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Abstract 

A large amount of the embedded energy of buildings is due to their structures. Consequently, designers 

have been developing lighter and material efficient structures. However, lightweight structures are 

vulnerable to aerial and structure-borne noise transmission, especially for the lower frequencies. Sound 

insulation from environmental noise or footfall is commonly addressed by increasing the mass of the 

structure, resulting in inefficient constructions. In the lower frequency range, structural stiffness plays a 

significant role in preventing sound transmission. This paper studies the relationship between stiffness 

and the acoustical insulation properties of shallow structural shells. The sound radiation of doubly 

curved shells, under point loads, is estimated by computing the surface normal velocity using Finite 

Element Method and the radiated sound power using the Rayleigh Integral. The paper shows the 

potential of optimizing shallow shells for sound transmission by means of their shape, the distribution 

of mass, and the topology of stiffening ribs.  

 

1. Introduction 

As the operational energy in buildings is significantly reduced by more efficient thermal insulation, 

heating and cooling systems as well as on site energy generation, the embedded energy becomes a larger 

percentage of the carbon footprint of buildings. The embedded energy of buildings is vastly determined 

by their structure (Kaethner and Burridge [1]), and in particular, floor slabs contribute a large amount 

of this energy (De Wolf et al. [2]). For this reason, significant efforts have been made in the reduction 

of material quantities by means of structural optimization, resulting in increasingly lighter structures.  

An example of a lightweight structural system is the funicular floor system developed by the Block 

Research Group for the NEST HiLo research unit in Dübendorf, Switzerland (López López et al. [3]). 

This slab consists of a shallow funicular shell, generated by means of Thrust Network Analysis (TNA) 

(Block [4]), a series of stiffening ribs, and tension ties. The shell and ribs are both made in 2cm thick 

unreinforced concrete. This results in a floor system that has 70% less concrete than a traditional 25-30 

cm thick slab for standard spans. This significant reduction in mass poses the problem of the sound 

insulation of the floor system, especially in the low frequency range. In addition to damping, the sound 

insulation of building partitions such as walls and slabs relies heavily on their mass. Floor slabs, for 

example, have traditionally been built with thick concrete slabs, and sometimes additional screed layers 

are added to increase the mass and reduce sound transmission, significantly increasing their weight and 

carbon footprint.  
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Doubly curved surfaces are much stiffer when compared to flat surfaces of the same material and 

thickness. Research in the aerospace industry has yielded powerful numerical methods for computing 

sound transmission for complex shapes as well as great results in minimizing the acoustic radiation of 

panels in the low frequency range by means of stiffness (Ng and Hui [5], Joshi et al [6,7]). However 

stiffness is neglected in the building sector as most partitions are flat. Similarly, shell structures are 

usually designed and optimized for structural efficiency and rarely for acoustic insulation. 

This paper proposes the minimization of the sound radiation of shallow shells by means of optimizing 

their shape, mass distribution and rib-stiffeners patterns. The acoustic radiation of shallow shells under 

point excitations is computed by means of the Rayleigh Integral (Koopmann and Benner [8], Fahy and 

Gardonio [9]), in combination with the Finite Element Method.  

The paper presents three numerical experiments that study the potential of structural stiffness for sound 

insulation. The first experiment compares shallow shell shapes of different heights with a flat surface of 

the same thickness, as well as to flat surfaces of much higher thicknesses. The shallow shell shapes are 

generated by means of TNA, so that they represent compression-only solutions for their self-weight. 

The second experiment studies the potential of distributing the mass of a flat surface in a pattern that 

minimizes the acoustic radiation. The optimal mass distribution is found by means of Genetic 

Algorithms (Goldberg [10]). The third and final experiment studies the potential of stiffening ribs, in 

their shape and topology, by comparing two different rib-stiffened shells of equal mass. One of the shells 

is based on the NEST HiLo funicular floor system, while the other one is a simple grid pattern. 

2. Methodology 

To investigate the potential of structural stiffness for the sound insulation of lightweight shell structures 

in the low frequency range, this paper evaluates three different approaches: shape, mass distribution and 

rib-stiffener pattern. All three approaches require an adequate vibro-acoustic model to estimate sound 

radiation from these shells, which is done by means of the Rayleigh Integral. This method has the 

advantage of being computationally inexpensive while still being precise enough for the purposes of 

optimization. This method does not account for room acoustic effects, the radiated sound power is a 

single quantity number that is representative for the sound pressure in the so-called far-field. However, 

for optimization purposes this is considered to be a reasonable quantity to minimize the overall level in 

the room. 

The first and last approach require a form-finding technique to generate shell shapes, which is done by 

means of TNA. The mass distribution approach requires a robust optimization strategy, for which 

genetic algorithms are employed.  

2.1. Vibro Acoustic simulation 

Considering two rooms (source and receiver) that are connected by a sound transmitting partition, the 

three main elements are required to estimate the sound power radiated by the partition: (i) the simulation 

of the sound sources in the source room (or acoustic load), (ii) the mechanical behaviour of the partition 

(the structural response), and (iii) the radiation that results from the vibration of the partition (the 

acoustical response). This section outlines how each one of these elements are implemented in this 

paper.  

2.1.1. The acoustic response: The Rayleigh Integral model 

The sound power radiated from shallow shell structures can be estimated with the approach outlined in 

(Bai and Tsao 2002 [11]), which is based on the so-called Rayleigh Integral (Koopmann and Benner 

[8], Fahy and Gardonio [9]). In this approach, a baffled surface that is subjected to acoustic excitation 

on one side and is radiating sound energy into the other side, is considered. The other side is considered 

a half-space that is filled with air. If we consider the radiating surface to be subdivided into planar 
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segments or elements, the sound power (W), radiated by the surface into the air filled half-space in a 

particular frequency (f), can be estimated by: 

                                                             (1) 

 where S is the area of each element, p and v are the pressure and surface velocity vectors at each 

element, and the superscript “H” corresponds to the Hermitian transpose of the vector. The calculation 

of W is done per frequency and in this paper the lower end of the sound spectrum is the most relevant 

one. The pressure vector can then be obtained as such (Bai and Tsao 2002 [11], Berkhoff [12]): 

                                                                               (2) 

Z is the so-called radiation impedance matrix and can be calculated for plates and shallow shells in the 

following way (Bai and Tsao 2002 [11]):  

                                     (3) 

where: 

                                                         (4) 

and r[m,n] is the geometric distance between the centre of mass of the mth and nth elements. There are two 

main unknowns in the model, Z and v. The radiation impedance matrix Z can be calculated using only 

geometrical information, while v requires the structural response. This means that if the geometry of the 

shells is the same, Z needs to be calculated only once. This presents the opportunity to significantly 

reduce the computation time during mass distribution optimization.  

2.1.2. The structural response: Finite Element Method  

The mechanical behaviour of the doubly curved partitions considered in this paper is estimated by use 

of the Finite Element Method (FEM). In particular, the FEM simulation package ANSYS (Kohnke [13]) 

was employed. A harmonic analysis is performed to determine the steady-state response of the structure 

under harmonic loads. The velocity vector v used in Equations 1 and 2, can be obtained directly from 

the FEM analysis using the linear displacements of the shell structure:  

                                                         (5) 

where 𝜔is the angular velocity, x is the complex displacement of each element in the surface, and j is 

√−1.  

All of the numerical experiment in this paper use the same material properties for all of the studied shell 

structures. The material used is a concrete with an E modulus of 44 GPa, a Poisson ratio of 0.2 and a 

density of 2400 Kg/m3.  
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2.1.3. Sound sources 

This paper studies the sound radiation of shallow shells under harmonic point loads. The FEM harmonic 

analysis assumes, by definition, that all loads applied vary sinusoidally with time. For this paper, a unit 

magnitude of varying frequency is used following Snyder and Tanaka [14] as well as Joshi et al. [7]. 

The frequencies studied in this paper range from 10 to 200 Hz, thus these are the frequencies used in the 

harmonic point loads.  

2.2. Thrust Network Analysis 

Thrust Network Analysis (TNA) is a form-finding method used for the generation of funicular discrete 

networks under vertical loading conditions (Block [4]). If Γ and Γ* are two planar graphs with the same 

number of elements, and if Γ* is the convex, parallel dual of Γ, then Γ and Γ* are the form and force 

diagram of a three-dimensional thrust compression-only network G (Figure 1). This network is in 

equilibrium under vertical loads applied to its nodes, and has Γ as its horizontal projection and Γ* as its 

horizontal equilibrium (Van Mele et al. [15]). 

 

Figure 1: TNA dual graph, Thrust Network G, Form diagram Γ and Force diagram Γ*. 

The static indeterminacy of nodes in the thrust network with a valency higher than three allows for the 

existence of more than one force diagram Γ* that satisfies the convexity and parallelity requirements 

for the network G to be in equilibrium in compression only. A longer force branch in Γ* results in a 

shallower thrust network (Figure 2). This feature is exploited in TNA to generate different funicular 

shapes with the same form diagram, allowing the designer to explore multiple solutions. This feature is 

exploited in this paper to generate shell shapes of different heights with the exact same horizontal 

projection. 

 

Figure 2: Indeterminacy of a four bar node (Block [4]) 
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2.3. Genetic Algorithms 

Genetic Algorithms (GAs) are a family of search algorithms based on natural selection the evolution of 

the species (Goldberg [10]). First proposed by John Holland in the mid 1970’s in the University of 

Michigan, they have been successfully employed in many varied fields of study, including the 

architecture and construction field. 

GAs generate new solutions a by the use of bits and pieces taken from the best of the previously 

considered solutions. These bits and pieces are taken from the problem variables. Like in all search 

algorithms, in GAs solutions to the given problem are characterized by a set of variables, and these 

variables are typically represented by numbers. These numbers are then coded. Following the biological 

analogies used to describe genetic algorithms, this code then becomes the genome of the individuals in 

the population. Like in nature, the offspring or new generation of individuals are made up from the genes 

of their parents. The success of the GA is related to the selection of the right parents, and the correct 

combination of their genes. 

3. Minimization of sound radiation by structural stiffness 

3.1. Experiment 1: Shell shapes 

This numerical experiment presents the comparison of funicular shell shapes of different heights in 

terms of their sound radiation. The Rayleigh Integral approach described above, as well as TNA are 

used to generate shapes and analyse their acoustic response. 

3.1.1. Comparison parameters and variables 

Figure 3 shows the five shells considered for the shape analysis, they are all 5x5 m squares in plan. The 

first shell “a” is completely flat, while shells “b”, “c”, “d” and “e” are doubly curved with increasing 

height at the centre, from 0.1 to 0.4 m. All of the shapes are form found using TNA with the same form 

diagram (shown in Figure 3). All shells have a thickness of 2 cm, and are analysed, as detailed above, 

by means of the Rayleigh Integral and FE analysis to calculate their per frequency sound radiation W. 

All shapes are simply supported along the entire boundary, and are subjected to an asymmetric harmonic 

load, as indicated in Figure 3, as employed by Snyder and Tanaka [14], and Joshi et al. [7].  

 

  
Figure 3: Shell shapes for sound radiation comparison 
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3.1.2. Results 

While there is no optimization procedure being employed in this comparison, this parametric study is 

made to examine the potential of shape optimization to provide stiffness. Figures 4(a) and 4(b) show the 

results of this experiment. Figure 4(a) shows the total sound radiation W (dB) for all five shell structures 

from 10 to 200 Hz. It shows how the flat shell radiates over 10 dB more sound power in most sound 

frequencies when compared to the 0.3 m high shell, and over 20 dB more when compared to the 0.4 m 

high shell. This represents a significant reduction of sound energy without adding mass.  

Figure 4(b) shows a comparison between the 0.4 m high doubly curved shell (shown in black), and flat 

shells of increasing mass. It can be seen that it takes an increase in mass of at least 4 times to achieve 

results as good than the curved shell. In other words, the shallow doubly curved shell can potentially 

save 4 times the mass with equal or superior acoustical insulation.   

 
Figure 4: Results of Experiment 1: (a) shell shape variation, radiated acoustic power per frequency, (b) shell 

mass variation - comparison with 0.4m high shell, radiated acoustic power per frequency.  

3.2. Experiment 2: Mass distribution 

This experiment presents the minimization of sound radiation by distributing the mass in the different 

segments of a flat shell structure. Given a fixed amount of material, the objective is to find the optimal 

distribution of the material such that the radiation is as low as possible. The variables in this optimization 

problem are the thicknesses of each one of the planar faces of a given and fixed shell geometry, while 

still maintaining equal total mass.  

3.2.1. Optimization parameters and variables 

The optimization is done by means of GA. The GA was used in coordination with the Rayleigh integral 

and FEM acoustic simulation to generate radiation values for each proposed solution (or individual). 

Since the geometry of the shell is fixed, the radiation impedance matrix Z is only calculated once at the 

beginning of the optimization. From that point on the only element required for the calculation of W is 

the velocities vector v. This was calculated using the FEM analysis described above. Also in this 

experiment the shells were simply supported along the entire perimeter. The total mass for each shell is 

exactly the same, it is the mass that the shell would have if it were uniformly distributed with a thickness 

of 5 cm.  
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The surface used in this problem is the same flat surface used in the previous experiment (Figure 3). 

This surface has 576 faces, meaning that the GA has the task of finding the combination shell thicknesses 

for those 576 faces that minimizes sound radiation. In order to reduce the number of variables, the mass 

distribution patterns are assumed to be symmetrical in both X and Y axis, thus reducing the number of 

variables to 574/4 = 144.  

The fitness value used in the GA optimization is obviously related to the radiated sound power W, 

however, since this value is frequency dependent, there are many W values per solution. In this case the 

maximum W is assumed to be the fitness value. This means the optimal solution found may not have 

the lowest W for all frequencies, but the lowest maximum W. This also means that the lowest maximum 

W may not be found in the same frequency for all solutions. This simplification however does seem to 

produce optimal overall results.  

The GA was setup to have a population made up of 50 individuals, with an elite population size of 10, 

and to run for 200 generations. A mutation operator was also employed to keep population diversity, by 

mutating 0.05% of all genes.  

3.2.2. Results 

Figure 5(a) shows the evolution on the mass distribution and the resulting patterns, the maximum W 

value is minimized progressively as the pattern is optimized. The GA evolution shows an improvement 

of maximum W of close to 6 dB. The mass distribution patterns show in black the highest thickness for 

each solution, in white the lowest thickness, and in grey the thicknesses in between. It can be seen that 

in the early generations of the evolutionary process, there are many grey areas, meaning that the mass 

distribution is closer to being uniform. In the more evolved solutions there is a higher contrast, the GA 

has found the most effective areas to invest the mass, and thus the patterns have larger black and white 

areas.  

Figure 5(b) shows the radiated acoustic power of the optimized mass distribution, compared to the power 

radiated by the uniform thickness shell of the same mass. In it, we can see that the optimization process 

produces a shell that decreases the radiated acoustic power by up to 5 dB in most of the lower 

frequencies. This improvement is not as large as the one shown in the shape comparison, however, the 

potential of optimal mass distribution to increase stiffness is shown.   

 

Figure 5: Results of Experiment 2: (a) GA minimum, maximum and average fitness values per generation, 

optimal mass distribution patterns for generations 1, 50, 150, 200. (b) Optimal mass distribution and uniform 

distribution comparison, radiated acoustic power per frequency. 
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3.3. Experiment 3: Pattern optimization, designing stiffening ribs.  

The third experiment presented in this paper studies the potential of rib stiffeners to increase the sound 

insulating capabilities of shallow shells, specifically it compares two different patterns for these 

stiffeners. 

3.3.1. Comparison parameters and variables 

Figure 6 shows the two shells compared in this experiment. Shell (a) is a 5x5 m, doubly curved shell 

with a height of 0.3 m at the centre, with stiffening ribs arranged in a grid pattern, spaced 62.5 cm apart. 

Shell (b) is also a 5x5 m doubly curved shell with a height of 0.3 m at the centre, but the pattern of the 

stiffening ribs is different, it is the pattern used for the NEST HiLo funicular floor system described 

above. Both shells have a thickness of shell and ribs of 2 cm, and both have exactly the same mass. The 

Rayleigh Integral approach in combination with the FEM was also employed. Both shells were simply 

supported along the perimeter.  

 
Figure 6: Rib-stiffeners pattern and sections: (a) grid stiffeners, h = 0.3 m, (b) NEST HiLo stiffeners, h = 0.3 m.  

3.3.2. Results 

Figure 7 shows the comparison of the radiated acoustic power for both shells per frequency. The first 

important result to notice is that compared to the 0.3 m high shell (without rib stiffeners) shown in 

Experiment 1, both patterns have a much lower acoustic radiation, thus showing the impact of the 

stiffeners. The results also show that the grid pattern radiates up to 5 dB more than the Hilo pattern in 

the low frequencies, highlighting the potential of optimizing the shape and topology of the ribs. This 

result agrees with the findings of Joshi et al. [7]. 

4. Conclusion 

The numerical experiments shown in this paper demonstrate the high potential of using structural 

stiffness for the sound insulation of shallow shell structures for the lower frequencies. Three experiments 

are carried out to show this potential in terms of shape, mass distribution and the topology of stiffeners.  

The optimization of shell shapes shows the most potential, obtaining reductions of up to 20 dB in most 

sound frequencies between a flat shell and a doubly curved shallow shell of equal thickness. The 

optimization of mass distribution shows that higher stiffness can also be achieved by using optimal 

distribution of mass in shell structures. These shells with non-uniform thicknesses are shown to have 

lower sound radiation values, by up to 5 dB. The comparison of different rib stiffeners pattern again 

shows that a stiffer  
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Figure 7: Result of Experiment 3: (a) grid stiffeners, acoustic power per frequency, (b) NEST HiLo stiffeners, 

acoustic power per frequency.  

pattern achieves a better sound radiation result, in this case, an improvement of almost 5 dB in most of 

the lower frequencies.  

The optimization of shell shapes seems to show the most potential, as the comparison with flat shapes 

shows by far the highest gain in insulation. However, mass distribution and stiffener configurations are 

also shown to have potential as optimization strategies, although less effective.  

Future work includes the investigation of the effect of different boundary conditions, such as different 

supporting conditions and different acoustic cases, such as airborne noise loading cases. The scalability 

of the stiffness strategy should also be tested with larger spans, masses and shapes. Most importantly, 

an optimization strategy needs to be developed capable of optimizing shape to minimize sound radiation 

whilst maintaining structural capacity without increasing mass.  

Future work also involves the determination of the radiated sound power of optimized structures in the 

higher frequency region. Whilst in the lower frequency range the stiffening effect of curvature, ribs and 

mass distribution reduces the radiated sound power, in the higher frequency range this might be 

different, amongst others due to a lowering of the critical frequency.  Research into this to make a good 

trade-off between low- and high frequency performance of architectural structures is highly desired. 
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