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Abstract 

 This paper introduces a new form finding approach for the design of flexible 

formwork, consisting of pre-stressed structural membranes, for the construction of thin, 

anticlastic, concrete shells. The approach is based on the Force Density Method [1] and 

an adaptation of the non-linear extension of Thrust Network Analysis (TNA) [2]. First, 

the adaptation of the basic version of TNA to tension-only structures is discussed, and 

fundamental assumptions formulated. Key aspects herein are the use of reciprocal 

diagrams and the control of forces in indeterminate networks. Then, the strategy using 

an overall optimization process, for finding the closest possible tension-only, 

equilibrium surface to a given target surface under the appropriate loading (i.e. weight 

of the concrete), is presented. Finally, the strategy is applied to a chosen target surface 

and loads, and the equilibrium solutions for different starting points of the optimization 

process are discussed. 

 

Keywords: concrete shells, pre-stressed membrane formwork, form finding, force density method, 

thrust network analysis 

 

1 Introduction 

1.1 Concrete Shells 

Concrete shells are an efficient alternative for medium to large-span space enclosures. 

When appropriately shaped, these structures carry loads through membrane action (i.e. 

axial force-only) rather than bending, which allow them to be thin, light, and elegant. 

There are two key aspects in the realization of thin concrete shells: 1) the determination 

of an appropriate shape (through a form finding process), and 2) the actual construction. 

Regardless of the form finding method used, concrete shells typically have been 

constructed using rigid formwork, onto which wet concrete is poured. The variety of 

shell shapes that can be constructed and especially the curvature that can be achieved is 

limited by the shape flexibility of this formwork. 
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Felix Candela, for example, limited all his concrete shell designs to shapes derived from 

a hyperbolic paraboloid (hypar), since these can be realized with a formwork consisting 

of only straight elements, simplifying the formwork drastically and allowing reuse for 

other applications [3] (see Fig. 1). 

In any case, the construction of formwork is costly, time-consuming, and produces a 

huge amount of building waste, which are some of the reasons why concrete shells are 

no longer used as structural systems. Flexible formwork systems, however, using 

tensioned membrane structures, seem to address many of the challenges of typical shell 

construction and open new possibilities for shell design [4]. 

 

  

Figure 1: (left) Los Manantiales Restaurant at Xochimilco [4], and (right) Chapel 

Lomas de Cuernavaca [4]. Although the shape of both shells is derived from a 

hyperbolic paraboloid, allowing the formwork to be constructed using straight 

elements, it is gigantic. 

1.2 Flexible Formwork 

Fabric formwork for reinforced concrete construction and architecture is an emerging 

technology with the capacity to transform concrete architecture and reinforced concrete 

structures [5]. Currently, such formwork systems are used, primarily, to create beams, 

trusses, panels, simple, hanging vaults, slabs, and columns with expressive, natural 

curvature (see Fig. 2). 

 

 

 

 

Figure 2: (left) Fabric formwork for a beam with  expressive, natural curvature [4]. 

(right) Simple vault cast on fabric formwork [4]. 
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The work on vaults conducted at CAST, one of the leading labs in the development of 

fabric formwork [5], focuses on pre-cast and cast-in-place vaults that are formed with 

full-scale hanging fabric moulds using powerful industrial fabrics - essentially scaling-

up Isler’s model-making method into full-sized shell moulds (see Fig. 2).   

In this paper we will discuss a different approach, using structural pre-stressed 

formwork for the construction of thin, anticlastic, concrete shells; and introduce a new 

computational form finding approach for designing such formwork systems. 

Given the shape of an anticlastic shell design, the objective of the presented method is 

to find the shape of the pre-stressed membrane surface that, under the weight of (wet) 

concrete, has the exact shape of the final shell. This allows concrete to be sprayed onto 

the membrane surface that then supports the (wet) concrete in the correct shape until it 

has hardened, after which the shell can stand on its own and the membrane formwork 

can be removed. 

The approach is based on the Force Density Method [1] and an adaptation of the non-

linear extension of Thrust Network Analysis [2,6]. 

 

1.3 Force Density Method 

For the form finding of tension structures, one of the main approaches is the force 

density method (FDM) introduced by Linkwitz and Schek [1] for finding the 

equilibrium shape of tension networks. By introducing force densities, which are 

defined as the ratio of the axial force of a branch to its length, the equations expressing 

the equilibrium of the networks could be linearised. Due to the development of sparse 

matrix techniques, these linear equations could be solved efficiently. 

Initial values for these force densities need to be chosen for the first-order form finding. 

To comply with additional conditions imposed to refine the design, the final equilibrium 

values of the force densities are then found in an iterative optimization process. So, the 

relations between the choice of force densities and the three-dimensional equilibrium 

solution are not straightforward. Furthermore, the method as discussed in [1], does not 

provide an optimization strategy for finding the appropriate distribution of force 

densities (and consequently of forces) to obtain a desired, specific three-dimensional 

shape. 

 

1.4 Thrust Network Analysis 

Thrust Network Analysis (TNA) is a new methodology for generating vaulted 

compression-only networks and surfaces, with a similar framework as the Force Density 

Method [2,6]. Using reciprocal force diagrams [7], TNA provides a graphical and 

intuitive method, adopting the same advantages as graphic statics but offering a viable 

extension to fully three-dimensional problems. Reciprocal figures are introduced to 

relate the geometry of the three-dimensional equilibrium networks to their internal 

forces. They allow the linearization of the equilibrium constraints and the control of the 

high level of indeterminacy of fully three-dimensional funicular networks. 



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2010, Shanghai 

Spatial Structures – Permanent and Temporary 

November 8-12 2010, Shanghai, China 

 

In [3], a nonlinear extension of the basic TNA method is discussed that includes the 

degrees of indeterminacy of a three-dimensional network with arbitrary topologies in an 

overall optimization set-up. Such a set-up opens up possibilities for making structurally 

informed design decisions in order to find the closest funicular network to an arbitrary 

input surface. 

The TNA method is geared towards the design of funicular, i.e. compression-only, 

vaults and shells, but could of course also be used for the dual problem of tension-only 

networks. 

 

2 TNA for Tension Structures 

Applying TNA to tension-only membrane structures, demands the introduction of some 

assumptions: 

• The structural action of the membrane is represented by a discrete network of 

forces with discrete loads applied at the vertices; 

• The force branches meet at nodes, which are in equilibrium with external forces 

applied to the nodes; 

• The branches must all have axial tension forces only; 

• All loads need to be vertical; and 

• The nodes are only allowed to move vertically during the form-finding process. 

 

The assumption about vertical loads seems strong and very restricting. It is, however, a 

reasonable assumption to make, considering that the membrane will only be used to 

support the (wet) concrete in a specific shape until it has hardened and can stand on its 

own, hence carrying only vertical gravity loads. 

This section will explain how the underlying principles of the TNA framework can be 

used to achieve the goals of this project. Key aspects are the use of reciprocal diagrams 

and the control of the indeterminacy of networks with a higher valency than three, i.e. 

more than three branches coming together per node of the network. 

 

2.1 Reciprocal Diagrams 

The use of discrete force networks in combination with reciprocal force diagrams 

allows to determine and visualize possible distributions of internal forces in a visual and 

intuitive manner. 

Reciprocal diagrams are geometrically related such that corresponding branches are 

parallel, and branches which come together in a node in one of the diagrams form a 

closed polygon in the other, and vice versa (see Fig. 4b and 4c) [7]. In our structural 

framework, the closed polygons of the reciprocal diagram represent the static 

equilibrium of the nodes in the original diagram; and the lengths of the branches in the 

reciprocal are proportional to the axial forces along the corresponding branches in the 

original. 
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The grid in Figure 4b depicts the horizontal projection of a 3D network G at equilibrium 

with loads applied to its nodes (Fig. 4a). In TNA, this projection is called the primal 

grid, Γ. 

The static equilibrium of Γ is represented by its closed reciprocal figure, the dual grid 

Γ* (Fig. 4d). Note that all loads vanish in Γ, because they are perpendicular to the plane 

of Γ. Therefore, Γ* represents and visualizes the equilibrium of all horizontal force 

components in the system G.  From [8], we know that from such grids a tension-only 

solution is obtained if all (convex) faces in the dual grid are constructed by going 

around each corresponding node of the primal grid in a counter-clockwise direction, as 

illustrated in Figures 4b and 4c.   

 

 

Figure 4: a (top): 3D network G at equilibrium with loads applied to its nodes; b 

(bottom left): the primal grid Γ , which is the horizontal projection of G; c (bottom 

right): the dual grid Γ*, which is the reciprocal of Γ and represents the equilibrium of 

horizontal force components in the system.  

The solving strategy presented in this paper is largely based on the direct link between 

the force densities of FDM and the reciprocal diagrams of TNA. The force density of a 

branch in the network is defined as the ratio between the (axial) force in that branch, s, 

and its length, l. This ratio, and hence the value of the branch’s force density, is also 

equal to the ratio between the horizontal component of the branch force, sH, which is the 
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length of the corresponding branch, measured in the dual grid, lH
*
, and the horizontal 

component of the branch's length, lH, which is the length of the branch in the primal 

grid. We thus have that 

 

   
 

 
 

  
  

 
  
 

  
 (1) 

 

As in FDM, TNA uses branch-node matrices to describe the topology of both grids. For 

detailed information on the construction of primal and dual grids and their respective 

branch-node matrices, the reader is referred to [2]. 

 

2.2 Indeterminate Networks 

For typical network topologies used for the form finding of tension structures, the 

network G and its planar projection Γ have nodes with a valency of four (or higher), 

which means that they are statically indeterminate and have several possible internal 

force distributions. This means that different states of self-stress exist with different 

distributions of internal forces and corresponding 3D geometry. 

 

Figure 5: (bottom right): a different dual grid for the primal grid of Figure 4b, 

representing a different distribution of internal forces and therefore a different 3D 

solution in equilibrium with the loads (top left). 
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Figure 5c shows a different dual grid for the primal grid of Figure 4b, representing a 

different distribution of internal forces and therefore a different 3D solution in 

equilibrium with the applied loads (see Figure 5a). In this solution, more force is 

attracted by the highlighted sets of branches, each forming a continuous line through the 

network. In the 3D network, we can clearly see that this results in shallower curvature 

along those lines. 

In the TNA framework, the x- and y-coordinates of the nodes are kept constant during 

the form finding process. Because of this constraint, the manipulations of the dual grid 

cannot be random; only variations which respect the reciprocal rules (see section 2.1), 

are allowed. In [3], a rule is introduced which allows to determine the total number of 

degrees of freedom (DOF) k of the dual Γ*, by inspection of the primal grid Γ alone: 

 
           , (2) 

 

with f the number of faces in the primal grid, m the number of branches, and c the 

number of “closed loops”.  

The number of DOFs k (with k < m) equals the number of independent dual branches, 

i.e. the branches whose lengths can be chosen freely. The other branches are not 

independent, meaning that their lengths cannot be chosen. This represents the 

reciprocity constraint. Because of the link between the force densities and the reciprocal 

diagram (Eq. 1), this understanding of the DOF of the distribution of the forces on the 

primal grid, as represented in the dual grid, can be used to understand the DOF of the 

distribution of the force densities of possible tension networks in equilibrium with the 

applied loads. 

For a quadrilateral grid, as used in Figures 4 and 5, it is clear that k equals the number of 

continuous lines of branches in the primal grid. This means that per continuous set, the 

force densities of the branches are dependent. Applying the rule given in Equation (2), k 

indeed counts as 2x40-64+0-2 = 14 for the networks of Figures 4 and 5. 

This insight and understanding provided by the TNA framework allows the 

straightforward description of the relation between the (k x 1) vector of independent, or 

free, force densities, b, and the (m x 1) vector of individual force densities of all 

branches, q, represented by an (m x k) matrix F: 

 
       (3) 

 

 

3 Approaching a Target Surface 

From what was discussed in the previous section, it is clear that the force distribution in 

a network can be controlled or “tweaked” to find a specific 3D geometry e.g. the shape 

of the concrete shell that has to be built. For simple projects, it might be possible to do 

this manually, but when a solution needs to be found approximating a target surface in 

more sophisticated problems, this quickly becomes too tedious and an overall 

optimization process needs to be employed to find the desired distribution. The main 
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challenge is that it is not straightforward to relate a change in the distribution of internal 

forces, or force densities, to the improvement of the approximation of the target surface. 

Next, this process will be described. 
 

3.1 Problem Description 

Given a target surface, represented by a 4-valent discrete network of branches and 

nodes, and a set of vertical external loads applied at the nodes, the tension-only solution 

needs to be found that is the best possible approximation of the target. 

The target network is projected onto the plane to find the primal grid Γ, and from Γ 

construct a possible dual Γ*. Equation (2) gives us the k DOFs of Γ*, the number of 

independent parameters that control the equilibrium and geometry of the 3D solution G. 

In section 2.2, it was shown that these are the continuous lines in the primal grid. 

We then want to find the values for the independent parameters, the “free” force 

densities b, that minimize the vertical distance between the nodes of G and those of the 

target surface. This can be formulated as a least squares problem 

 
    

 
         

    such that                   (5) 

 

The constraints on the vertical position of the nodes immediately follow from the nodal 

equilibrium of the network, with pz the applied vertical loads, zb the z-coordinates of the 

boundary nodes, and D = C
t
QC and Db = C

t
QCb , as described in [1]. As described in 

[2], it is sufficient to only consider the vertical equilibriums of the nodes, as their 

horizontal equilibriums are guaranteed by the closed reciprocal force diagram. 

Such a least squares problem can be solved efficiently using the Levenberg-Marquardt 

Algorithm (LMA). 

 

3.2 Solving Procedure 

LMA is an iterative, hybrid, descent method that switches between the Steepest Descent 

Method (SDM) and the Gauss-Newton Method (GNM), based on a so-called gain ratio 

(see Eq. 9). For details on the method, the reader is referred to [8,9,10]. Here, we will 

give a brief description. For a given objective function F(x), with 

 
              

  

   
, (6) 

 

and from a starting point x
(0)

, the method produces a series of vectors x
(1)

, x
(2)
, … that 

converges to x*, a local minimiser of F. 

Essentially, each iteration step consists of (i) finding a descent direction h, and (ii) 

finding a step length giving a good decrease in F-value. At each iteration, the step h is 

found as the local minimiser of a linear model of the objective function, L, by solving 

the following problem: 
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                               with       , (7) 

 

with f(x) the value of the objective function at the previous iteration, J(x) the Jacobian 

matrix of f(x), I an identity matrix, and µ a damping factor. 

Note that Equation (7) is a damped version of the GNM approach for finding h. The 

damping parameter μ influences both the direction and the size of the step in several 

ways: (i) for all μ > 0, the coefficient matrix is positive definite, and this ensures that h 

is a descent direction; (ii) for large values of μ, we get a short step in the SDM direction, 

which is good if the current iterate is far from the solution; (iii) if μ is very small, the 

step is approximately the GNM step, which is good when the current iterate is close to 

the final solution. The initial μ-value is 

 
           

 
    

       with                         (8) 

 

with τ chosen by the user (see further). During the iteration process, μ is updated based 

on the gain ratio ρ, which is defined as the ratio between the actual gain in F and the 

gain predicted by the linear model L. 

 

   
           

         
 (9) 

 

A large value of ρ indicates that the linear model is good approximation of the actual 

cost function, and we can decrease μ so that the next LMA step is closer to the GNM 

step. If ρ is small, then the linear model is a poor approximation, and we should increase 

μ with the aim of getting closer to the SDM direction and reducing the step length. The 

iterative procedure is stopped if one of the following criteria is met [10]: 

•                 

•   new                
•        
 

with ε1, ε2, and kmax chosen by the user. 

 

3.3 Jacobian Matrix 

The Jacobian matrix can be derived in a similar fashion as described in Schek [1]. The 

additional conditions imposed on the system are function of the z-coordinates of the 

nodes, which in turn are function of the force densities, q, and those are function of the 

independent parameters, b. Therefore, the additional conditions can be re-formulated as 

a function of the independent parameters b. 

 
                         (10) 
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The Jacobian, J(b), relating a change in the independent parameters b to a change in the 

value of the objective function, can then be found through the chain rule 

 

      
      

  
 

     

  
 
     

  
 
     

  
 (11) 

 

 
     

  
 

 

  
         (12) 

 

 
     

  
       t   (13) 

 

 
     

  
 

 

  
       (14) 

 

      
      

  
             (15) 

 

3.4 Results 

The solving procedure discussed above was implemented in MatLab [11] with τ = 10
-06

 

and ε1 = ε2 = 10
-09

 for the user-chosen parameters, and with a maximum number of 

iterations of 200. The anticlastic target surface, T, is derived from a hyperbolic 

paraboloid (hypar) that was rotated over 45º and translated over a certain distance in the 

x, y, and z directions, so that the high points of the surface are at (0,0,1.18) and 

(1,1,0.46), and the low points at (0,1,0) and (1,0,0). 

Figure 6 depicts the target surface T and different 3D tension-only networks at 

equilibrium with the loads, for different chosen, initial values for the force densities. 

The loads are distributed equally over the nodes. The spheres in the middle and left 

column in Figure 6 represent the vertical difference between each node of the respective 

equilibrium networks and the corresponding nodes of the target surface; blue spheres 

depict nodes that lie under the target surface, and orange spheres nodes above it. Each 

of the equilibrium networks provides a different starting position for the optimization 

process. Based on the sum of squared z-differences, case 3 provides the best start, with 

an initial F-value of 9.0196 x 10
-04

 as seen in Table 1. 

A different solution, with different distributions of force densities and thus different 

distributions of internal forces, is found for each starting position. This indicates that 

there are several local minima for the cost function, and that additional conditions 

should be imposed to find a specific local minimum or even a global minimum; for 

example, conditions on the minimum and/or maximum values of the force densities. 
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Figure 6: (left and middle columns) Target surface, equilibrium network, and z-

differences between corresponding nodes, (left) after initial linear form finding, for 

different chosen values of force densities in the hanging and arching direction (middle) 

after the optimization process. (right) Distribution of force densities (top number) and 

resulting branch forces (bottom number) after optimization process. 
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Table 1: Overview of the results of the optimization process for different starting points 

(cases). The starting points are the results of linear form finding processes with different 

chosen values for the force densities in the hanging (qH) and arching (qA) directions. k 

is the number of iterations. 

Case 

Before 

k 

after 

q 
∑(z-z

T
)

2
 

q 
∑(z-z

T
)

2
 

qA qH qA qH 

1 1 1 0.3099 49 Figure 6 (top right) 8.8899 x 10
-04

 

2 1 2 0.0287 24 0.989 2.795 8.1782 x 10
-18

 

3 1 3 9.0196 x 10
-04

           6 1.085 2.945 2.4230 x 10
-18

 

4 1 4 0.0242 22 1.350 3.359 2.0845 x 10
-16

 

 

4 Conclusions 

This paper presented a strategy, using an overall optimization process, for finding the 

closest possible tension-only, equilibrium surface to a given target surface under given 

loading conditions (i.e. weight of the concrete). 

The TNA approach, based on reciprocal diagrams, clarifies the conditions under which 

the optimization process should be conducted. The LMA approach has been identified 

as a good procedure for finding an optimized solution. Further refinement of the 

optimization strategy is possible, as described in [11], for example for more irregular 

shapes or loading conditions, where the starting position is far form the optimal 

solution. The TNA-FDM-based form finding procedure furthermore opens possibilities 

for integrating the procedure into the overall TNA methodology, ultimately leading to 

the creation of an integrated framework for the simultaneous design of concrete shells 

and their pre-stressed membrane formwork. 

Further extensions of the procedure could lead to form finding approaches for pre-

stressed membrane structures in general, where designers have a more intuitive control 

over the 3D equilibrium shape through the use of reciprocal diagrams. 

Future work should be focussed on including additional constraints in the optimization 

process, e.g. conditions that limit the branch forces to the strength of a specific 

membrane material, and the building of prototypes. 
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