different equilibrium states

In this second study, we explore different internal stress states. The first
analysis is what we call a kern-fitting analysis; that is, we look for an internal
admissible stress field everywhere within the kern of interfaces. After the
kern-fitting analysis, we look for inner and outer base-fitting analysis to
measure the dome’s stability under its self-weight. The results relate to
the geometric safety factor [Huerta, 2006b]. In Figure 6.9a, the results of a
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(a) QP (b) LP

Figure 6.8: RBE analysis of the reference configuration: QP (a) and LP
(b) solutions. The difference in interface gradients shows that these two
solutions are locally different. Moreover, also the interface resultants are
different, with the QP solution being radial-symmetric. The white interfaces
denote zero hoop-force regions.

kern-fitting RBE analysis are depicted: the interfaces are virtually reduced
to their kern to determine if an internal stress field is found, so one that fully
activates all contacts. Figures 6.9b and c show the results of two analyses
aimed at exploring admissible stress fields (e.g., min/max thrust states of
the dome) that are as close as possible to the inner and outer parts of the
supports, respectively. These results are obtained by virtually shrinking the
bottom interfaces towards either the inner or the outer surface.

Tilting test: horizontal external forces

In the third study, as for the buttressed arch, we perform a tilting test to
explore the maximum allowable capacity of the dome subjected to horizontal
actions. The maximum tilting angle found with RBE on both LP and QP
analyses is 32◦. Figure 6.10 shows the flow of the resultants within the
structure. With the friction-net approach, the problem becomes infeasible
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QP LP

(a) Kern-fitting

(b) Inner base-fitting

(c) Outer base-fitting

Figure 6.9: In (a), the results of the kern-fitting RBE analysis. The interface
resultants are enforced to go through all interface kerns. In (b), the resul-
tants are enforced to go through the inner part of the supports. In (c), the
resultants are enforced to go through the outer part of the supports. In all
cases, QP and LP problems return two very similar solutions, particularly
if one looks at the non-zero hoop forces areas.
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before tensile stresses appear (we adopt 0.6 as the local friction value to be
consistent with the threshold used in all analyses).

(a) Top view (b) Side view

Figure 6.10: Horizontal capacity analysis: the maximum tilting angle is 32◦,
obtained with both QP and LP approaches.

Discussion

In this subsection, looking at a dome with an oculus we have explored differ-
ent equilibrium solutions on the reference configuration and also checked its
maximum capacity under increasing horizontal static actions. First, looking
at the RBE analyses proposed in the first and second studies, it is worth
noting that even though RBE is based on a penalty formulation, which al-
lows tensile forces, it always returns (when admissible) solutions part of the
meridian interfaces having zero contact forces, so meaning that there are no
hoop forces in those parts. Secondly, we should point out that the structural
complexity of a dome is higher than the one of a buttressed arch, because
the network of the graph G(V,E) is two-dimensional. From this aspect,
the hemispherical dome represents a problem of higher statical indetermi-
nacy, which also affects the output of the QP and LP analyses, showing
larger differences if compared to the buttressed arch. We have shown how
different singular, internal stress states can be explored by using virtual in-
terfaces in RBE. This aspect can be addressed by changing the objective
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function to one that takes the value of the force into account only in certain
points (e.g., at the supports) and/or directions (e.g., horizontal, vertical,
tangential, etc.). We have explored the capacity of the dome subjected to
increasing horizontal static actions. We end the incremental analysis when
the problem becomes infeasible. The objective function does not play any
role in this case because only the optimisation constraints determine the
feasibility.

6.1.4 Discussion

Throughout these RBE studies, we understand the structural behaviour of
discrete assembly better. These findings can also be applied to the CRA
method, as CRA can be seen as an improved and corrected version of RBE.
This section summarises the primary outcome of these findings into two
main discussion points.

Firstly, we have proposed and compared two objective functions, a linear
(LP) and the original quadratic (QP) one, to illustrate the RBE features.
The primary outcome is that both provide statically admissible solutions in
the spirit of Limit Analysis, meaning there should not be a reason to prefer
one over the other. To illustrate this concept, one can look at Figure 6.1,
in which the two blocks are in contact at four points. It is possible to in-
terpret the QP and LP results by making a parallelism with a four-legged
stool supported on the ground (an example often used to explain the limit
analysis approach [Heyman, 1997, 2019]). The four-legged stool is a stati-
cally indeterminate system; thus, infinite solutions are possible depending
on the actual contacts between the table legs and the ground, which are
unknowable in reality. The QP solution reported in Figure 6.1a represents
an ideal elastic solution, meaning that the contact is assumed to happen in
four points. All nodal forces are as distributed as possible since the objec-
tive function is quadratic, which can be correlated to linear-elastic interface
energy.

Conversely, the LP solution shown in Figure 6.1b is just one of the infinite
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admissible solutions. The equilibrium is guaranteed using only two contact
points. Interesting to note that this is the “real” solution of a four-legged
stool that is rocking, see Heyman and Hambly [1996] Hambly’s Paradox.
Furthermore, in Subsection 6.1.1, the solution provided by the LP objec-
tive function does not minimise the QP problem. On the other hand, QP
solutions are always solutions to the LP problem. In this sense, the LP
objective function further increases the solution space provided by the QP
optimisation. Despite the force distribution being indeterminate, the struc-
ture is statically determined if we look at the global assembly of the two
blocks. Therefore, the solution in terms of interface resultants has to be the
same regardless of the objective function. As the structural indeterminacy
grows, the solutions of the QP and LP approaches start getting different
from each other (Subsection 6.1.2 and 6.1.3). The higher the indeterminacy,
the greater the differences are. Indeed, in the dome case, the LP and QP
solutions show the largest differences, even in terms of resultants. Finally,
suppose the aim is to select a “smooth” solution. In that case, the QP pro-
vides elastic solutions that are as distributed as possible, which also reflects
in fully symmetric solutions for symmetric models. If the aim is to englarge
the QP solution space, the LP can provide admissible solutions consistent
with a perfectly rigid model.

Secondly, we have shown that the RBE method can be used to explore differ-
ent equilibrated states of an indeterminate structure. We utilise the concept
of new virtual interfaces, which can be obtained by tightening the original
interface and writing the equilibrium constraints for these virtual interfaces.
By introducing the correct definition of the kern of a section, we can look
for admissible solutions that fully activate a set of selected interfaces. This
aspect is crucial when assessing a structure’s stability through estimating
its geometric safety factor. Finally, even if RBE is based on a penalty for-
mulation, we have demonstrated that this does not affect the search for a
limit state. Specifically, when the structure is in a limit condition, the space
of solutions may include only one element if the solution is unique (see the

95



Chapter 6. Stability assessment

third study of tilting test analyses in Subsections 6.1.2 and 6.1.3).

6.2 Numerical benchmarks

In Section 6.1, we discussed how to understand the RBE results and used
RBE-based approaches to assess some simple masonry structures. However,
as discussed in Chapter 5, RBE fails to give correct analysis results for
specific geometries, especially for sharp wedges and complex shapes. There-
fore, we perform several benchmark examples in this section to demonstrate
CRA’s accuracy.

We implemented CRA in a Python-based code using Pyomo as open-source
modelling language [Hart et al., 2017] and IPOPT as solver for the non-
linear constrained optimisation problem [Wächter and Biegler, 2006]. Ad-
ditionally, we utilised COMPAS, an open-source computational framework
for collaboration and research in Architecture, Engineering, Fabrication, and
Construction [Van Mele et al., 2021], as our base for the data structure such
that our method can be easily integrated into any desired CAD software.
The results are visualised with OpenGL. All examples and benchmarks were
performed on a MacBook Pro with a 2.9 GHz 6-Core Intel Core i9 Proces-
sor and 16 GB memory. All implementation details will be discussed in
Chapter 8.

In this section, looking at geometric models with increasing complexity, we
benchmark the CRA method against specialised engineering software such
as 3DEC for the DEM analysis [Itasca, 2013] and Sofistik for the nonlinear
FE analysis [SOFiSTiK, 2012]. In particular, the benchmarks will consider
the limit state scenarios, such as finding the maximum tilting angle for
which a structure is still stable. We will show how the use of CRA allows
a correct evaluation of the limit state and aligns with the results obtained
with commercial software.
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6.2.1 Arch, 3-legged π, and model H

The first benchmarks regard the three simple examples shown in Yao et al.
[2017] and Shin et al. [2016]. Table 6.1 reports the results from these previous
works along with the ones obtained using CRA, 3DEC and an in-house im-
plementation of RBE. All numerical methods, except for Variational Static
Analysis (VSA) proposed by Yao et al. [2017], return the same limit tilting
angle obtained from analytic solutions. For the 3-legged π example, the
RBE results proposed by Shin et al. [2016] are a bit lower (0.4◦) than the
one obtained from our RBE implementation, which might relate to small
differences due to remodelling. While VSA is still conservative compared to
other numerical methods, Yao et al. [2017] justified its conservative results
as they are closer to small-scale model results, and they attributed the RBE
overestimation to the improper treatment of the sliding. Conversely, Shin
et al. [2016] stated that the difference between physical and numerical re-
sults was related to the imperfections for the small-scale 3D-printed models,
which might be taken into account through an arch thickness reduction of
13% [DeJong et al., 2008]. Small-scale physical models are always affected
by imperfections. According to their size, these can drastically alter the
internal stress state and consistently lower the stability values [Dell’Endice
et al., 2021; Atar et al., 2020]. In Remark 2, we will show that the failure
of the semicircular arch in Table 6.1 is not due to the improper treatment
of sliding in RBE. In fact, the RBE result is theoretically correct in that
specific case, i.e., for the perfect geometry. In addition, the RBE results for
the maximum tilting angle of the masonry arch are aligned with well-known
ones available in the literature [Huerta, 2006a; Blasi and Foraboschi, 1994;
Heyman, 1969; Oppenheim, 1992; Como, 2013]. For evaluation of the theo-
retical limit state, CRA provides accurate numerical results that align well
with engineering software 3DEC.

Remark 2. Here, we discuss the arch thick model reported in Table 6.1.
The semicircular arch (Figure 6.11a), with a thickness-to-radius ratio t/r =

0.15, is discretised in 36 voussoirs, and the friction angle is assumed equal to
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Table 6.1: Benchmark table provided in Yao et al. [2017] adding Shin et al.
[2016], here extended to also include 3DEC, CRA, and an in-house version
of RBE as solvers. We use the same friction angle of 43◦ as in all previous
works. In these three examples, CRA aligns well with both analytic and
engineering software solutions.
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43◦, as in Shin et al. [2016]. The RBE tilting test shows a maximum tilting
angle of 8.2◦. In green, the internal stress state is represented through
resultant forces, which combine the nodal forces of each interface. Note
that at this point a 4-hinge mechanism is formed where the “thrust line”
touches the structure’s envelope alternatively at the intrados and extrados.
We label interfaces with red spheres when the nodal forces are in the limit
state, i.e., lying on the boundary of the Mohr-Coulomb friction cone. The
resultants are everywhere within the friction cone as no interface is labelled
in red. Thus, the limit friction capacity of the arch is not reached, and
sliding does not occur. To show how the friction capacity can influence the
result, we consider a reduced friction angle equal to 21.8◦ in Figure 6.11b.
In this case, the RBE analysis shows that the maximum tilting angle is
3.0◦. In this case, the bottom right interface of the arch with the support
is labelled in red, meaning that the maximum friction capacity is reached,
and sliding occurs. The lower friction capacity restricts the solution space
resulting in a lower maximum tilting angle. Indeed, sliding could occur
before a 4-hinge tilting collapse mechanism can form (as in Figure 6.11a)
These analyses were carried out also with CRA and 3DEC obtaining the
same results. Note that for these specific cases, RBE is able to correctly
capture the failure mode. The difference with physical models is only due
to imperfections and tolerances always affecting small-scale models.

6.2.2 The shelf model

To show how our methodology can correctly capture infeasible solutions
and identify the unstable regions, we perform the analysis of the shelf ex-
ample provided in Yao et al. [2017] (Figure 6.12). Similarly to 3DEC, VSA
correctly captures the sliding behaviour of two unstable elements. RBE,
however, incorrectly predicts the shelf as a stable structure (it is a math-
ematically correct but physically unrealisable solution, see our discussion
in Section 5.1). Differently from RBE, CRA without penalty formulation
(Eq. 5.6) correctly classifies the model as unstable, as the optimisation prob-
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(a) (b)

Figure 6.11: Arch thick model: (a) with a friction angle equal to 43◦, RBE
returns a maximum tilting angle of 8.2◦; while (b) using a reduced friction
angle of 21.8◦, the maximum tilting angle is 3◦. The red spheres denote the
interface where the friction cone constraint is violated, so where a potential
sliding motion is allowed. The blue spheres denote the hinge mechanism
where potential crack openings are allowed.

lem is infeasible. Applying the CRA penalty formulation (Eq. 5.8), the
model becomes feasible. Additionally, the obtained result indicates the in-
stability regions, identified by the extra tensile forces required to make the
structure stable. Figure 6.12d shows that by providing a given amount of
tensile capacity, represented by the red vectors, the existing shelf design is
in equilibrium. Therefore, CRA provides: i) a correct assessment that the
assembly is unstable, unlike RBE; and, ii) in addition to VSA, quantita-
tive information on what could be done to stabilise the design thanks to its
penalty formulation.

6.2.3 The wedge model

Classic rigid-block models have been developed for single-planar interfaces
and have not been applied to non-planar or multi-planar interfaces, partic-
ularly for sharp wedge connections. To the best of the authors’ knowledge,
these scenarios were not previously addressed in any study. However, real
structures are often designed with complex non-planar or multi-planar inter-
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(a) 3DEC (b) VSA (c) RBE

(d) CRA with penalty forces

Figure 6.12: Shelf model. (a) The 3DEC analysis shows two unstable pieces
highlighted with their directions of motion. (b) VSA shows similar results
as 3DEC (image taken from Yao et al. [2017]). (c) RBE incorrectly identifies
the structure as stable. (d) The CRA not only correctly identifies unstable
parts but also proposes the minimally required extra forces needed to make
the assembly stable.
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faces, see Figure 6.13a. With the third benchmark case, we want to address
this problem. Figure 6.14 shows four types of 3-block wedge models, similar
to the one presented in Figure 6.13b: type-a and type-b have sharper wedge
angles compared to type-c and type-d. Respectively, type-a and type-d have
a lower centre of mass compared to type-b and type-c. We perform tilting
tests with respect to three different axes to get the maximum tilting angles
in Table 6.2. All models are rotated counterclockwise along the axis, and
results are provided considering two different friction coefficients (µ = 0.2

and µ = 0.84). We want to point out that wedges with sharp angles (e.g.,
type-a and type-b) cannot be analysed with classic rigid-block models such
as RBE, as they always return a feasible solution even in an upside-down
configuration (e.g., model A in Section 5.1).

(a) (b)

Figure 6.13: Assembly during construction using wedge geometry. (a) Buga
wood pavilion during construction Wagner et al. [2020]; in (b) an assembly
that can be used to assess the local stability of the Buga wood pavilion (the
two pink blocks are assumed fixed).

In the comparison table, CRA aligns well with 3DEC results except for type-c
rotate-xy30. We observe that the different limit tilting angles come from the
fundamental difference at the base of these two solvers. 3DEC is a dynamic
solver that can capture the equilibrium on newly deformed configurations.
Specifically, in the 3DEC analysis, between 40◦ and 48◦, the free block slides
slightly and settles, reaching equilibrium in a new, deformed configuration.

102



6.2. Numerical benchmarks

Performing a CRA analysis of the 3DEC deformed configuration, we get
the same results, confirming that it is stable. Alternatively, we consider
the first movement 40◦ as a failure tilting angle. In this sense, CRA is
slightly conservative because it only considers the static equilibrium on the
initial configuration. RBE, in contrast, seems to have bad predictions for
sharp wedge angles and standard friction coefficients, as also pointed out in
Section 5.1.1 with the A model and Section 5.1.2.

(a) type-a (b) type-b (c) type-c (d) type-d

Figure 6.14: 3-blocks wedge models. (a)–(d) are models with the XZ-plane
view.
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Table 6.2: Benchmark table for 3-blocks wedge models in Figure 6.14. rotate-
x, rotate-y, and rotate-xy30 represent the results of the tilting tests using
(1, 0, 0), (0, 1, 0), and (

√
3, 1, 0) as rotation axes.

Rotation axis µ=0.20 µ=0.84
Type Angle (deg) 3DEC CRA RBE 3DEC CRA RBE

rotate-x 21.8 21.8 25.0 59.2 59.2 180.0
type-a rotate-y 71.3 71.3 71.3 100.0 100.0 180.0

rotate-xy30 24.8 24.7 28.0 62.7 62.9 180.0
rotate-x 21.8 21.8 25.0 58.7 58.5 180.0

type-b rotate-y 67.4 67.4 67.4 109.1 109.1 180.0
rotate-xy30 24.8 24.7 28.0 63.1 62.0 180.0
rotate-x 13.0 13.0 13.0 44.1 44.1 47.0

type-c rotate-y 41.3 41.3 41.3 64.5 64.4 65.7
rotate-xy30 14.9 14.9 15.0 48.1 40.2 51.0
rotate-x 13.0 13.0 13.0 44.1 44.1 50.0

type-d rotate-y 41.3 41.3 41.3 70.0 70.0 70.0
rotate-xy30 14.9 14.9 15.0 49.0 48.5 54.0

6.2.4 Interlocking connections

This subsection looks at simple assemblies with concave interfaces in order
to benchmark CRA when the extended version of the data structure is used
(Section 5.4). Figure 6.15a and b show two models with the same concave-
shaped joint geometry but with different cantilever lengths. We compare the
CRA results against 3DEC in a tilting test considering two friction values,
with friction coefficients 0.10 and 0.84 corresponding to friction angles equal
to 5.71◦ and 40.03◦, respectively. As from Table 6.3, a very good agreement
can be noted. In particular, the positions of the centre of mass of these
two models affect the results. Indeed, while in the concave-short model, the
failure is due to the friction capacity on the two lateral contact sides, the
concave-long can activate an additional contact on the back that makes it
more stable. Moreover, as soon as the model is tilted to the limit angle, the
low-friction-angle configuration starts to slide, as expected.
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(a) concave-short (b) concave-long

Figure 6.15: The maximum tilt of two concave shape joint geometries with
different lengths of the cantilever. (a) and (b) are CRA results corresponding
to the friction coefficient µ = 0.84 in (c).

Table 6.3: Benchmark table for concave joints in Figure 6.15.

Rotation axis µ=0.84 µ=0.10
Type Angle (deg) 3DEC CRA 3DEC CRA
concave-short rotate-x 40 40 5 5
concave-long rotate-xy 56 54 10 9

6.2.5 Freeform connections

Lastly, we benchmark CRA on three types of freeform assemblies with curved
interfaces against 3DEC and Sofistik. The models and the corresponding
results are reported in Figure 6.16a, b, and Table 6.4. CRA directly discre-
tises the original curved interface as described in Section 5.4 and Figure 5.4.
Conversely, 3DEC cannot take the curved interfaces into account directly.
To analyse assembly with curved interfaces, we proceeded with a prepro-
cessing modelling phase cutting each block into convex sub-blocks, which
were joined together later. As this is not a common problem to model in

105



Chapter 6. Stability assessment

3DEC, we decided to benchmark CRA also against the FE software Sofistik.
Sofistisk similarly can handle curved interfaces but needs additional mesh-
ing steps to generate triangular surface and tetrahedral volume elements.
Moreover, Sofistik considers only one normal versor for each vertex averag-
ing the normal versors of the neighbouring faces. Table 6.4 illustrates the
tilting tests performed considering three qualitatively different models and
assuming various distinct tilting directions.

In Figure 6.16a, the curve-3-blocks model consists of three vertically stacked
blocks with interfaces singly curved along the X-axis. In this case, we per-
form five tilting tests around different axes, and all CRA results align well
with both 3DEC and Sofistik. In Figure 6.16b and c, we model curved inter-
faces in both X-axis and Y-axis. Both cube-curve-short and cube-curve-tall
have the same interface and discretisation. They are different in terms of
their centre of mass positions. Due to the symmetry of the shape, we per-
form only three different tilting directions for both cube-curve models. For
the cube-curve-short model, CRA seems to align well with 3DEC results.
On the other hand, Sofistik seems slightly more conservative, especially for
the rotation-xy axis. For the cube-curve-tall model, CRA gives a more con-
servative angle in the rotation-xny axis.

(a) curve-3-blocks (b) cube-curve-short (c) cube-curve-tall

Figure 6.16: The maximum tilting angle of three types of non-standard
assembly shapes with curved interfaces.
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Table 6.4: Benchmark table for non-standard assembly with curved interface
in Figure 6.16. All tilting angles are rotated anticlockwise according to a
specific rotational axis, e.g., the rotate-xy represents the rotational vector
(1, 1, 0) and rotate-xny represents the rotational vector (1,−1, 0).

Rotation axis µ=0.84
Type Angle (deg) 3DEC Sofistik CRA RBE

rotate-y 8 8 8 8
rotate-ny 53 53 53 53

curve-3-blocks rotate-x 24 24 24 26
rotate-xy 11 12 12 12
rotate-xny 46 47 47 48
rotate-x 72 70 70 180

cube-curve-short rotate-xy 68 64 69 180
rotate-xny 80 79 79 180
rotate-x 41 38 40 180

cube-curve-tall rotate-xy 39 38 39 180
rotate-xny 59 58 51 180

In general, CRA nicely captures the limiting state of different geometries and
aligns well with commercial engineering software. The correct prediction of
stability greatly enlarges the design space of discrete-element assemblies. In
the next section, we will show examples of using CRA in a forward design
process.

6.3 Stability-aware design process

As stated in previous sections, CRA can assess stability correctly, and its
penalty formulation can provide users with additional information. Sec-
tion 6.3.1 shows how CRA can be integrated into an interactive stability-
aware design workflow, while Section 6.3.2 shows its potential to guide the
designer towards a self-supporting shape. Lastly, Section 6.3.3 shows that
using the stability-aware design process enables more extreme structural
design that is impossible to achieve with a single-planar interface.
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6.3.1 Workflow

We propose a stability-aware design process as summarised in the workflow
in Figure 6.17. As input, the user-provided assembly includes geometry,
mechanical parameters, boundary conditions, etc. The definition/choice
of the boundary condition means selecting which blocks are considered as
supports. In this sense, its use enables the possibility of locally assessing
stability. After set up, the central analysis consists of two CRA formula-
tions, with and without the penalty formulation, i.e., using optimisations
(Eq. 5.6) and (Eq. 5.8) respectively. The algorithm first assesses the stabil-
ity of the assembly using the optimisation problem (Eq. 5.6). If the assembly
is unstable (i.e., infeasible), the algorithm further analyses it with the CRA
penalty form (Eq. 5.8) to identify unstable regions. Once the unstable parts
have been defined, the user can change the geometry accordingly to remove
tensile forces until a satisfactory degree. The following section will show
how to use a stability-aware design workflow to redirect design choices.

6.3.2 Interactive process towards stability

In this section, looking at the shelf model, we demonstrate the effectiveness
of the proposed workflow. Optimisation problem (5.6) is infeasible, meaning
that the shelf is unstable. CRA with penalty formulation (Eq. 5.8) shows
two unstable elements (Figure 6.12). After that, we apply CRA on each
local element individually. E.g., looking at the top-right element, we set
all its neighbouring parts as support. The tensile forces at the upper inter-
face indicate that the region is not activated (Fig 6.18a). In addition, the
virtual displacement (light grey rectangle) shows the potential sliding direc-
tion. To prevent the element from sliding down and provide the uplifting
force, we provide three possible modifications: adding an element as support
(Fig 6.18b) or changing the bottom (Fig 6.18c) or the upper (Fig 6.18d) in-
terface geometry to enforce the resultant inside the friction cone. For each
modification, CRA provides real-time feedback about the stability of the
new configuration. The users can learn from the force feedback and modify
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Figure 6.17: Stability-aware design workflow with CRA.
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their initial design by choice toward better local stability-aware design. Af-
ter the instability of a specific local element is resolved, the user can resolve
different unstable regions locally one by one. Nevertheless, satisfying local
stability does not guarantee a global structural equilibrium. The user must
rerun the CRA to ensure the entire structure reaches global equilibrium.

(a) (b)

(c) (d)

Figure 6.18: The local instability can be understood better by isolating the
unstable parts from the shelf model (Figure 6.12). Tension forces on the
top indicate the specific interface is not loaded, and the light grey rectangle
shows the virtual displacement as potential sliding movement (a). The un-
stable element can be resolved by adding a supporting element (b), changing
bottom interface geometry (c), or changing upper interface geometry (d).
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6.3.3 Wedge arch

In Subsections 6.2.3 and 6.3.2, we demonstrated that a wedge could pro-
vide better stability than a single-planar interface. Therefore, using the
workflow provided in Subsection 6.3.1, we model an unstable thin arch, see
Figure 6.19a, and divide every single-planar interface with two-planar in-
terfaces to create sharp wedges. By checking the resultant tension values
between the interfaces, we iteratively increase the sharpness of the wedge
angle in which the tension appears, Figure 6.19b, until all tension forces
disappear, Figure 6.19c.

6.4 Analysing complex structures using CRA

Besides using CRA to analyse a few complex connections locally, it can
also be applied for the global assessment of complex structures and the
stability checks during construction. Subsection 6.4.1 shows the analysis of
a complex shell structure, and Subsection 6.4.2 shows the use of CRA for
assessing stability during shell assembly.

6.4.1 Armadillo Vault

Figure 6.20 shows the CRA analysis of the Armadillo Vault presented in
Figure 1.2a. The model consists of 399 blocks and 1014 interfaces. The
built Armadillo Vault structure has a 16 metres span with a minimum block
thickness of 5cm [Block et al., 2018, 2017a]. In our numerical model, we ap-
proximate non-planar ruled surfaces to locally planar interfaces and identify
the first layer of blocks as supports. Importantly, CRA correctly identifies
the Armadillo Vault as a stable structure, even with such thin structural
thickness. In addition, the internal resultant forces obtained from CRA
nicely capture the arching and hoop actions as illustrated in Figure 6.20.
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(a)

(b)

(c)

Figure 6.19: We iteratively increase the sharpness of the wedge angle on
those interfaces where tension forces appear to stabilise the thin arch.
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(a) Side view

(b) Top view

Figure 6.20: CRA correctly identifies the Armadillo Vault (Figure 1.2a)
under its self-weight as a stable structure. It also identifies arching and
hoop forces correctly.

6.4.2 Robotic assembly of shell structures

The CRA method can also be applied to correctly assess structural stability
during construction using robotic fabrication [cite to AAG paper with stu-
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dents Wang et al. work in progress]. Figures 6.21a and b show both CRA
simulations and robotic assembly of physical shell models. We perform
CRA at each assembly step by giving the simulation a predefined assembly
sequence to assess its stability during robotic construction. Our designs are
validated through scaled physical models that are 3D-printed with a Prusa
i3 MK2 3D Printer, and we applied sandpapers to the interfaces and verified
that the friction value is above 0.66. Additionally, we assembled the shell
structure using two Universal Robots UR5 with customised end effectors.
CRA correctly predicts the stability of each assembly step of the complex
shell structure. In this robotic assembly of shell structure, we utilise the as-
sembly strategies proposed by Kao et al. [2017]. If the structure is unstable,
we assemble it with neighbouring blocks and with the assistance of another
robotic arm. In this sense, we can efficiently assemble shell structures with
limited scaffolding, which reduces a tremendous amount of material waste.

6.5 Summary

In this Chapter, we demonstrated the use of the solvers described in Part II
for the stability assessment of various structures.

In Section 6.1, we performed several studies to understand the RBE-based
approach better. Firstly, we applied the RBE analysis to two simple bench-
mark cases to show the meaning of the nodal contact forces and to illustrate
how the friction capacity is handled. Secondly, we analysed the same but-
tressed arch as in Iannuzzo et al. [2020] to benchmark and illustrate RBE’s
potential. Thirdly, we looked at a dome with an oculus to show how an im-
proved RBE-based approach can also be used to assess 3D structures. The
primary outcome of Section 6.1 is that both QP and LP approaches provide
statically admissible solutions in a Limit Analysis sense. Since, in reality, it
is hopeless to try to understand the actual contact conditions, there is no
reason to prefer one over another, each solution being a possible admissible
stress state. In general, LP solutions are more affordable (i.e., less time-
consuming) for large problems. In this light, RBE is a powerful tool that

114



6.5. Summary

(a) (b)

Figure 6.21: Robotic assembly of a tri-dome shell structure Wang et al.
[2023]: (a) CRA assessment, identifying the structure is stable during the
intermediate step of assembly; and, (b) 3D-printed model assembled with
two Universal Robots (UR5).
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can be used to explore a wide range of equilibrium states and corresponding
stress solutions fast and efficiently. Additionally, their use allows for tackling
typical masonry assessment problems properly.

The equilibrium approach is a common strategy for analysing the stabil-
ity of rigid block assemblies. Nevertheless, existing methods are either too
conservative or do not provide realistic or accurate results, even for some
simple scenarios. RBE is particularly unreliable when analysing more com-
plex geometries. Therefore, Section 6.2 performed a wide range of CRA
benchmarks to demonstrate its accuracy and robustness. Benchmarking
with commercial software 3DEC (DEM) and Sofistik (nonlinear FEM), CRA
has been proven to handle various geometrical cases accurately, from classi-
cal masonry arches to more complex shapes with interlocking and freeform
joints. Notably, CRA provides an explicit optimisation formulation with
fewer parameters to tune, enabling early design feedback on the assessment
problems and future improvements. Compared to other explicit methods,
such as RBE and Variational Static Analysis (VSA) proposed by Yao et al.
[2017], CRA aligns much better with analytical solutions and commercial
software results commonly used in actual engineering practice. In addition
to accurate, quick, and explicit solutions, CRA provides a penalty force so-
lution when the structure is unstable, which gives users helpful feedback for
improving a discrete structure towards a more stable solution.

After showing CRA’s accurate solutions and the method’s ability to be used
for a wide range of problems, in Section 6.3, we presented a stability-aware
design workflow that utilises CRA formulations to assist the user in ad-
justing their designs’ geometry. For unstable structural configurations, the
CRA penalty formulation gives users additional tensile forces, supplemented
with virtual displacement information, to iteratively guide and improve their
geometrical design intentions toward a more stable solution.

Finally, Section 6.4 demonstrated CRA’s assessment usage for complex shell
structures. We showed that CRA is robust enough to be applied to the prac-
tical assessment of complex shell structures. Taking the Armadillo Vault as
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an example, CRA correctly showed its internal stresses and captured its
arching and hoop behaviour. Furthermore, we exhibited that CRA is a
practical tool for assessing stability during robot-assembled shell construc-
tion. With the help of CRA, we used two robots for accurately picking
and placing 3D-printed blocks to assemble a discrete shell structure entirely
without any scaffolding.
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Assembly-Aware Design (AAD)

After demonstrating the CRA solver’s robustness in Chapter 6, this chap-
ter presents a computational framework for Assembly-Aware Design (AAD)
to design discretised shell structures that can be constructed with mini-
mal formwork. Section 7.1 illustrates the benefit of considering assembly
in the design workflow and proposes embedding a stability-aware design
workflow. Section 7.2 demonstrates the design process of using wedge ge-
ometry to achieve two surprising scaffolding-free design examples. We use
CRA to simulate, guide the design process, and validate the design with
physical models. Section 7.3 proposes the Assembly-Aware Design process
and explains it in a flowchart. Section 7.4 shows the process of generating
the geometries for shell structures. Finally, in Section 7.5, we demonstrate
structural designs of shells that can be assembled with limited scaffolding
and summarise this chapter in Section 7.6.

7.1 Introduction

In architectural practice, shell structures are challenging to construct and
the process is highly inefficient, especially for complicated forms. Typically,
building such structures requires massive amounts of (often single-use) ma-
terial for temporary scaffolds during assemblage to keep the partially assem-
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bled structure in equilibrium during erection. Those scaffolds require extra
time, cost, and labour, often producing material waste. Generally speaking,
discrete shell structures are hard to fabricate and assemble; they need more
structural and assembly awareness in the early design phases.

7.2 Scaffolding-free assembly designs

In Section 6.3, we showed how to apply CRA in a stability-aware design pro-
cess. Based on CRA’s information, designers can intuitively improve their
assembly design’s stability, see Figure 6.17. However, more than a stability-
aware design process is required to efficiently consider the assembly process
for the discrete shell structures in the early design phase. Specifically, we
need at least one assembly strategy and use the stability-aware design pro-
cess in each assembly step to determine if the structure is stable during
the assembly process. Therefore, to simplify the problem, this section looks
at some two-dimensional problems and demonstrates the design process of
scaffolding-free structures. Subsection 7.2.1 presents a strategy to discretise
a structure and prescribe an assembly sequence. Subsection 7.2.2 applies
CRA in the stability-aware design process and checks the substructure’s sta-
bility for every assemblage step. Finally, Subsections 7.2.3 and 7.2.4 present
two surprising scaffolding-free assembly designs and validate the results with
physical models.

7.2.1 Discretisation and assembly sequence

Suppose we have a leaning but stable tower (Figure 7.1a), want to discretise
it, and then be able to assemble it without using much scaffolding. Since
the tower is built from the ground level, against gravity, a good strategy
is to perform “cuts” from the top to the bottom. In Figure 7.1b–g, we
iteratively make such “cuts” to discretise the tower, at each step, defining
all blocks below the new “cutting” interface as supports. Furthermore, we
apply CRA with the stability-aware design workflow (Figure 6.17) to ensure
each specific “cut” does not cause the structure above that “cut” to no longer
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be in equilibrium. If performing a “cut” makes the sub-structures unstable,
the entire structure will for sure not be stable for further “cuts”.

7.2.2 Stability during assembly

After successfully performing all the “cuts” and ensuring all sub-structures
in all steps are stable, we can start disassembling the structure one by one
to obtain a feasible disassembly sequence, see Figure 7.1h-o. After that, we
reverse the disassembly sequence to assemble the structure. Note that our
discretisation strategy steps from Figure 7.1b to Figure 7.1g do not guaran-
tee that the assembly sequence from Figure 7.1o to Figure 7.1h is completely
scaffolding-free. Suppose the structure could not be stable in the specific
disassembly/assembly step; adapting the strategy from Kao et al. [2017], we
can provide support or assemble with other parts simultaneously. Another
valid strategy to overcome instability during disassembly is to change the
interface discretisation (i.e., the “cut”) below the specific unstable block lo-
cally and rerun that block’s “cutting” process to ensure that the cut does
not disturb the overall stability. For example, if removing the top block in
Figure 7.1j causes the top triangle block in Figure 7.1k to be unstable, we
can locally change the interface below that triangle block in Figure 7.1k and
recheck the “cutting” step in Figure 7.1e.

7.2.3 Snake design

Following the leaning tower example, we show two simple but meaningful
design cases where CRA and the stability-aware design workflow are used to
assess and design self-supporting structures that can be assembled scaffold-
free. We used the same procedure described in the previous subsections to
update interfaces/“cuts” iteratively and get a feasible step-by-step assembly
sequence. Finally, our designs are validated using scaled physical models
that are 3D-printed using a Stratasys Objet500 Connex3 3D Printer.

The following example looks at a snake design, which can be assembled en-
tirely scaffolding-free. Its discretisation and assembly process is summarised
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 7.1: The step-by-step discretisation design process of a leaning tower
that can be assembled scaffolding-free. From (a) to (g), the designer iter-
atively designs “cuts” (interface between the grey free block and pink fixed
support) and ensures the “cuts” do not compromise the structure. The struc-
ture can be disassembled safely step-by-step from (h) to (o) with verification
of the CRA method.

in Figure 7.2, The snake is composed of three pieces plus a supporting base.
The ability to accurately model sharp interfaces with friction enables the
user to reach cantilevered solutions that are not possible with only planar
interfaces. Note the parallels between the physical model and CRA re-
sults in Figure 7.2. Because of the small tolerances, the head of the snake
moves slightly. However, the small movement emphasises that equilibrium
is reached through the transmission of reaction forces on two contact points.
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This matches the force couple, proving the “clamping” moment, found with
the CRA analysis.

7.2.4 Bridge design

The second design-by analysis example regards a bridge design, whose as-
sembly process, together with the CRA results, are summarised in Fig-
ures 7.3 and 7.4. The bridge has been specifically designed to avoid inter-
locking joints but still has an assembly sequence such that each piece can
stably stand after placement without any additional scaffolding. To limit
the effect of tolerances in the physical model, a connection (red circles in
Figure 7.4) was designed to have the first two pieces self-registered in the
desired position. The friction coefficient adopted in the analysis is 0.66. A
parametric CRA analysis showed that for friction values lower than 0.35,
the bridge would not be able to be constructed scaffolding-free. As the
friction coefficient of the printing material is around 0.3, we applied sand-
paper to the interfaces to guarantee that the actual friction value is above
0.66. The sandpaper, applied with double-sided tape, has a thickness of
0.58 mm, which was carefully considered in the 3D-printed geometry. The
bridge stands under its self-weight, and as Figure 7.4 shows, it can support
additional loads. The bridge’s net mass (i.e., without supports) is 319g,
while the mass of the external distributed loads is 1208g. Figure 7.4 shows
the CRA results obtained considering these external, additional loads (using
a higher material density for the additional blocks). Lastly, looking at the
physical model in Fig 7.4b, the keystone is touching and transmitting forces
only through the two upper interfaces while the lower ones are not in con-
tact, as highlighted with green circles. This phenomenon is well captured
by the CRA analysis in Figure 7.4a, where the solution returns only two
resultants affecting those interfaces.
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(a) (b)

Figure 7.2: Snake model: step-by-step construction sequence of both CRA
analysis (a) and corresponding physical model (b). Friction value µ = 0.66 is
applied in the CRA analysis. Two images on the right highlight the detailed
interface and forces of the assembled model.
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(a) (b)

Figure 7.3: Sequential, scaffolding-free construction of the bridge. CRA
analyses (a) and corresponding construction phases of the small-scale phys-
ical models (b).
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(a) (b)

Figure 7.4: (a) Bridge in its final configuration and subjected to additional
loads. (b) The span of the 3D printed model is 40 cm, the net mass of the
bridge (excluding the supports) is 319g, while the mass of the externally
applied loads is 1208g. The red circles denote two sharp wedges designed to
guarantee that the two external elements are in the right position.

7.3 AAD workflow

As described in Section 7.2, we design scaffolding-free structures and verify
them with physical models. Our tools and workflow open up the enormous
potential for designers to consider their designs’ stability and assembly se-
quence in the earlier design phase. Our method increases stability and
assembly awareness for users. Therefore, we propose an Assembly-Aware
Design (AAD) process and summarise it as an algorithm workflow in Fig-
ure 7.5.

The algorithm’s input is a user-defined shape, which can be either a vol-
umetric solid (e.g., Figure 7.1a) or a surface that still needs further mate-
rialisation. We will discuss the detailed aspects of surface materialisation
next in Subsection 7.4.3. Note that the input shape should be initially sta-
ble because the final structure must be stable. With a specific disassembly
strategy in mind, e.g., disassembling the structure from top to bottom, the
user discretises the shape into some smaller units. After that, the user eval-
uates and changes the design through our proposed stability-aware design
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START

user-defined
shape

“cut”/discretise
interfaces

disassembly
strategy

stability-
aware design
(Figure 6.17)

finish all
“cut”

modify “cut”

Analyse
disassembly
sequence

CRA analysis
(Eq.5.6)

satisfied
stable

sequence

assembly-
aware design

STOP

no

yes

no

yes

Figure 7.5: Assembly-Aware Design workflow that embeds the stability-
aware design and CRA method.
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workflow, in Figure 6.17, to ensure that the substructure is still in equi-
librium after each discretisation step. The user repeats the process until
generating all desired interfaces and blocks. Once a desired discretisation
is generated, based on the user disassembly strategy, the user analyses each
disassembly-sequence step’s structural stability using CRA analysis, Eq. 5.6.
If there is no stable disassembly sequence, the user returns to modify the
discretisation or change the disassembly strategy and repeats the workflow
until finding a desired stable disassembly sequence. Finally, the user can
assemble the structure by reversing the disassembly sequence, as described
in Kao et al. [2017]. Next Section 7.4 proposes a process to generate discrete
shell structures that can apply and integrate into the AAD workflow.

7.4 Generation of discrete shell structures

Learning from traditional scaffolding-free masonry structures [Fitchen, 1981;
Allen and Zalewski, 2009] and our literature discussion in Chapter 2, a good
general strategy to stably construct discrete shell structures is to form stable
sections, e.g., arches and rings, during the assemblage. Forming stable sec-
tions provides opportunities for incomplete and unstable parts to temporar-
ily be supported by or lean on the stable parts, enabling forces to transmit to
the boundaries, thus reducing the need for scaffold during construction. In-
spired by Rippmann [2016] and Kao et al. [2017], this section demonstrates
a procedure to generate discrete shell structures. In Subsection 7.4.1, we de-
scribe the procedure to generate masonry courses that form stable sections
from a surface. Section 7.4.2 demonstrates how to parametrically generate
staggered masonry patterns based on those courses. After this tessellation,
Section 7.4.3 shows the process and algorithm to materialise the staggered
patterns into blocks and planarise interfaces between blocks. Finally, Sec-
tion 7.4.4 suggests one possible dis/assembly sequence for building such a
discrete staggered shell structure. Additionally, Section 7.4.5 casts light on
some interlocking block designs to overcome instability during assembly.
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7.4.1 Courses generation

Rippmann [2016] and Oval [2019] show that shell structures can be decom-
posed into some smaller four-sided patches or a coarse quad mesh. The
quad mesh’s strips and surface’s UV curves can be used to generate courses.
Those courses can act like arches or rings during assembly. Figure 7.6a
shows a four-sided surface with two direction edges, u (blue curves) and v
(red curves). We generate the arches in the u direction, Figure 7.6b, because
it creates arch curves, which provide stable sections after each arch course
is completed.

7.4.2 Tessellation pattern

For the masonry voussoirs, Rankine [1872] and Rippmann [2016] mentioned
that staggered configurations are tessellations that result in good structural
behaviour for masonry vaults. To generate a staggered pattern, see Fig-
ure 7.6c, we divide the course curves into points and connect every other
point with its neighbour point in the previous course. A similar procedure
developed by Rippmann [2016] added partially inserted rows when one side
is much longer than the other. In the next course, we shift the connectivity
to one unit to create the stagger pattern. With this procedure, we create
the staggered pattern as a polygonal mesh. Each mesh face has six vertices
and edges except for particular faces along the boundaries, see Figure 7.6d.
For a more thorough and sophisticated discussion of staggered tessellations
for shell structures, we also refer the reader to Rippmann [2016].

Additionally, Figure 7.6e and Figure 7.7 show that each vertex can move a
certain distance dv in the direction of its adjacent vertex in the neighbouring
course to create a wedge geometry and increase stability, as discussed in
Subsection 6.2.3, 6.3.3, and Section 7.2. Distance dv can vary as a parameter
individually on each course based on the stability needs during structural
assemblage.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.6: A geometrical procedure to generate discrete shell structures. (a)
The process starts from a four-sided surface with the u direction in blue and
the v direction in red. (b) Create course curves in the u direction. (c) Divide
the course curves into segments. (d) Generate a staggered pattern mesh
surface as tessellation. (e) Modify the wedge angles to increase stability. (f)
Materialise the tessellation into block assemblies.
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Figure 7.7: Each vertex in the staggered tessellation can be manipulated
and moved in the direction of the corresponding vertex of its neighbouring
course to change the block shapes and their wedge angles. The original mesh
vertices are labeled in black, and the new vertex positions in red.

7.4.3 Materialisation

To materialise a shell surface with the staggered pattern, we extrude the
polygonal face vertices along their mesh vertex normal vectors, see Fig-
ure 7.8a. Since shell structures typically have doubly-curved surfaces, two
normal vectors for the interface extrusion usually are not in the same plane,
i.e., the interfaces are non-planar.

As discussed in Section 5.4, CRA can deal with complex shapes with freeform
interfaces. We only need an additional step to discretise the freeform inter-
face into planar sub-interfaces. Note that using freeform interfaces gener-
ally increases CRA’s solving time since the number of interfaces increases.
Therefore, we planarise all interfaces between blocks to simplify the prob-
lem. Using the method proposed in Bouaziz et al. [2012], Figure 7.8b shows
that we calculate the vertex’s adjacent planar interfaces and iteratively move
the vertex toward all neighbouring projection vectors’ averages. For a more
detailed interface planarisation, we refer the reader to the work of Bouaziz
et al. [2012], Bouaziz et al. [2014], and Deuss et al. [2015]. Finally, Figure 7.6f
shows the generated assembly design that can be applied to AAD.
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(a) (b)

Figure 7.8: Materialise the shell surface with blocks. (a) Offsetting the mesh
face from its vertex normals. (b) Planarisation of three adjacent interfaces of
a vertex. The algorithm calculates the projection vector individually to the
vertex’s adjacent interfaces and then moves the vertex in the three vectors’
average direction.

7.4.4 Assembly sequence

Our assembly strategy for staggered-pattern masonry generated from a four-
sided surface is to assemble the discrete shell structure course by course
(i.e., forming stable sections through arches). Additionally, we start from
the lower arches/courses closer to the support so that the later constructed
unfinished course can lean on the previously constructed, stable courses.
Figure 7.9 shows the starting support arch in red curves and the assembly
sequence direction in the black arrows.

With a dis/assembly strategy in mind, we can apply the AAD workflow and
iterate back to the steps mentioned in Subsections 7.4.1, 7.4.2, and 7.4.3 to
modify the design’s discretisation accordingly. We iteratively remove blocks
from the top until reaching the supporting blocks to obtain a feasible assem-
bly sequence and highlight the “problem blocks” that require scaffolding. We
aim to embed assembly awareness in the design process to reduce scaffold-
ing instead of creating an entirely scaffolding-free design. Sometimes, some
blocks are just geometrically impossible to assemble without scaffolding or
too risky in practice.
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Figure 7.9: Example of assembly strategy of a shell surface. The red lines
indicate the boundary conditions as starting points. Our proposed strategy
is to build arch courses from the lower level toward the higher ones, such
that later arch courses can lean on the stable and finished courses.

7.4.5 Block design to provide temporary stability

With the CRA method, stability and assembly-aware design processes can
be used to design simple convex blocks and complex block geometries. Al-
though complex block shapes require more sophisticated procedures to fab-
ricate and assemble, they can sometimes be helpful for practical reasons or
can be used to construct shell structures using fewer scaffolds.

Inspired by scaffolding-free shell designs (Figure 7.10a) developed by Alexan-
der Kobald, Matthias Rippmann, and Andrei Jipa at ETH Zurich in 2017–
2018, Figure 7.10b shows one of our experiments of interlocking block design
that can overcome instability during assemblage. Each new block of the
current assembly course/arch can be safely placed on the previous course
as the interlocking block geometry is designed to prevent translational and
rotational movement, which causes instability. Additionally, the block is de-
signed to be easily rotatable along an axis so all blocks can be self-registered
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(a)

(b) (c)

Figure 7.10: Some experimental interlocking block designs enable each block
to be assembled entirely scaffolding-free: (a) a scaffolding-free shell design
developed by Alexander Kobald, Matthias Rippmann, and Andrei Jipa at
ETH Zurich in 2017–2018; (b) inspired by (a), an interlocking block devel-
oped by the author to provide temporary stability until the stable row/arch
is complete. The block is designed to be easily rotatable along an axis so all
blocks can be self-registered during assembly; and, (c) a physical prototype
of (b).

during assembly. Figure 7.10c shows the physical prototype model of the
interlocking block design. Except for the first arch, no scaffolding is needed
during the assemblage. Every block in the new course is stabilised through
the previous, stable sections.

7.5 Assembly-aware discrete shell designs

This section demonstrates the AAD workflow of discrete shell structures
through three examples. Subsection 7.5.1 shows the AAD workflow in a sim-
ple vault design. After that, Subsection 7.5.2 shows that the dome can be
assembled entirely scaffolding-free. Additionally, we verify the design with
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a physical model and assemble the dome with two robots. Finally, Subsec-
tion 7.5.3 will demonstrate how to design freeform discrete shell structures
using an AAD workflow.

7.5.1 Vault designs

A barrel vault is one of the simplest shapes for discrete shell structures. As
discussed in literature Section 2.3 and Figure 2.5, a barrel vault has various
ways to be constructed with limited scaffolding. In this section, learning
from ancient barrel vaults, we demonstrate designing and simulating a simple
vault assembly design using an AAD workflow.

In Figure 7.11a, suppose that we have a four-sided shell surface with set
boundary conditions along three edges that connect to the ground, see
Figure 7.11b. Firstly, we suggest that users can use methods such as
TNA [Block, 2009] with optimisation methods [Maia Avelino et al., 2021] to
form find a surface and find a reasonable thickness to ensure the final com-
plete discrete shell structure is stable. Secondly, we create stable sections
through arch courses, see Figure 7.11c. Thirdly, we generate the staggered
masonry pattern in Figure 7.11d and iteratively adjust each course with a
specific parameter for the wedge angles based on stability during assemblage,
Figure 7.11e. Finally, in Figure 7.11f, we materialise all blocks for assembly
planning. Those “cut” parameters and wedge angles can be changed based
on the AAD disassembly planning with CRA analyses in order to achieve
block equilibrium during assembly.

After setting up the geometric procedures to generate the discrete shell struc-
ture, we start the AAD workflow (Figure 7.5) to interactively modify the
shell discretisation and find a feasible assembly sequence. Figures 7.12a and
b show the first iteration of the discrete shell structure and its CRA anal-
ysis, verifying that the final structure is stable. We start with a staggered
pattern with very shallow wedge angles (Figure 7.12a) because sharp corners
are more fragile and easier to be broken or lead to stress concentrations.
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(a) (b) (c)

(d) (e) (f)

Figure 7.11: The geometrical procedure to generate a simple discrete vault
structure. (a) The process starts from a four-sided surface with the u direc-
tion in blue and the v direction in red. (b) Setting up boundary conditions
in pink curves. (c) Create course curves in the u direction. (d) Generate
a staggered-pattern mesh as tessellation. (e) Iteratively modify the wedge
angles based on CRA analyses to increase the stability of each course. (f)
Materialise the tessellation into an assembly of blocks.

In Figure 7.12a, we label each block with an identification number in blue,
and each vertex has a course number in black. The course number on the
vertex indicates the neighbouring upper block’s course number, e.g., blocks
course 6 are those blocks between vertex courses 6 and 7. Changing the
interfaces with the same vertex course number affects the stability of blocks
with the same course number during assembly, e.g., modifying the interfaces
and wedge angles of vertex course number 5 affects the blocks with numbers
22 to 26.

Our disassembly strategy for this simple vault is straightforward and as
follows:
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• We disassemble course by course and start with an open edge, so, e.g.,
the course sequence 6, 5, 4, 3, 2, 1.

• For each arched course, we remove blocks from the top level, e.g., 35,
36, 34, (33 and 37 are supports), 29, 30, 28, 31, . . . and so on.

Therefore, we iteratively remove blocks based on our disassembly strategy
and utilise the AAD workflow to adjust the “cutting” interfaces and block
shapes, Figure 7.12c. We first set all other blocks with a lower course number
as boundary conditions, so fixed, to disassemble one course and adjust its
interfaces, it is necessary. Figure 7.12d shows the removal of the first course,
adjusting the “cut”, and analysing the blocks using stability-aware design
simultaneously. After being satisfied with the block shapes and verifying
that all blocks can be removed safely with or without scaffoldings, we move
to the subsequent courses of blocks and repeat the processes, see Figure 7.12e
and f.

Finally, after finalising the discretisation design of the shell, the last step
in the AAD workflow is to generate the assembly sequence and visualise
the “problem areas”. Figure 7.13a visualises the blocks in different colours
to indicate their state for assembly. Light grey indicates the block can be
assembled without any scaffolding, dark grey (blocks 7 and 8) indicates the
block needs to be assembled with its neighbouring blocks simultaneously or
with neighbouring blocks fixed to be stable during assemblage, and black
(blocks 6 and 9) indicates the block needs scaffolding during assemblage.
Figures 7.13b, c, and d show the CRA analysis of the disassembly sequence.
The disassembly sequence is as follows: 35–36–34–30–29–31–28–24–25–23–
19–18–20–17–13–14–12–Support(9, 6)–(8–7)–9–6, with the brackets (a–b)
meaning that blocks need to be a and b need to be dis/assembled together.
Figure 7.13b shows all remaining blocks are stable after the removal of block
30. Similarly, Figure 7.13c shows removing block 19 is a safe disassembly
step. However, not all blocks in this shell geometry configuration can be
disassembled entirely scaffolding-free. Figure 7.13d shows that the removal
of blocks 7 or 8 causes neighbouring blocks 6 and 9 to become unstable.

137



Chapter 7. Assembly-Aware Design (AAD)

(a) (b)

(c) (d)

(e) (f)

Figure 7.12: The Assembly-Aware Design of a simple vault structure is
shown previously in Figure 7.11. The yellow lines indicate the “cuts” and
interfaces. (a) The first iteration of the staggered pattern has a shallow
wedge angle. (b) Our CRA method shows that the final assembly structure
is stable. (c) The final tessellation staggered pattern after using the AAD.
(d)–(f) The user iteratively removes each course and adjusts the “cuts” and
the wedge angles through the geometry manipulation discussed in Figure 7.7.
The structure stability is verified through CRA.
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Indeed, according to the generated disassembly sequence and our visuali-
sation in Figure 7.13a, almost all blocks can be disassembled individually,
except blocks 6 and 9 require support and blocks 7 and 8 need to be removed
simultaneously.

It is worth mentioning that going back to the previous step in the geome-
try generation of the discrete shells and changing the interface “cuts” can
potentially enable the vault to be constructed and assembled completely
scaffolding-free. We chose the specific block and interface geometries for the
purpose of demonstrating the AAD workflow.

7.5.2 Dome designs

A dome or a cupola is a historically significant architectural element [Mark
and Hutchinson, 1986; MacDonald, 2002; Holzer, 2021]. Some domes are
constructed centring-free without any scaffolding [King, 2013]. This subsec-
tion demonstrates the design and construction process of such a scaffoldings-
free dome using the AAD workflow.

Figure 7.14 shows the geometrical generation process of a discrete dome
design. Similar to the discrete vault four-sided surface in Figure 7.11a, a
dome topologically also has four edges, u in blue and v in red, just with two
boundary edges in v overlapping and connected, see Figure 7.14a. Firstly,
we set up the boundary conditions on the ground level, see Figure 7.14b,
and generate stable sections, e.g., ring courses in Figure 7.14c. Secondly,
we generate the staggering masonry pattern in Figure 7.14d and adjust
each course’s wedge angle, Figure 7.14e, using the procedure mentioned in
Figure 7.7. Finally, in Figure 7.14f, we materialise all blocks to generate a
discrete dome assembly.

Similarly to the AAD process of vault design in Subsection 7.5.1, we itera-
tively remove blocks and change the courses’ parameters until a satisfactory
dis/assembly sequence is obtained.

Figure 7.15 shows the assembly sequence steps, with CRA simulations, ver-
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(a) (b)

(c) (d)

Figure 7.13: The Assembly-Aware Design result of the vault structure. (a)
Different colour schemes show different block assembly statuses. Black
blocks require scaffolding during assembly, dark grey ones need to be as-
sembled with neighbours, and light grey blocks can be assembled without
scaffoldings. (b)–(d) The disassembly steps analysis using CRA.

ifying that every step is structurally stable. The friction coefficient adopted
in the analysis is 0.66 for matching the sandpaper’s coefficient in physi-
cal models. The dome can be assembled entirely without scaffolding. Some
blocks, especially the first blocks (blocks 25 and 37 from the third and fourth
courses, highlighted red in Figures 7.15d and f) must be assembled together
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(a) (b) (c)

(d) (e) (f)

Figure 7.14: The geometrical procedure is similar to the step described in
Figure 7.11 to generate a dome structure.

with neighbouring blocks 26 and 38.

To verify our AAD workflow and simulation results, we fabricated the phys-
ical models with Prusa i3 MK2 3D Printer and apply sandpaper to the
blocks’ interfaces to ensure the friction coefficient is above 0.66 as our set-
tings in the CRA simulations. Additionally, in Figure 7.16, we used two
Universal Robots UR5 with customised end effectors to assemble the dome
to demonstrate the possibility of embedding robotic planning with the AAD
workflow. We use two robots to simultaneously place two blocks stably, as
shown in the CRA simulations in Figure 7.15d and f.

7.5.3 Free-form discrete shell designs

In architectural practice, a surface generated through form-finding methods
can be more complicated than a simple vault or a dome shape. Rippmann
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(a) #1 (b) #7 (c) #13 (d) #25, #26

(e) #31 (f) #37, #38 (g) #43 (h) #48

Figure 7.15: The stable assembly steps of a dome structure Wang et al.
[2023]. The dome is designed using the AAD workflow and can be assembled
entirely scaffolding-free. Some steps must be assembled simultaneously, such
as block numbers 25 and 26 in (d) or 37 and 39 in (f), highlighted in red.

[2016] and Oval [2019] show that complex shell structures can be decom-
posed into sub-patches. The Armadillo vault, shown in Figure 6.20, also
has a patch topology and staggered configuration [Block et al., 2017c]. For
specific shell structures, it is straightforward for users to recognise the un-
derlying basic shapes. For example, Figure 7.17a shows that for a freeform
surface, the user can intuitively decompose it into four-sided patches, Fig-
ure 7.17b, and generate courses accordingly, Figure 7.17c. In this specific
case, Figure 7.17d, a discrete freeform shell structure is generated through a
three-vault topology. With the help of the AAD workflow presented in the
previous Subsection 7.5.1, the vault can be designed and assembled through
arches. Additionally, by adjusting block interfaces between courses, AAD
can help users become aware of the assembly processing and guide them
toward a discrete shell design using limited scaffoldings.
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(a) (b)

(c) (d)

Figure 7.16: The dome design through AAD can be 3D-printed and assem-
bled scaffolding-free with two robotic arms Wang et al. [2023].

7.6 Summary

This section presented an Assembly-Aware Design (AAD) workflow for dis-
crete shell structures. The AAD is built upon the CRA method (Chapter 5)
and the stability-aware design workflow (Section 6.3).

Section 7.1 briefly reiterated the urgent need to develop such a workflow. To
help and give the reader details for understanding our proposed workflow
process, in Section 7.2, we looked at more intuitive 2D examples step by
step:

1. We propose one possible dis/assembly sequence.

2. We iteratively create the discretisation “cuts”. At each iteration step,
the discretisation should not compromised the structure. Therefore,
the “cut” designs are evaluated and redirected through CRA and the
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(a) (b)

(c) (d)

Figure 7.17: A more complex freeform shell structure can be decomposed
into simpler shapes. (a) A freeform shell surface is designed through form-
finding. (b) Dividing freeform surface into sub-patches. (c) Creating course
curves for all patches. (d) Materisation of the shell structure.

stability-aware design workflow.

3. We reverse the disassembly process to obtain a feasible assembly se-
quence.

4. We design, simulate and build two scale models to demonstrate that
our method is physically feasible.

After demonstrating the workflow with detail examples, in Section 7.3,
we formalised the AAD workflow in a flowchart, giving the reader a clear
overview of the process. Shell structures are three-dimensional structures; it
is more complicated to consider both discretisation and assembly sequence
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simultaneously. Section 7.4 presented a procedure to generate discrete shell
structures from shell surfaces. Learning from historical masonry’s staggered
patterns, we discretise the shell surface into course curves that can prede-
fine the assembly sequence. Moreover, we demonstrate the procedure to
materialise the structure and relate our discretisation to the AAD workflow.
Additionally, at the end of the section, we show an interlocking block de-
sign. The AAD workflow allows designers to design block assemblies that
can overcome stability during the shell assembly process. Finally, Section 7.5
presented three designs, a vault, a dome, and a freeform shell structure, to
demonstrate the potential of AAD workflow applications.

There are many tessellation methods for shell structures; this chapter pre-
sented one for the purpose of demonstrating the AAD workflow. It is im-
portant to note that this research did not provide an optimal tessellation
algorithm so that any shell structures could be applied and assembled en-
tirely scaffolding-free. Alternatively, our AAD aimed to propose a workflow
that helps users make informed design choices in the early design phases and
be aware of possible assembly sequences simultaneously. The AAD workflow
provides a framework for which each step in its workflow can be replaced
with more automation or improved in the future.
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Chapter 8

COMPAS CRA

This chapter presents COMPAS CRA (compas_cra) — our open-source
implementation of Coupled Rigid-Block Analysis (CRA) solvers presented
in Part II.

8.1 Introduction

This section provides basic information about our open-source library, an
overview of the library structure, online documentation, and public release
information.

8.1.1 Open source infrustructures

COMPAS by Van Mele et al. [2021] is an open-source Python-based com-
putational framework for collaboration and research in architecture, engi-
neering, fabrication, and construction. COMPAS CRA — Coupled Rigid-
Block Analysis (CRA) for the COMPAS framework [Kao, 2022] — builds
upon and utilises the framework’s basic data structures, algorithm, geome-
try, and other functions to provide users with our research tools to solve
structural equilibrium problems. Our implementation uses Python pro-
gramming language [vanRossum, 1995] with some scientific libraries, such
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as NumPy [Oliphant, 2006] and SciPy [Virtanen et al., 2020]. Our pro-
vided solvers, CRA and RBE, uses Pyomo as a modelling language [Hart
et al., 2017] and IPOPT as a solver of the nonlinear constrained optimisation
problem [Wächter and Biegler, 2006]. Except for those popularly used and
well-maintained Python libraries, our implementation is developed indepen-
dently of any CAD software functionality, enabling portability in different
platforms and efficiently used by various users in different research fields.
Additionally, we utilised and extended some in-house COMPAS libraries,
e.g., COMPAS Assembly [BlockResearchGroup, 2018] for our extended as-
sembly data structure base to handle geometrical information; COMPAS
View2 [BlockResearchGroup, 2021] for graphical visualisation with OpenGL.

COMPAS CRA is hosted publically on the GitHub repository:

https://github.com/BlockResearchGroup/compas_cra

8.1.2 Online documentation

The complete documentation is available online at:

https://blockresearchgroup.github.io/compas_cra

The online documentation served as a reference and user manual. It contains
various details that are helpful for the user, including an introduction, an
installation guide, a step-by-step tutorial, examples, API references, the
software license, contribution guides, and citing information.

8.1.3 Release

The first public release of COMPAS CRA was announced in September
2022 with version v0.2.0. There were a few minor changes and updates.
The current version is v0.3.0. For the latest version and development, we
refer readers to the DOI link:

https://doi.org/10.5281/zenodo.7043135
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Figure 8.1

8.1.4 Library structure

The content of COMPAS CRA in the current version 0.3.0 is structured as
follows:

• Data structure

This folder contains our extended assembly data structure, namely
CRA_Assembly, which was inherited from the Assembly data struc-
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ture from COMPAS Assembly. CRA_Assembly provides several
handy functionalities, such as transforming assembly geometrically
and storing multiple free-form interface data.

• Algorithms

This folder contains algorithms such as scripts identifying contact in-
terfaces between convex blocks.

• Equilibrium

This folder contains the essential solvers with several helper functions,
which are the core of this dissertation research work. We imple-
mented three solvers rbe_solve, cra_solve, and cra_penalty_solve in
the COMPAS CRA. The details of provided solvers are discussed in
Section 8.2.

• Geometry

This folder contains scripts to generate geometry, such as a parametric
arch generation for the analysis.

• Viewers

This folder contains our visualisation functionalities extended from
COMPAS View2. The Viewers provides two handy functions,
cra_view to launch an individual viewer and cra_view_ex to visu-
alise assembly information to an existing viewer. They both provide
several functional parameters, giving the user options to visualise or
not the assembly information, such as nodal forces, resultant, inter-
face, adjusting the scale of the models, and more.

8.2 Equlibrium solvers

In version v0.3.0, COMPAS CRA provides three solver functions: rbe_solve,
cra_solve, and cra_penalty_solve. Three solvers exist in the equilibrium
namespace and can be used interchangeably in different scenarios. Their
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first three function parameters from all solvers are the same: the first input
is the assembly for checking the stability, the second is the friction coefficient
value, and the third one is material density. We discuss three solvers in the
following sections. For the latest API reference, we refer the reader to our
API reference in COMPAS CRA documentation:

https://blockresearchgroup.github.io/compas_cra/latest/api.

html

8.2.1 rbe_solve

The compas_cra.equilibrium.rbe_solve provides the solver using the Rigid-
Block Equilibrium (RBE) method, as discussed in formulation (4.7) in Chap-
ter 4.

The rbe_solve input parameters are as follows:

• assembly — the rigid block assembly for analysis, can be Assembly or
CRA_Assembly,

• mu — friction coefficient value µ,

• density — density ρ of the block material,

• verbose — true to print information during the execution of the solving
process,

• timer — true to print optimisation solving time,

and it returns:

• the assembly is updated in place, and this function also returns (As-
sembly or CRA_Assembly) for other COMPAS packages, such as
COMPAS RPC and COMPAS Cloud.
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8.2.2 cra_solve

The compas_cra.equilibrium.cra_solve provides the solver using the Cou-
pled Rigid-Block Analysis (CRA) method, as discussed in formulation (5.6)
in Chapter 5.

Compared to the rbe_solve, cra_solve has two additional inputs as follows:

• d_bnd (float, optional) — the bound of virtual displacement η,

• eps (float, optional) — contact overlapping parameter ε.

8.2.3 cra_penalty_solve

The compas_cra.equilibrium.cra_penalty_solve provides the solver using
the Coupled Rigid-Block Analysis (CRA) method with penalty formulation,
as discussed in formulation (5.8) in Chapter 5. All its inputs and outputs
are identical with the cra_solve.

8.3 Workflow

In addition to the core solvers, COMPAS CRA provides several handy tools
for users to operate efficiently. Figure 8.2a shows the workflow of using
COMPAS CRA tools. Firstly, in Figure 8.2b, the user inputs 3D meshes
and uses scripts in the compas_cra.datastructures namespace to convert
meshes into CRA_Assembly. After boundary conditions are correctly set
in Figure 8.2c, the scripts in the compas_cra.algorithms namespace can
automatically identify interfaces between blocks, see Figure 8.2d. Note
that for our algorithms to be properly functional, all input meshes must
be watertight and 2-manifold. Once all geometries and properties are set in
the CRA_Assembly data structure, the user can use one of the three pro-
vided solvers (rbe_solve, cra_solve, and cra_penalty_solve) for the equi-
librium analysis and visualise our results using functions provided in the
compas_cra.viewers namespace, see Figure 8.2c.
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START

input 3D
meshes

convert to
CRA Assembly

set boundary
conditions

identify
interfaces

solve equilibrium
(rbe_solve, cra_solve,
cra_penalty_solve)

visualise
results

STOP

(a) Workflow

(b) Convert 3D meshes to CRA
Assembly

(c) Set boundary conditions

(d) Identify interfaces

(e) Solve equlibrium

Figure 8.2: COMPAS CRA Workflow. (a) The step-by-step flowchart shows
the workflow processing of using COMPAS CRA. (b)-(e) Screenshots of the
standalone viewer showing the individual step of the workflow process.
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8.4 Examples

This section provides some example code snippets to express our workflow
(Figure 8.2a) in the previous section. Firstly, we create two boxes for the
analysis (Figure 8.2b):

from compas.geometry import Box , Frame , Translation

support = Box(Frame.worldXY (), 4, 2, 1) # supporting block
free1 = Box(

Frame.worldXY ().transformed(
Translation.from_vector ([0, 0, 1])
* Rotation.from_axis_and_angle ([0, 0, 1], 0.2)

), 1, 3, 1
) # block to analyse

Secondly, we convert box geometries into CRA_Assembly:

from compas_assembly.datastructures import Block
from compas_cra.datastructures import CRA_Assembly

assembly = CRA_Assembly ()
assembly.add_block(Block.from_shape(support), node =0)
assembly.add_block(Block.from_shape(free1), node =1)

Thirdly, we set the bottom box as the boundary condition (Figure 8.2c):

assembly.set_boundary_conditions ([0])

Fourthly, we call the function to identify planar interfaces between two
blocks automatically (Figure 8.2d):

from compas_cra.algorithms import assembly_interfaces_numpy
assembly_interfaces_numpy(assembly)

Fifthly, we use cra_solve to find structure equilibrium (Figure 8.2d):

from compas_cra.equilibrium import cra_solve
cra_solve(assembly , verbose=True , timer=True)

Lastly, we run the viewer to visualise the result:
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from compas_cra.viewers import cra_view
cra_view(assembly , resultant=False , nodal=True , grid=True)

Additionally, COMPAS CRA provides several examples for users to repro-
duce our paper results. They can be found in our online documentation:

https://blockresearchgroup.github.io/compas_cra/latest/

examples.html

8.5 Performance

Examples and benchmarks in this dissertation were performed on a Mac-
Book Pro with a 2.9 GHz 6-Core Intel Core i9 Processor and 16 GB memory.
Table 8.1 reports the computational burden listed for the performed analy-
ses.

Table 8.1: The performance of all examples and all solving times of models
are analysed at the rest position without applying any tilting.

Fig Model #Blocks #(Sub)Interfaces Solving time (sec)
6.11 Arch thick 38 37 1.02
6.12 Shelf 11 19 0.5
6.14a type-a 3 2 0.05
6.14b type-b 3 2 0.05
6.14c type-c 3 2 0.05
6.14d type-d 3 2 0.05
6.15a concave-short 2 7 0.23
6.15b concave-long 2 7 0.15
6.16a curve-3-blocks 3 40 2.38
6.16b cube-curve-short 2 72 1.15
6.16c cube-curve-tall 2 72 1.04
6.20 Armadillo Vault 399 1014 2424.44
7.1h Leaning tower 8 11 2.43
7.2 Snake 4 7 0.35
7.3 Completed bridge 11 33 1.27
7.4 Bridge with load 16 38 1.26
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Chapter 9

Conclusion

Discrete shell structures have various structural benefits and are aestheti-
cally ravishing. Discrete shells, such as ancient masonry structures, have
been standing for thousands of years but have yet to be built often re-
cently compared to concrete or steel structures due to a lack of construction
efficiency and proper tools. Modern computational technics and construc-
tion technology have opened a new opportunity to design and build dis-
crete structures more efficiently. Therefore, this dissertation has developed
a new structural solver and workflow for designing discrete shell structures.
The various chapters provided the motivations for the problem, looked at
some critical challenges with some literature background studies, reviewed
the state-of-the-art Rigid-Block Equilibrium (RBE) method thoroughly with
some extended tools, formulated the new robust Coupled Rigid-Block Anal-
ysis (CRA) method, showed CRA for assessment, proposed a new Stabil-
ity and Assembly-Aware Design workflow for the discrete shell structures,
and also contributed our software implementation — COMPAS CRA in the
open-source community.

This final chapter presents the concluding summary statement and some
relevant discussions for this research and reflects the problem statement
and research objectives outlined in Chapter 3. Additionally, the limitations
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and potential future research directions are also listed. At the end of this
chapter, we conclude this research with some final reflections.

9.1 Contributions

This dissertation contributes various aspects which relate to the research
objectives outlined in Chapter 3.

• Better understanding of the mechanical behaviour of RBE
results

◦ We introduced the kern of a generic polygonal interface as a pri-
mal variable in the optimisation process. Its use allows us to
assess and define the range of external actions for which the struc-
ture or its part is fully working in compression;

◦ We highlighted how to use RBE to explore different internal ad-
missible stress states by virtually reducing the interface (e.g., to
its kern). This method is a crucial aspect of the RBE method
since it leaves the problem feasible, and the virtual reduction does
not affect the feasibility of the problem, and in this sense, RBE
returns as a solution the one that best matches the prescribed
requirement;

◦ Furthermore, since RBE implicitly takes the thickness of the as-
sembly into account, it provides a more extensive range of stat-
ically admissible solutions when compared to methods that use
compressive 2D or 1D elements;

◦ We highlighted the main differences in using a friction-net and
friction+ approach and show how the friction-net approach with
a global threshold can be helpful when the aim is to evaluate
ultimate states ruled by the friction capacity; and,

◦ To understand the rule of the nodal forces, we performed and
compared all analyses using the original quadratic objective func-
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tion and a linear one. They both provide admissible stress states,
but the difference between them increases as the dimension of
the graph network, and thus also indeterminacy of the problem
increases. The quadratic formulation looks at distributing the
nodal forces as much as possible, and it comes from an elastic in-
terpretation of the contact among blocks. In contrast, the linear
one looks at the interface as a rigid element.

• New robust structural solver

◦ We recognise and overcome issues of the state-of-the-art RBE im-
plementation. To have an accurate tool for designing structurally
informed assemblies with complex shapes and interfaces, we pro-
pose a new mathematical formulation that allows for the correct
assessment of complex assemblies and excludes RBE’s physically
unrealisable solutions;

◦ We formulated a new CRA solver which enables correct stability
assessments of connections with sharp wedge interfaces, which
are not possible with existing equilibrium methods;

◦ We gave consistent notation and visualisation throughout this re-
search to aid the reader in comprehending the RBE optimisation
flaws and insight into resolving the broken formulation;

◦ Our approach is explicit and does not need complicated parame-
ter tuning, which is critical when detailed information about ma-
terial properties and their translation into numerical parameters
is not available;

◦ Additionally, it is worth mentioning that our method is static
and does not require simulating the movement of the objects,
such that there is no additional time parameter to tune;

◦ We extend our optimisation with a penalty formulation, which
enables the formulation to go beyond non-feasible solutions and
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provides meaningful information about which part of the assem-
bly is not in equilibrium;

◦ The penalty formulation allows the user to redirect design choices.
In our physical models, we also used the penalty formulation to
obtain meaningful information about the discretisation process.
CRA with penalty formulation not only suggests if the structure
is stable but also improves our understanding of the structural
response;

◦ An accurate description of the assembly internal stress state when
coupled with corresponding small virtual displacements repre-
sents a robust overall strategy to understand the structural be-
haviour during the design process; and,

◦ Even though it is based on a nonlinear programming formulation,
the computation time of CRA required for local stability analysis
is satisfactory. Taking the Armadillo Vault — a real structure
— as an example, we demonstrated that CRA is able to solve
problems of practically relevant sizes and complexity. Table 8.1
reports the computational burden listed for all the performed
analyses.

• Benchmark solver results

◦ We benchmarked the CRA method with commercial solvers such
as 3DEC (DEM) and Sofistik (nonlinear FEM) analysis;

◦ Our numerical results are accurate and align well with analyt-
ical (whenever these are available or possible) and engineering
software solutions;

◦ We verified our numerical results with physical models; and,

◦ In order to consider fabrication defects or assembly tolerances,
we can use a lower friction value or reduced interface to obtain
conservative results.
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• Improve assembly data structure

◦ We demonstrate that our approach is flexible and can be used
beyond simple convex shapes. Specifically, we extend an exist-
ing graph-based data structure to handle information for complex
discrete-element assemblies with concave shapes and freeform in-
terfaces; and,

◦ Compared to tedious manual convex decomposition or additional
tetrahedralisation algorithm steps, the extended assembly data
structure only stores sub-interfaces in the graph edge, which is
much more straightforward to automate the discretisation process
in the future.

• Study of geometry and stability

◦ We explored many kinds of block geometries and interfaces, such
as wedge angles, curve interfaces, and interlocking joints. We
performed block stability analyses and tilt tests to find their limit
states;

◦ Compared to convex blocks with a planar interface, blocks with
wedge interfaces have higher limit tilting angles, i.e., more stable
— the sharper the angle for the wedge, the more stable the block
during assembly; and,

◦ Changing the wedge interface parameter enables some structures,
e.g., dome structures, to be assembled entirely scaffolding-free.

• Efficient construction sequencing strategy

◦ We developed a discretisation strategy that requires the user to
explore the “cuts” sequence simultaneously with the dis/assembly
sequence. The “cut” is iteratively generated by the user and ad-
justed through CRA formulation to ensure stable sub-structures;
and,
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◦ Learning from the traditional scaffold-free masonry structures, we
discretise the shell structures with a staggered configuration with
a notable dis/assembly sequence and apply the AAD workflow.

• Workflow for efficient design and construction of discrete
shell structures

◦ Our formulation can be easily integrated into an interactive de-
sign workflow to help designers understand structural stability on
the global and local scale;

◦ The potential of CRA formulation is demonstrated with a pro-
posed stability-aware design process with several design exam-
ples, showing that utilising CRA in the design workflow can help
designers improve their design towards a more structurally sound
solution;

◦ In addition to the stability-aware design workflow, we proposed
the Assembly-Aware Design (AAD) workflow to help the designer
find the stable assembly sequence during the early design phase;
and,

◦ The potential of our proposed workflows is demonstrated in sev-
eral design examples, such as the leaning tower, snake, cantilever
bridge design, vault and domes, where the interfaces were itera-
tively designed using the proposed stability and assembly-aware
design workflow to achieve stable solutions, both for the final
structure and during assembly.

• Open-source software implementation

◦ Using the COMPAS framework, we released an open-source
COMPAS CRA (compas_cra) python software package [Kao,
2022], the Coupled Rigid-Block Analysis (CRA) implementation.
The code is accessible publically and can be reused and further
developed;
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◦ COMPAS CRA is implemented completely standalone from CAD
software. It uses pure CPython libraries that can be easily em-
bedded in various CAD software environments; and,

◦ We also included thorough documentation of the COMPAS CRA
implementation, including an introduction to the related theoret-
ical backgrounds in research publications, an installation instruc-
tion, a step-by-step tutorial on geometrical set-ups and using mul-
tiple solvers, examples to reproduce our experiment results, API
references to all public functions, software license, contribution
guides for future collaborators, and citing information.

9.2 Discussions

This section discusses the potential contributions and impacts on relevant
practice and research fields: architectural design, structural engineering, and
computational fabrication.

9.2.1 Contribution related to architectural design

As discussed in Chapter 1, shell structures are a particular type of architec-
ture that is difficult to build and requires massive amounts of scaffoldings
during construction. This dissertation formulated a robust solver and pro-
posed workflow, which aids designers in efficiently designing and building
discrete shell structures. Through the open-source software library COM-
PAS CRA (compas_cra), the user can design discrete element assemblies
and check the stability simultaneously, which can ensure their designs are
structurally sound in the early design phase.

In addition to shell structures, the CRA method can also be applied to
any discrete shape design. With the advancement of additive manufactur-
ing and digital fabrication technics in architectural design, more and more
customised prefab elements are designed, 3D printed and built. CRA can
contribute and have an impact in those fields. Furthermore, in the early
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architectural design phase, the designers typically do not have the material
or the structural behaviour of their design shape in mind. Therefore, com-
pared to engineering software that requires detailed material properties for
structural analysis, e.g., FEM analysis, CRA provides the designer with an
easier, faster, more accurate, and more intuitive way of checking only the
static equilibrium of rigid blocks. Without the need for detailed material
properties for numerical models, CRA is a tool that can assist architectural
design without restraining the designer’s creativity.

9.2.2 Contribution related to structural engineering

In masonry structures, typically, engineers use DEM tools such as 3DEC
software code to assess their mechanical behaviours, such as cracks and set-
tlements. Compared to those typical toolsets, CRA provides an alternative
solution to the masonry assessment. Furthermore, CRA is easier to use and
completely open-source. Compared to commercial software requiring costly
licence fees, CRA provides an alternative solution which is free of charge
and open to modification and improvement.

For non-trivial discrete element assessments, we showed that much
equilibrium-based research does not work well with elements with sharp
wedges. In the worst cases, they give completely wrong results and falsely
claim unsafe structures to be stable, which is extremely dangerous in prac-
tice. CRA formulation precisely describes the structural mechanics for as-
sessing those structures.

9.2.3 Contribution related to computational fabrica-
tion

In addition to architectural design and structural engineering, CRA can be
applied to computational fabrication in robotics research. CRA is suitable
for assessing structural stability in digital fabrication or robotic assembly
planning. Furthermore, CRA can be used in a wide range of fabrication for
furniture, equilibrium sculptures, toys, or other industrial designs.
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To conclude, the potential of CRA and its contribution to computational
fabrication has been demonstrated by designing some physical scale models
in surprising equilibrium configurations, where the physical contacts of 3D-
printed blocks match the CRA interface forces. Also, in some examples,
we assembled blocks with robots to demonstrate the practical usage of our
research in computational fabrication and robotics.

9.3 Limitation and future works

This dissertation presented a robust solver and workflow for designers to
design discrete shell structures with assembly awareness in mind. While
many contributions and advantages have been highlighted, we also sum-
marise some limitations and future research direction as follows:

• Computational time and convergence

The presented formulation CRA is based on nonlinear constrained
optimisation. Thus, it does not guarantee global convergence, and dif-
ferent starting points may result in different local optima. Some ad-
ditional future enhancements include parallel programming and other
nonlinear solving algorithms, which can significantly speed up the op-
timisation solving time and convergence rate.

• Shape optimisation

RBE is a gradient-based optimisation, which has been used for au-
tomatic shape optimisation in various research works [Whiting et al.,
2012; Wang et al., 2018, 2021a], e.g., using sensitivity analysis to mod-
ify block geometry to reduce the tension. However, shape optimisation
relying on RBE may converge to an incorrect solution, as RBE failed to
assess stability in some instances. Completely removing friction leads
to over-conservative solutions. Therefore, with its penalty formula-
tion, CRA represents an ideal basis for automatic shape optimisation
of initially infeasible configurations.
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• Dynamic analysis to check settlements

CRA is a static analysis method. All displacements are entirely vir-
tual, only coupled with the force solution. However, with prospective
modification, CRA is also suitable for using a sequential optimisation
procedure to superimpose small displacements at each step to capture
equilibrated solutions on a deformed but safe configuration.

• Automatic discretisation

The current implementation requires users manually input the discreti-
sation of the sub-interfaces for the freeform block assembly. Therefore,
some future enhancements include some algorithmic procedures to dis-
cretise the freeform interface automatically.

• Better CAD integration and GUI with user interaction

We provided CRA implementation with APIs in open-source software
libraries. Future developments include more CAD software integration
and GUI to help users interact with CRA results’ information more
conveniently. Some valuable features, such as allowing users to apply
external loads to the structure, can significantly assist users in better
understanding the structural behaviours of discrete-element assembly.

• Professional usage with a combination of other tools

The CRA provides a valuable tool to assess the stability of rigid blocks.
However, it does not give any information related to material strain,
and it is hard to tell if the material will fail. A more thorough study
of stress distribution or combination with other advanced engineering
software, e.g., FEM analysis, can become a more powerful toolset.

• More automation involved in AAD workflow

Our proposed discrete shell generation in the AAD workflow is neither
the only nor the optimal discretisation. Finding the optimal discretisa-
tion for shell construction with any scaffolding is a challenging research
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topic beyond our scope. We aimed to demonstrate the workflow’s po-
tential, allow the user to explore the structure’s geometry, and enhance
their stability and assembly awareness during the design process.

Additionally, some of the steps in the AAD workflow can involve more
automation to assist designers further. For example, further imple-
mentation of a more automated shell course generation or a more so-
phisticated tessellation algorithm can be included.

• Uncertainty and tolerances during robotic assembly

CRA can be applied in robotic research to assess stability during as-
sembly planning. CRA gives theoretically correct solutions which do
not consider any tolerance or uncertainty in the real-world scenario.
Further research in this aspect is beneficial in practice.

• Production ready implementation

We publically released our open-source implementation to help design-
ers and researchers to explore and reproduce our results. Our naive
implementation does not intend to be applied directly in practice. One
of our implementation limitations is that COMPAS CRA uses the
IPOPT solver, whose variable range and scales affect the results’ ac-
curacy. The solver with our current implementation sometimes needs
manual density tweaking to find a solution, especially when a large-
scale optimisation problem with the wrong scale. This issue must be
further overcome for our solver to be adequately used in practice. One
potential fix is to use RBE’s result as a proper scaling factor to pre-
process the model into the correct scale. For COMPAS CRA to be
safely used in practice, some standard software engineering practices
should be applied, including more detailed unit tests for corner case
usage.
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9.4 Final reflections

Achieving entirely scaffold-free assembling of discrete shell structures is in-
credibly challenging and the holy grail research area in shell structures.
Many aspects must be fully addressed and overcome to reach such a tar-
get. This dissertation addressed the two essential aspects of the problem
and presented: i) a robust solver that can accurately assess discrete-element
assembly to help designers creates stability-aware design. ii) an assembly-
aware design workflow to assist in designing and building discrete shell struc-
tures with limited scaffoldings. Importantly, our research intends to open up
various research directions to reduce wasteful formwork/falsework/support-
/scaffolding in the construction industry. Our open-source library enables
researchers to build debates upon our findings to achieve such goals. Such
research debate is only possible and meaningful if a robust solver CRA is
publicly available. Finally, the ultimate expectancy of this dissertation is
to see more contributions and extensions to the Assembly-Aware Design
(AAD) frameworks and our Coupled Rigid-Block Analysis (CRA) be widely
spread and improved over time across individual researchers and institu-
tions. We hope this dissertation and its future extensions can significantly
help designers increase their stability and assembly awareness and design
better architecture and structures.
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