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Abstract
This study investigates a computational design approach to generate
volumetric decompositions of given, arbitrary, three-dimensional shapes
into self supporting, discrete-element assemblies. These assemblies are
structures formed by individual units that remain in equilibrium solely as a
result of compressive and frictional contact forces between the elements.
This paper presents a prototypical implementation of a decomposition tool
into a CAD software, focusing on user-controlled design to generate such
assemblies. The implementation provides an interactive design environ-
ment including real time visual feedback, in which the design space of
self-supporting block assemblies can be explored and expanded. Some
surprising results of such explorations are included and discussed.

Introduction

Volumetric decomposition as a means to reduce
element size in assemblies is relevant to the
building industry because it simplifies fabrication
and transport. The connections between the
individual units needed to establish equilibrium
of the assembly are often problematic, material
intensive or complicated. Especially tensile,
mechanical connections often result in compli-
cated detailing and can be expensive and intru-

sive. Glued connections are mainly simple, but
typically difficult to adjust or remove.

This research presents a prototypical decom-
position tool as a means to design volumetric
decomposition of three-dimensional shapes into
self-supporting, discrete-element assemblies. The
generated structures, formed by individual, dis-
joint units, rely solely on spatial compression
flows (arching), friction, balancing, and any
combination of these actions to stand in equi-
librium (Fig. 1). This means they are stable
without additional mechanical or physical joinery
between the blocks, which keeps the connections
simple and adjustable.

Considering the structural integrity of such
assemblies, the defining principles that must be
evaluated are the assembly’s overall stability and
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Fig. 1 Photographs of a discrete element assembly in equilibrium as a result of arching, friction, and balancing, and
without mechanical connections or glue
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material failure at the scale of the individual unit.
As stability is predominantly an issue of geom-
etry and not of internal stress distributions,
methods to address geometrical stability are
embedded in the presented computational
setup. Material failure of the discrete elements is
not considered at this stage of the research.

Related Work

Discretization of architectural geometries and
design of self-supporting structures are ongoing
and active areas of research. Both topics play an
important role in architectural design and asso-
ciated fields and have a strong influence on
manufacturing, assembly and building cost.

In recent years, various innovative computa-
tional techniques for topological and
surface-based discretization of architectural
geometries have been developed, such as Pott-
mann et al. (2008) and Eigensatz et al. (2010).
However, few of these techniques consider struc-
tural and/or assembly constraints e.g. Rippmann
et al. (2013), Panozzo et al. (2013) and Deuss et al.
(2014). Furthermore, in most cases topological
and surface based discretization approaches are
not applicable to volumetric shapes.

Most existing volumetric discretization
approaches, such as methods to decompose sol-
ids into parts optimized for layered fabrication
(Hu et al. 2014), do not consider interactions that
keep disjoint assemblies in equilibrium. Whiting
et al. (2009), Whiting (2012) presented an
approach for generating structurally sound
masonry assemblies by refining coarse volumet-
ric models with known/typical structural ele-
ments such as walls, arches, domes, etc.

Objectives and Outline

The presented approach focuses on interactive
decomposition of given arbitrary shapes that
would naturally not be considered as suitable

shapes for self-supporting, discrete-element
structures. By providing real-time visual feed-
back, it allows exploring and extending the
design space of such assemblies. From this design
perspective, the proposed approach offers a
means of creating surprising equilibrium assem-
blies that go beyond the scope of known struc-
turally sound configurations for unreinforced
masonry and other discrete-element structures.

“Decomposition process” gives an overview
of the decomposition process, the used structural
analysis method and the computational imple-
mentation. In “Results”, the results of explora-
tions are presented with three case studies. The
stability of the generated digital models are val-
idated with 3D-printed physical models and
illustrated with photographs. “Conclusion” dis-
cusses the presented approach and gives an out-
look to future work.

Decomposition Process

This section gives an overview of a prototypical
implementation of a decomposition tool in Rhi-
noceros (2014). Grasshopper (2009) was used to
build up an interactive design environment.
Equilibrium calculations were written in Python
(2015) and solved with quadratic programming.

The decomposition process starts with an
initial geometry, which is refined step by step
until a satisfactory result is obtained. After every
user-controlled refinement, interfaces between
blocks, and between blocks and the surroundings
are detected automatically. At every step, the
discretization of the geometry can be changed or
updated, whereafter no-tension equilibrium has
to be (re-)established. An equilibrium solution
can be found by changing the boundary condi-
tions, modifying the location and orientation of
the interfaces, changing the material properties,
or any combination of these options. Providing
intuitive, visual feedback on the current state of
the model is clearly essential during this process.
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Equilibrium Calculation

The equilibrium calculations are based on the
method described in Whiting (2012) and Whiting
et al. (2009, 2012).This method extends the Rigid
Block Limit Equilibrium Analysis method by
Livesley (1978, 1992) by including penalty forces
to allow for configurations of discrete-element
assemblies in which tension is required. This
structural analysis method enables computing
estimates of the occurring forces in a given
structure that satisfy the equilibrium equations,
including friction constraints, with quadratic
programming.

Here, we briefly summarize the essential
equations of the optimization problem. The static
equilibrium equations (Whiting et al. 2009) can
be set up in matrix form as follows:

Aeq � cþ b ¼ 0

The matrix Aeq contains the sub-matrices Aj,k

of size 6 × 4 vk, with vk the number of vertices of
interface k, representing the (global)
xyz-components of the force and moment

interactions between block j and interface k in the
local coordinate system ðn̂k; ûk; v̂kÞ of interface
k (Fig. 2):

Aj;k � ck þ bj ¼ 0

which expands to:
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The sub-vectors fkx, fky, and fkz of Aj,k contain
the xyz-components of the local coordinate sys-
tem of interface k.

fkx ¼ ðn̂kÞx; �ðn̂kÞx; ðûkÞx; ðv̂kÞx
� �

The sub-vectors mi
j;kx

; mi
j;ky

and mi
j;kz

contain
the xyz-components of the moment contributions
of the interface forces of vertex i of interface k,

Fig. 2 Diagram of the interaction between block j and interface k
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acting on block j. The vector rij; k defines the
relative position of vertex i with respect to the
mass centroid of block j.

mi
j; kx

¼ ðrij; k � n̂kÞx; � ðrij; k � n̂kÞx;ðrij; k � ûkÞx;ðrij; k � v̂kÞx
h i

The 4vk × 1 vector ck, with vk the number of
vertices of interface k, contains the unknown
normal and in-plane force coefficients (signed
force magnitudes) for all vertices of interface k,
including the penalty formulation as described in
Whiting et al. (2009), Whiting (2012).

cnormal ¼ cþn � c�n
cfriction ¼ cu þ cv

) cik ¼
ciþkn
ci�kn
ciku
cikv

2
664

3
775

The 6 × 1 sub-vector bj contains the
xyz-components of the body forces applied to the
centroid of block j.

To improve stability of the calculation, an
eight-sided friction pyramid (Livesley 1992)
rather than the four-sided one used in Whiting
(2012) has been used for friction constraints (µ is
the static friction coefficient of the used material).

cuj j; cvj j; 1ffiffiffi
2

p cuj j þ 1ffiffiffi
2

p cvj j
� �

� l � ccþn

The energy function, as described in Whiting
(2012), has then been used to calculate the
interface-forces.

minimize
c

f cð Þ such that
Aeq � c ¼ �b
cnormal � 0
cfriction � l � cþn

8<
:

This structural analysis method enables the
calculation of infeasible self-supporting structures.
Infeasible self-supporting structures are those for
which the no-tension equilibrium is violated. In
comparison, stability simulations with physics

engines, e.g. Bullet-Physics-Library (2012) and
Nvidia physx library (2013), would typically result
in a Yes/No answer. Furthermore, the equilibrium
equations of the used method can be solved rea-
sonably prompt with quadratic programming. Both
of these points makes the approach particularly
adequate to be implemented into a computational
setup with emphasis on interactivity.

Interface-Force Diagrams

The models are visualized using interface-force
diagrams, in which contact interfaces are repre-
sented by coloured surfaces. The colours provide
different information about the forces at the
interfaces depending on the selected feedback
mode.

In compression-tension mode, blue indicates
compression, and red tension. Colour gradients
indicate variations in the distribution of forces
over the interface and interfaces without com-
pression are grey. Note, that the colour gradients
represent the force distribution normalized per
face and do not reflect the force magnitudes.
Relative contact-force magnitudes are visualized
by switching to vector mode.

In friction mode, interfaces without friction
are also grey. Interfaces with friction have solid
colours between yellow and red. All friction
forces below a user-defined threshold are illus-
trated in yellow. Red indicates that the friction
force exceeds the allowed maximum. Occurring
friction forces between those bounds are illus-
trated with orange shades. For example, dark
orange indicates that the resulting friction force is
close to the allowed maximum.

For easier understanding of the assembly’s
equilibrium, mass-center locations are displayed
and additional information of contact-force
magnitudes in text form are optional. Figures 3,
4 and 5 illustrate the gradient and vector visual-
izations modes and the influence of
user-controlled modifications.
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Feedback and Equilibrium
Modification

Figure 3 depicts different configurations of a
solid object in the shape of the letters SC. The
interfaces are shown in compression-tension
mode. In Fig. 3a, the notension constraint is
violated at the support interfaces. The left sup-
port is entirely in tension. At the right support
interface, both tension and compression forces
occur simultaneously. This equilibrium is the
result of the location of the center of mass of the
shape in relation to the supports. No-tension
equilibrium can be established by adding an
additional support interface (Fig. 3b), or by
changing the overall geometry (Fig. 3c).

Figures 4 and 5 depict different configurations
of a discretization of the letter “M”. Figure 4
shows the interfaces in compression-tension
mode. In configuration a, no-tension equilib-
rium is violated due to the need for tension forces
at the internal interface (between the top and
bottom element). In configurations b and c, the
violation is resolved by changing the location of
the cut. The colour gradient in Fig. 4b indicates
that, at this location, the compression forces are
unevenly distributed over the interface. Moving
the cut further down results in a more even

distribution and thus a more robust equilibrium
(Fig. 4c). Note that in all cases compression
forces at the support interface are evenly dis-
tributed, as these forces depend only on global
equilibrium, which remains unaltered in the three
cases. Figure 5 shows the interfaces of a slightly
different discretization of the M-shaped object in
friction mode. In configuration a, the orientation
of the cut is such that maximum friction is
exceeded. By rotating the cut in configurations b
and c, friction is reduced to allowable levels.
Friction is lowest in configuration c. Note that in
none of the configurations friction occurs at the
support interface, since the applied loads are
vertical and there is no arch action.

Results

This section presents the results of explorations
of the no-tension discrete-element assembly
design space with the decomposition tool dis-
cussed in “Decomposition process”. The equi-
librium of the generated digital models has been
verified with physical models. The physical
models were 3D printed with a ZCORP ZPrinter
650, using a composite of zp150 powder and

Fig. 3 Different configurations of a solid object in the shape of the letters SC. a Violation of no-tension equilibrium at
the support. No-tension equilibrium established by (b) adding a support interface, or c changing the geometry
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Fig. 4 Tension forces at the internal interfaces (a) can be removed by changing the location of the interface (b). More
robust solutions are recognized by more uniform colouring of the interfaces (c)

Fig. 5 Violation of friction limitations at an internal
interface (a) can be resolved by, for example, rotation of
that interface (b). The amount of friction is indicated by a

colour ranging from yellow to red. Red indicates that
maximum friction is exceeded (a). Yellow indicates that
friction is below a user-defined threshold (c)
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zb61 clear binder and impregnated with Z-Bond
101. The density of the composite material has
been approximated with 0.60 g/cm3, and the
frictional angle of 40° (Van Mele et al. 2012). All
interfaces have been modeled flat and planar in
the computational and physical models, to not
change the frictional behaviour between them.
This means no male-female interlocking mecha-
nisms have been used, for example to assist
during the assembly process.

Case Study One

Figure 6 shows two different decompositions of
the DMSC acronym of the symposium. In both
cases, we started from one solid geometry, sepa-
rated the letters where possible, and then further
discretized the letters into smaller pieces. All cuts
were positioned and adjusted manually, based on
the visual feedback of the equilibrium calcula-
tions. Figure 6b, c depict the tension-compression
and frictional contact forces at all interfaces. Both
assemblies require compressive and frictional
forces for equilibrium. Friction does not occur at
the support interfaces.

A physical test with a 3D-printed model
demonstrates the designed assembly is indeed
stable by itself without any mechanical connec-
tions or glue (Fig. 1).

Note that the process of assembling the model
was difficult, because interim stability during
assembly was not considered in the design of the
decomposition. In fact, equilibrium could not be
achieved for the combination of “D” and “M”
alone, without the additional weight of the letters
“S” and “C”.

Case Study Two

This case study demonstrates the potential of the
proposed interactive procedure to explore a
variety of equilibrium solutions for the same
given initial shape (Fig. 7). As can be seen in
Fig. 7a, the initial shape for this case study is a
threedimensional, kinked loop positioned on a

horizontal plane. The initial geometry is in
equilibrium, with evenly distributed compression
forces at the support.

In Fig. 7b, the object has been partitioned into
two L-shaped and two cuboid geometries by four
horizontal cuts. The corresponding
interface-force diagrams illustrate that the thereby
generated assembly is stable. All interface forces
are compressive and vertical. No friction is
required to establish equilibrium.

Even after further decomposition with vertical
cuts through the L-shaped elements, the assem-
bly remains self-supporting (Fig. 7c). All inter-
face forces are still compressive and vertical.
Therefore, as before, no friction is required.
Furthermore, there is no force interaction on the
two vertical interfaces. The assembly could thus
be separated into two independent parts and
remain stable.

A completely different decomposition is
achieved with inclined cuts, as seen in Fig. 7d. In
terms of force transfer, this configuration is more
interesting. It requires both compressive and
friction forces to be in equilibrium, because arch
action is activated by the orientation of the cuts.

The physical models in Fig. 8 demonstrate
that the designed assemblies of this case study
are indeed stable by themselves.

Case Study Three

Figure 9 shows the outcome of a completely
different decomposition strategy. Starting with a
simple box with an open bottom, a decomposi-
tion pattern has been applied on the outer box
surface. From that cutting pattern (Fig. 9a),
interface geometries with the potential to
self-interlock in an assembly have been gener-
ated. This has been achieved through extrusion
of the cutting pattern to a single point. Therefore,
the resulting interfaces are planar and conical
directed to that point. The contact-force diagrams
in Fig. 9a illustrate that the assembly is
self-supporting. All contact forces are either
compressive or frictional and the maximum
friction is not exceeded.
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Fig. 6 Two different
decompositions of the
DMSC acronym (left), with
the corresponding
interface-force diagrams in
compression-tension mode
(middle) and friction mode
(right)
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Furthermore, even after removing several
parts of the assembly, as seen in Fig. 9b, the
resulting configuration remains in self-supporting

equilibrium. Again, the physical models in
Fig. 10 demonstrate the self-supporting equilib-
rium of the designed decompositions.

Fig. 7 Various
equilibrium solutions for
the same initial geometry
(left), with the
corresponding
interface-force diagrams in
compression-tension mode
(middle) and friction mode
(right)
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Fig. 8 Photographs of two different decompositions from the same initial geometry
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Fig. 9 Resulting decomposition of case study three before (top a) and after removing several parts of the assembly (top
b), with the corresponding interface-force diagrams in compression-tension mode (middle) and friction mode (bottom)
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Fig. 10 Photographs of case study three before (top) and after removing parts from the assembly (bottom)
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Conclusion

In practice, volumetric decomposition into
self-supporting assemblies has applications in
areas ranging from the construction of large-scale,
cut-stone masonry structures (Howeler et al.
2014) and prefabricated building assemblies, to
smaller-scale prototyping. When applied to the
design and production of prefabricated elements
in the building industry, optimization of joints can
be achieved as a means of limiting joinery to
predominantly no-tension force transfer.

The prototypical decomposition tool pre-
sented in this paper is based on realtime, clear,
visual feedback. The advantage of such an
interactive process has been demonstrated
through the surprising results shown in “Results”.
As can be seen in those case studies, the
step-by-step, interactive discretization process
has successfully been used to explore the design
space of discrete-element assemblies and exper-
iment with previously unseen forms.

Despite the promising results shown in
“Results”, the interactive decomposition proce-
dure can be time consuming and the handling of
large models can be problematic. Further
research will be necessary to develop general,
(semi-)automated decomposition strategies.
A digital self-supporting equilibrium solution
does not automatically guarantee a physical
self-supporting application. As explained in
previous research (Whiting 2012), an alternative
equilibrium state could exits where friction con-
straints are violated. Furthermore, the imple-
mented algorithms do not consider imperfections
of element’s geometry or assembly.

This research is part of a larger research pro-
ject, which aims to develop better understanding
and novel techniques for the equilibrium design
of masonry and other discrete-element assem-
blies. Near-future goals related to the research
presented are the implementation of additional
methods for the equilibrium design, such as
manipulation of weight distribution within the
volume (Bacher et al. 2014), and the develop-
ment of general, automatic decomposition strat-
egies. Furthermore, the research will focus on the

structural integrity and robustness by considering
possible material failure at unit scale and interim
stability during assembly.
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