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Abstract

This paper presents network load path optimisation for the weight minimisation of compression-only thrust networks,
allowing for the design of material efficient surface structures. A hybrid evolutionary and function-gradient optimisation
process finds the optimal internal force state of the network, by manipulating the force densities of a selected number
of edges based on the network indeterminacy. These selected edges are the independent sets, and are found through the
Reduced Row Echelon form of the network’s equilibrium matrix. It was found that networks can have certain independent
sets that have a significant influence on both the stability of the optimisation algorithm, and in the final load path/volume of
the structure. Finding the most effective independent sets was handled by data-driven methods, applied to many thousands
of independent set trials. This provided insight into the behaviour of the underlying network and dramatically increased the
rate of finding successful independent sets. The importance and weights of the network edges highlighted key areas of the
network that allowed structural judgement and improvements to be made.

Keywords Reduced Row Echelon - Equilibrium matrix - Optimisation algorithm

1 Introduction

This paper demonstrates the minimum weight optimisa-
tion of statically indeterminate structures represented by
networks of vertices and edges of given topology work-
ing exclusively in compression. The compression-only net-
works are subject to fixed boundary supports and point loads
applied to vertices and can be used to represent surface
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structures such as shells. Such networks can be generated
in engineering design through form-finding methods such
as Thrust Network Analysis (TNA) (Block and Ochsendorf
2007; Block 2009; O’Dwyer 1999; Fraternali 2010; Marmo
and Rosati 2017) and related tools like RhinoVAULT (Block
Research Group 2014), where a network geometry is found
that is in equilibrium with the applied loads and support
conditions. TNA, particularly through the interactive use
of RhinoVAULT, has been responsible for the design of
many compression-only vaulted structures, but not with the
explicit inclusion of weight minimisation by optimising the
internal force state.

An example of a compression-only thrust network
representing an anti-funicular shell structure is shown in
Fig. 1, where the four corners are fixed from translating
in all directions and the loading is based on area-weighted
point loads applied at the network’s vertices, used to
represent the self-weight of the shell.

The external point loads that are applied to the vertices of
the thrust network in Fig. 1 are taken to the supports through
the force densities (Linkwitz and Schek 1971; Schek 1974)
of the network edges q, which are the internal edge forces
f divided by the edge lengths 1. The force densities of
this example is shown in Fig. 2, with the thickness of the
edge lines representing the flow of the forces in the thrust
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Fig. 1 An example compression-only thrust network, which is
supported at each corner and subjected to area-weighted point loads
applied at the vertices

network, scaled proportionally for a strength sizing of each
edge having their area proportional to the axial compression
force.

Due to the statical indeterminacy of the thrust networks,
there are an infinite number of different ways that the
forces may be transmitted through the network and maintain
equilibrium. Some of these internal force distributions will
be better than others when the structure comes to be
materialised, and so metrics are needed to quantify how
well each performs compared to its peers. The problem
of optimising truss structures for the metric of mass
minimisation has been studied since Michell (1904). From
then, various research has been conducted in optimising
network-type structures such as trusses, gridshells and
thrust networks, generally with bar elements that can
take compression (struts) and tension (ties). A selection
of this research includes (De Wilde 2006; Jiang et al.
2018) application for the optimisation of building frames

Fig. 2 Distribution of edge force densities q that leads to the thrust
network in Fig. 1

@ Springer

(Stromberg et al. 2018; Lu et al. 2018) to the improvement
of structural trusses (Vandenbergh et al. 2006; Pyl et al.
2013; He and Gilbert 2015; Gilbert and Tyas 2003). In
particular, the work by Mazurek et al. (2011), Baker et al.
(2013) and Beghini et al. (2014) showed that for truss
structures, based on Maxwell’s formulae on load paths
(Maxwell 1864), optimising for the minimal load path
results in the minimal volume solution for a given stress
level o for the edges in the truss,

1
minZV,-=minZA,-l,~=min;Z|f,~|li, (1)
i i i

where V;, A; and [; are the volume, cross-sectional area
and length of edge i. Thus, for a given stress level o, the
minimum volume can be achieved by minimising the sum
of the vector of edge forces f multiplied by the lengths 1. The
load path is represented herein by ¢, which is calculated as
the product of the edge forces f with their lengths 1.

The determination and optimisation of a network’s load
path, and the associated distribution of force densities that
leads to this optimum, are the focus of this paper. (1)
poses no conditions on the sign of the forces, as the
magnitude of the force is taken. This research considers
the more challenging problem of optimising the load path
specifically for compression-only thrust networks in 3D
where the sign is consistently positive. Finding an optimal
value of ¢ for this case is not trivial, as the search space
on the force densities of the network edges is extensive.
The task is further complicated when the network vertices
are kept fixed in plan as an additional hard constraint. If
one calculates the load path for the network in Fig. 2, the
result ¢ = 1254 is found. If instead one uses the procedures
outlined in this paper, on exactly the same network with
identical loads and support points, the optimised thrust
network in Fig. 3 is generated.

Fig.3 Optimised thrust network featuring an improved distribution of
force densities that leads to a lower volume of material for a given
stress level. Notice the different geometry of the network for the same
vertex co-ordinates in plan
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Fig.4 The optimised distribution of network edge force densities that
leads to a significant reduction in the structural weight of Fig. 3. This
leads to a load path value of ¢ = 860, an improvement of around 30%
from the non-optimised case

By utilising optimal distributions of compression-only
force densities, we take steps towards the minimum weight
solution. Such a process is useful for example, for an
architect or engineer wishing to optimise the material use in
a compression-only shell structure represented by a thrust
network. The thrust network in Fig. 1 was manually form-
found with the user-defined distribution of force densities in
Fig. 2, giving the load path value ¢ = 1254. The load path
is reduced to ¢ = 860 for the network in Fig. 3 with the
optimised force densities in Fig. 4. Both examples have the
same structural height, so this economy in the material use
doesn’t come from simply increasing the height; instead, the
thrust network is shaped to allow a more efficient path for
the applied loads to be directed to the supports.

Rather than attempting to determine the optimal force
densities of every edge in the network, the process can
be made more efficient by only examining the statically
indeterminate edges. This greatly reduces the complexity of
the problem, as once all statically indeterminate edges are
defined, there is only one solution for the distribution of
force densities in all remaining determinate edges. This is a
more economic approach as less degrees of freedom need to
be considered, and extends upon the research by Liew et al.
(2018).

This paper is presented as follows. Section 2 defines
in detail the load path method and examines the statical
indeterminacy of a network, and how both relate to the
generation of a thrust network. Section 3 outlines the
computational implementation of the load path algorithm
and optimisation process. Section 4 examines the vast size
of different statically indeterminate edge sets of a network,
by the assistance of machine learning, to -efficiently

determine patterns and classify what leads to a good or bad
choice of edge sets. Finally, Section 5 closes the paper with
a discussion of the findings.

2 Thrust network load paths

The load path was introduced in Section 1 as the scalar ¢,
calculated as the product of the network’s edge forces and
edge lengths, or alternatively as the product of the network’s
edge force densities and the square of the edge lengths (2).

¢ =11=q"L"l, )
where the force densities are defined as
q=L"'f, 3)

with f and 1 as the column vectors of forces and three-
dimensional edge lengths of the network, and L as the
diagonalised matrix from length vector 1.

The minimisation of ¢ is equivalent to minimising the
volume of material for a truss structure with edge elements
at a given stress level and for the given boundary conditions.
The minimisation of ¢ as described in this research is also
subject to the following assumptions: (1) there exist fixed
vertical loads and no horizontal loads, with loads applied
directly to the vertices as point loads, (2) the supports are
co-planar fixed boundary vertices that cannot translate, here
taken for convenience with z co-ordinates equal to zero, and
(3) a fixed horizontal distribution of vertices, that is, the x
and y co-ordinates stay fixed for every vertex throughout.

The calculation of ¢ requires a network that is in static
equilibrium with the applied loads, and in this case, also
with edges that are exclusively in compression. The three-
dimensional framework to achieve this is by using Thrust
Network Analysis (TNA). TNA is an equilibrium method,
which extends the Force Density Method for the specific
case of vertical loading and networks with fixed horizontal
projection, and so is well suited for the task at hand.
The necessary components from TNA that are used will
be described in the following sections, starting with a
discussion on network indeterminacy.

2.1 Network indeterminacy

When using TNA, one can generate many different
equilibrium states by examining the paths through the
network that static external loads can follow on their way
to the supports. The different possibilities that the structure
has on supporting the loads are related to the degree of
statical indeterminacy of the network. If the network has
high statical indeterminacy, there is a rich set of different
internal force or force density distributions that can be found
that lead to the structure being in equilibrium. However, to
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maintain a fixed projection of vertices, i.e. to not change
the x and y co-ordinates during the process of examining
the different internal force states, internal forces cannot
be chosen independently (Liew et al. 2018; Block and
Lachauer 2014; Van Mele and Block 2014). An efficient
method to tackle this problem setup is to find a vector
of independent force densities q;, for which the remaining
dependent force densities qq can be calculated, so that
vertices still remain in place in the x-y plane. This process
is now described in more detail.

Consider the orthogonal network in Fig. 5, which has
m = 24 edges, n = 21 number of vertices, of which ny, =
12 are fixed boundary vertices (in blue) where translations
in x, y and z are prohibited, and n; = 9 free internal vertices
(in white).

A layout of independent edges for changing force
densities q;, with one independent edge per row and column,
is shown in Fig. 6. As every edge force density in each
of the groups of continuous edges is entirely independent
from the force densities in any other continuous group, the
state of equilibrium of the network can be described by
independently choosing one force density (those in green)
per continuous group of edges. This will ensure that all
other force densities for the edges in red can be calculated,
as equilibrium in x and y at each vertex can always be
calculated for the applied loads.

For a general network with n; number of free internal
vertices, m edges and k number of independent edges for
qi, the dependent edge force densities g can be calculated
from

q¢ = —E;'Eiq;, 4)

Fig. 5 A network consisting of 24 orthogonal edges and 21 vertices,
with 12 fixed vertices at the perimeter in blue, and 9 free internal
vertices in white

@ Springer

in which the (2n; x m — k) non-singular square matrix Eq
and the (2n; x k) matrix E; are the sub-matrices of the
equilibrium matrix E. If all force densities q are positive,
then the resulting solution is compressive. This correspond
to the set of dependent and independent edges My and
M;j, with their respective force densities qq and q;. The
equilibrium matrix E is associated with the x-y plane and
describes the horizontal equilibrium of each vertex based on
the force density and geometry of the connecting edges. The
equilibrium matrix E can be calculated by

clu
E= arv | (5)

where U and V are the diagonal matrices of vectors u and
v, which are the co-ordinate differences in the x and y
directions for the vertices of each edge. The connectivity
matrix C has two sub-matrices C; and Cy, corresponding
to the n; internal vertices and ny, fixed boundary vertices,
respectively. For a given network, the connectivity matrix C
(sometimes referred to as the branch-node matrix) of size
(m x n) is generally a sparse matrix and can be constructed
to store the connectivity between edges and vertices, so that
row i in the matrix for network edge i has two columns
in the matrix marked with 1 and —1 for the indices of the
vertices at the two ends, where the vertex deemed the start
vertex is not governing.

2.2 Reduced Row Echelon method

For networks with non-orthogonal edge layouts, it will in
general not be elementary to determine what edges can form
the independent set Mj, and so a robust method using the
Reduced Row Echelon Form (RREF) of E is described in

Fig. 6 Identification of a set of independent edges in green, with one
independent edge per row and column of the orthogonal network
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this section. The RREF of a matrix is described first, before
showing how it may be used to identify the independent
edges.

Converting a matrix into Row Echelon Form (REF), be
it via QR factorisation or other methods such as Gauss-
Jordon elimination, is used to (among other things) solve
systems of linear equations by forward elimination and back
substitution, to determine the rank of a matrix, and for
computing the determinant and inverse of a square matrix.
A matrix that is in REF will possess zeros in the lower
left of the matrix and non-zero values in the upper right,
with the first non-zero value of each row called the leading
coefficient or the pivot, as it is selected for row operations.
The REF will look in general like the following example
matrix of rank 2, where elements 3 and 2 are the pivots and
a; are general values:

3 a1 ay a3
0 2 ay as (6)
00 0O

The Reduced Row Echelon Form differs from the Row
Echelon Form in that the leading coefficients are now
unity and are the only non-zero entries in their respective
columns. The RREF is unique to the matrix, whereas the
REF of a matrix is not, as the latter depends on the manner
of row operations that were previously performed. A matrix
in RREF will in general look like:

10a a
01 a3 aq (7)
000 O

For a selection of commonly used numerical software
packages, the RREF functions that will convert a matrix
into RREF are as follows: SymPy with A.rref () to
return the Aper matrix of A and pivot columns, in
MATLAB as rref (A) for Ay, and RowReduce (A) in
Mathematica.

By way of example, converting the equilibrium matrix of
the original orthogonal network (Fig. 6) into the RREF of
Eref, one arrives with the simplified matrix representation
in Fig. 7, where the red elements are the unit pivots, the blue
elements are the non-zero values, and the highlighted green
columns are the non-pivoting columns.

For this orthogonal network and other general networks
with set of edges M, the subset of independent edges
M C M can be identified as the non-pivoting columns of
Erer, which in this case are M; = {9, 16, 18, 21, 22, 23}.
These are the indices of the plotted green edges of Fig. 6,
corresponding to one independent edge per row and column
line of the network. The subset of dependent edges My C M
are then the remaining pivoting columns. The RREF method
is reliable for the automated selection of independent edges,
however, since the shape of E is always (2n; x m), its

_ 9 16 18 21,22,23
o - -
o
- O
u
E .= |

rref

L

-l

-_.-'I-.

Fig.7 Simplified diagram of the Reduced Row Echelon Form E,f of
the equilibrium matrix E for the orthogonal grid network of Fig. 6

application is limited to networks containing a number of
edges m greater than two times the number of internal
vertices 2n;, i.e. for E having more columns than rows.

For general non-orthogonal networks, such as that
presented in Fig. 8, the determination of which edges will
be independent is straightforward using the same process.
The four additional edges that have been inserted increase
the k number of independent edges by four. The addition of
edges {24, 25, 26, 27} requires four more independent green
edges such as {10, 19, 20, 26}, for the statical determinacy
of the network.

2.3 Multiple independent sets
For the four simple networks with four edges drawn in

Fig. 9, there is a single four-valent and free internal vertex
(white) in the centre, which is connected to four fixed

)
./
re
\
)
N/

Fig. 8 Identification of four new independent edges after four
additional edges are inserted into the orthogonal network
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Mi’g I\'411,4

Fig. 9 Four independent edge sets M 1, M 2, M 3 and Mj 4 exist for
this simple four-valent vertex example

boundary vertices (blue). One can see by inspection that
there are four independent edge set combinations (M i,
M2, Mi3 and M 4) with each row and column of the
network possessing one independent edge (green) for a total
of k =2.

From the RREF method, the matrix E..f is calculated
as follows, with pivots (dependent edges) as the set My =
{0, 1}, and non-pivots (independent edges) as the set M; =
{2, 3}:

10-1 0
Erref=|:01 0 _1]

Because this Er matrix is unique to the network, M =
{2, 3} will always be chosen as the set of edges to represent
the vector of independent force densities q;. Thus, to find
the four different sets of independent edges, one can simply
renumber the edges before the RREF is performed, as is
shown in Fig. 9 for the four different combinations of green
independent edges. In this simple example, edges 2 and
3 are always green; they are just in different locations in
the network. It is very important to make the distinction
between randomising the numbering of the edges and
simply naively selecting edges to be in M at random.
Simply randomly selecting edges to be in M] is incorrect,
as the situation will arise, for example in M i, that edges 0
and 2 would be selected as independent, which would over-
define this direction and only give equilibrium if both have
equal force density. Consequently, if O and 2 are selected
together, it means that there is no control of the force
densities and hence equilibrium in the direction of the edges
1 and 3. This situation cannot arise with the RREF.

Due to the relationship between the independent sets and
the network edge numbering, it is preferable to not use the
randomised edge numbers of each network to describe the

®)
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set. Instead, a unique static key should be used to represent
each M ; set. This can be done by using a consistent fixed
network numbering system decided upon at the start, or by
a set representing the midpoints p of each independent edge
such that set {p1, p2, ...pi...pk-1), Pk} are the midpoints of
the edges.

Consider an orthogonal grid network of two rows and two
columns, there will be four independent edges k = 4 and 81
independent sets for M. For a three rows by three columns
grid with k = 6, this escalates rapidly to 4096 combinations
for Mj. It is evident for large values of k, that it becomes
unreasonable to investigate every possible independent set
M ;. One might expect that each M ; should lead to the
same final optimised load path value ¢; however, it has been
found that the choice of Mj j has a great influence on the
convergence of the solution. This is examined later in more
detail.

2.4 Vertical equilibrium

For the vertical loads p, acting on the free internal vertices,
vertical equilibrium can be found by changing only the
heights of the free vertices z;. This can be performed as the
force density vector q for all edges was calculated previous-
ly for horizontal equilibrium. This calculation is made by

zi =D (p, — Dpzp), )

1

with the (nj x n;) matrix D = CTQC; and the (n; x nyp)
matrix Dy = CiTQCb. With the simplification of taking zero
as the height of all boundary points, then z, = 0 and we
then have

z =D, 'p,. (10)

Once the z; vector has been calculated for the network, the
spatial geometry is fully defined and the length vector I can
be found and combined with q to give the load path ¢.

2.5 Symmetry

Optimising the load path of a network with a lower number
of independent branches k will lead to a faster algorithm run
time, as the number of dimensions in the search space of q
will be reduced. If the network to be analysed has clear lines
of symmetry, they can be exploited with great effect to both
reduce k and enforce symmetry in the force densities vector.
This is easily handled by adding dedicated helper symmetry
edges at the symmetry interface, like those plotted in yellow
in Fig. 10. These helper edges are available for the network
to provide the necessary equal and opposite opposing forces
in the x-y plane for horizontal equilibrium. The lengths
of these helper symmetry edges as seen in plan do not
matter, as the reaction forces that these edges generate are
realised through their force densities and so normalised by
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length. Figure 10 shows two possible network arrangements
for symmetrically analysing a five by five orthogonal grid.
The added symmetry edges are still part of the connectivity
of the network and so still contribute to the equilibrium
matrix E. Therefore, they may also appear within the set of
independent edges M during the RREF process.

The force densities of the helper symmetry edges
calculated for horizontal equilibrium should not influence
the z co-ordinates when the thrust network is formed for
vertical equilibrium. So they may be turned off by setting
the force densities to zero after horizontal equilibrium is
achieved. In response to this, the z; co-ordinates of the free
internal vertices will ignore the fixed vertices used to anchor
down the symmetry edges, as they are part of the boundary
vertices zy. It must be ensured that the external loads p, that
are applied to the free internal vertices represent the correct
tributary area loads of the considered symmetry side, so as
not to double count loads for the vertices at the symmetry
interface from the other side.

3 Algorithm

For a network that is in equilibrium from a particular
set of independent force densities q;, the load path ¢
can be calculated from Section 2. The aim now is to
find the network’s optimum set of independent edge force
densities, for which the load path is minimised. The
management of the network’s independent sets and the
convergence of the algorithm to lead to a good load path
value is dependent upon a robust optimisation solver as
described in Section 3.1, and effective penalisation and
constraints measures for removing tension in the network
edges explained in Section 3.2.

The optimisation algorithm is based on the main steps
described in Section 2 for the calculation of ¢, these are:

e Determine the independent set(s) to be analysed by the
RREF method.

e Ensure horizontal equilibrium in x-y by finding the
vector of dependent edge force densities qq from a trial
vector of independent edge force densities q;.

e Update the z co-ordinates of the free internal vertices to
generate a thrust network.

e Calculate the load path ¢ for this equilibrated spatial
thrust network.

e Examine the value of ¢ and the distribution of all force
densities q, to examine which, if any, are in tension.

The input data from the user for this process are the
applied vertical loads p, at the free internal vertices, the
planar x-y co-ordinates of all vertices for a fixed horizontal
projection, and the connectivity matrices derived from the
topology of the network.

® ¢ ¢
o °
o °
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e o o
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Fig. 10 Symmetry can be used on this orthogonal network so only one
quadrant or triangular half quadrant needs to be analysed. This will
reduce k and enforce two or three lines of symmetry

The formal statement of the optimisation problem is as
follows. The objective function is the load path function
¢ (qi), which is to be minimised subject to the following two
constraints: (1) that all independent force densities q; are
greater than zero (compression taken as positive) and less
than a user-defined maximum value gmax and (2) that all
dependent force densities qq are also greater than zero (gmax
need not be necessarily applied here). In order to put some
bounds on the search space to prevent it from becoming too
large, a value of gmax in the range of [5, 10] has been found
to be effective. In mathematical notation, the optimisation
can be written as follows, where the solver(s) used for this
problem are described in more detail in the next section.

min ¢(q;)
st.qq >0 an
0= qi < gmax
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3.1 Optimisation solver

A variety of established and custom solvers have been
investigated to aid in the optimisation process, both function
only, and function- and gradient-based methods. The
optimisation problem is constrained as all force densities
must be positive for a compression-only solution, and the
problem is also multi-variate with k degrees of freedom.
The implementation of the load path optimisation has
been performed with solvers using the numerical and
scientific NumPy (Van der Walt et al. 2011) and SciPy
(Jones et al. 2001) packages and using custom algorithms
for the Python programming language (Python Software
Foundation 2017).

The optimisation process starts with an evolutionary
method using either the COMPAS (Van Mele et al. 2017)
implementations of the Differential Evolution Algorithm
(Storn and Price 1997) or Genetic Algorithm (Holland 1975;
Goldberg 1989), both of which have been found to give
similar and strong performance in traversing such a large
search space and robustly finding minimum solutions. A
population size of 300 has been used in this research to
give a broad initial diversity for the Differential Evolution
Algorithm, and then the population is decreased to 30 as the
diversity begins to become thinner and local convergence to
a solution is to be encouraged. The key solver parameters
used are the Differential Evolution parameter F = 0.8,
and the cross-over ratio parameter CR = 0.5. Starting
with a population size that was too small could have
issues with stagnation later on in the evolution. An
evolution consisting of 500 generations was found to give
a good balance between convergence rate and accuracy.
A typical Differential Evolution run is shown in Fig. 11,
for a population of 300 until generation 250, and then a
population of 30 thereafter.

The evolution solver is followed by a function and
gradient method to polish the result, using the fittest
member of the population with the lowest ¢ as the
starting point. This polishing uses an algorithm such as the
Sequential Least Squares Quadratic Programming (SLSQP)
or L-BFGS-B solvers in SciPy, and using an approximated
numerical gradient. It has been observed that a combination
of the two optimisation procedures (evolutionary and then
followed by a gradient method) is more effective in finding
a good value of ¢ than using one in isolation. This is
because using exclusively a function and gradient method
was sensitive to local minima and the selection of the initial
starting point, as randomly selecting a starting point for
q; could lead to divergence if this starting point lead to
many tensile force densities in qq. The sensitivity of the
function and gradient methods to falling into local minima
has been noted especially for large q; dimension, i.e. when
k is large. Conversely, using exclusively an evolutionary
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Fig. 11 Typical Differential Evolution result showing the maximum
and minimum members of the population in blue and red, and the other
members of the population in shades of grey based on the population
density at that point. Members of the population that start above the
top of the figure with ¢ > 300 gradually return to the group as the
evolution progresses

method, although robust against falling into local minima,
could take significant time to converge to a minimum
solution for large k and also large population sizes.

3.2 Penalisation

Whether using an evolutionary or gradient optimisation
solver, there needs to be a mechanism in place to
discourage negative force densities in the network to guide
a compression-only solution. For the gradient solvers, this is
easily enforced by applying an inequality constraint to keep
q > 0 throughout the solution search. For the evolutionary
algorithms, a penalisation is introduced that is a function
of the negative force densities quee contained within q.
Different penalty functions were investigated, with the most
effective found to be the addition of a continuous penalty
function @pen(Qneg) to the load path function ¢(q;). The
function @pen(Qneg) distinguishes between members of the
population with many large negative force densities and
other better quality members with zero or only a few small
negative values. The general form of the penalty function is

¢’pen = Z(QHeg - a)ﬂv (12)

which was tested for different values of o and 8. It was
found that if o was too low, negative force densities were
not sufficiently penalised, as a consequence « should be
greater than 1 or edges with small tensile values will be
made smaller and can hide within the network. So long as
the value of B > 2 and was even, there was little sensitivity
to the result and convergence of the final optimal solution, as
the edges were sufficiently penalised compared to the value
of ¢. The final choice of penalty parameters in this research

was Ppen = Z(qneg - 5)4~
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Starting data Filter 1

Weights 1

Success: 13.1 % Success: 41.5 %

Weights 2 Filter 2

D W

Success: 68.2 %

Optimum

Fig. 12 Data-driven pipeline summary of Section 4, which begins with the starting network data and incrementally improves on trial independent
sets before arriving to an optimum set(s) and associated minimum weight thrust network

Alternative penalty functions were also experimented
with, for example by limiting the maximum length of the
edges during the thrust network calculation step. This was
investigated to avoids spikes in the thrust network, which
could lead to very high values of ¢ as a consequence of
long lengths in 1, even if paired with a very small force
density in q. These penalty schemes were not as effective
as ¢pen described above, and so was not applied to the final
optimisation scheme.

4 Data-driven investigation

The process of finding an independent edge set M by
finding the RREF of the equilibrium matrix E, was
described in Section 2.2. It was then shown in Section 2.3
that, for a network with low indeterminacy (low value of k),
there is still a wealth of different independent edge sets that
can be uncovered. The task that this section confronts is to
investigate how the choice of Mj influences the optimised
load path results. Given the vast number of independent
set combinations that are possible, this is not a task that
can be easily answered without methods suited to handling
large sets of data and inferring useful results. The use of
the described data-driven methods becomes more and more
compelling as the value of k increases.

This section introduces a data-driven strategy that not
only informs the user of the underlying behaviour patterns
of the network but also shows how this information may
be used to select sets of independent edges that lead to
improved values of the load path ¢ and greater stability in
the optimisation process.

The pipeline that will be presented now can be
summarised with Fig. 12. In Section 4.1, the network used in
this case study is introduced and how key data is generated
(labelled as Starting data in Fig. 12). In Sections 4.2 and
4.3, two data-driven methods are described, showing how
they can be used to very accurately classify the data and
produce importance or weight maps. These weights, shown
as Weights I and 2 in Fig. 12, can inform the user which
edges are most important in determining a good or bad

load path value ¢. Once key important edges are identified,
we can filter the independent sets (Filter I and 2), so that
we arrive with better candidate sets of M;. Having filtered
M;j sets that contain edges, the data-driven methods have
identified as important, leads to a better pool of load path
results, for which the Success of these sets incrementally
improves. When there is a good pool of Mj sets, the best
candidate leads to the optimum value of ¢ and hence the
minimum weight thrust network (Optimum).

4.1 Case study

The network that forms the basis for this data-driven case
study is drawn in plan in Fig. 13, composing of 140 edges
and loading at vertices based on tributary areas. It has the
lines of symmetry exploited by the methods outlined in
Section 2.5, which converts the network study to a triangular
segment of 29 edges, of which five are independent. This
network is thus relatively simple with £ = 5, yet we shall
see that it still shows sensitivity to the selection of Mj.

) o o °
o
o
°
o o o o o
p o
°
o o o o o o o
° o
==
N
N
N
y \
N
N
N
\.
N
<
o o o o SRR o o
N\,
N
o o N
N
\
o o o e o0 o
N
o o N
o [N
Q
° o o o o Y

Fig. 13 Network under investigation, with arc patterns spanning
between four corner supports. The original 140 edges shown in grey
were reduced to the examination of the 29 edges in red, with symmetry
applied through the helper symmetry edges plotted in yellow
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For this network, batches of 5000 sets (M ; through to
M s000) of independent edges were analysed, with various
information extracted from each result for the data-driven
learning methods as described next. A binary vector b;
was created for each trial, of length m and for the set i,
to represent the network’s m = 29 edges. In this vector
b;, there are k elements equal to unity, representing the
independent edges that form the set M ;. For each of the
trials, the binary vector element b; ; is formally given by

b — 1 if edge j is an independent edge,
"/ 71 0 if edge j is a dependent edge.

Each binary vector b; is then stored in a group of all 5000
trials, as row vectors in the training binary data matrix X,
which is of size (5000 x m). The labels to this data, which
are the results relating to the optimised load path values that
these trials gave, are stored in a vector y of length 5000.
Each element i of this labels vector represents one trial and
takes a binary value for y; to show if the load path ¢ was
“good” or “bad” according to the rule

_[0if ¢ ) <200,
P 1if (ML) > 200,

where ¢ (M ;) is the load path value for the set i of
independents M ;. The observed success of these 5000
trials is calculated as the percentage of good trials where
y = 0, i.e. the number of trials where ¢ was less than
a threshold of 200. Note that the value of 200 is tied to
the structure under examination and will vary for different
network topologies, the values and locations of the applied
loads and the boundary conditions present, it is not a
constant for the optimisation process or solver. For this
case study, the value of 200 was found to represent a
suitable cutoff point for describing a good solution. This
base success percentage is equal to 13.1%.

For each of the 5000 trials, an image was saved where the
network was imprinted as pixel data with information about
the M set. These data were stored as p x p x 3 matrices
in a training image data array X of size 5000 x p x p x 3,
where p is the number of pixels in the two image directions
in plan. The red-green-blue colour channels were encoded
with red for compression, green for the helper symmetry
edges (this was not changed for this study), and finally and
most importantly, the edges selected in the M set activated
the blue channel. An example selection of two good and two
bad bad sets is shown in Fig. 14, showing how the colour
channels can combine to indicate multiple properties: red
and green (magenta) show compression and an independent
edge, while green and blue (cyan) show a symmetric edge
that is also an independent edge.

Qualitatively before introducing the data-driven methods,
there are some observations to be made between the two
good and two bad M sets in Fig. 14. One independent edge
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Fig. 14 Example RGB images generated for four example indepen-
dent sets, the top two lead to a good value of ¢ below 200, while the
bottom two led to divergence in the optimisation process

is found at the top boundary of both of the two good sets,
and this is not true for the two bad sets. Also, it appears
that a good set may contain the bottom symmetry edge, and
should not include vertically orientated edges. The latter
observation makes structural sense, as this would not control
the forces along the arches, which is the main action taking
the applied loads from the way the network has been drawn.
These manual observations can be made for such a small
sample of trials, but robust methods are needed to handle
the entire data. For this, two different data-driven methods
were tested on the binary Xp, image X; and label y data.
These methods were a random forest classifier and a neural
network, both of which are now described in the following
two sections.

4.2 Random forest classifier

The first data-driven method uses a random forest (RF)
classifier, which allows for supervised learning based on
decision trees. The decision trees created by the RF
algorithm randomise the features (the independent edges)
to be analysed, which reduces significantly the errors
and problems with over-fitting for a large number of
trees and extensive data-training (Breiman 2001). The
RF approach also allows for a quick assessment on the
features’ importance, information describing which of the
data features were most influential to the final classification
(good or bad set).
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The random forest classifier used in this research is from
the Python machine learning library sklearn (Pedregosa
et al. 2011). The meta-parameters of the classifier were
chosen after several pilot tests, for which the number of
estimators (the number of decision trees) was set to 80,
the depth of the trees was limited to 20, and other meta-
parameters were kept to their default values. The accuracy
of the classifier is controlled through a cross-validation
method with degree five, which divides the data randomly
into five portions, training the machine with four and then
testing against the fifth. The data used for the training is the
binary data of 5000 samples (X}, and y).

After the training process was complete, the RF classifier
was used to make predictions on a new (testing) set of 5000
trials. The classifier receives the new data as before in binary
vector format, and using its previous training, decides if the
set of independent edges are likely to be a good or bad
set. If the prediction is that the set will be good, i.e. that
it will lead to ¢<200, then the set is analysed. The success
rate is then calculated as the percentage of testing trials that
were predicted correctly. The achieved accuracy of the RF
classifier in classification of this new testing data was equal
to 97%.

The prediction of whether the Mj set is going to be
good or not is costless, as it can be calculated with much
less computation time than the direct optimisation of ¢ and
observing the result, and so avoids the time spent on a
calculation that leads to an unsuccessful ¢.

4.3 Neural network

Two neural network (NN) models were created in Tensor-
Flow (2015) to examine the binary training data Xy and the
image training data X;.

The image data model that worked on Xj, consisted of
the following pipeline. The Python package skimage was
used for cropping, scaling and general processing of the
image data into a 380 x 380 pixel format. The processed
image data were shuffled into batches of 200 images and
fed into the neural network at each step for a total of
1000 steps. Based on the 380 x 380 x 3 RGB image
array and batch size, this represents input tensors of shape
200 x 380 x 380 x 3. The input pixel layer was
connected to a layer of 1024 neurons with ReLu activation.
This neuron layer was then connected to the two output
logits representing the good and bad classification labels.
Loss was calculated via softmax cross entropy alongside
the AdagradOptimizer. At each step, the weights across the
neural network were stored and then processed to display
the weights/activations of each pixel which led to each
classification.

The neural network model for the binary data Xy used
the same trials as the RF classifier. This model again

composed of shuffling the input data, ReLu activation, two
output logits for the binary classification and softmax cross
entropy and used the AdagradOptimizer with a learning
rate of 0.1. Two hidden layers containing 10 neurons each
connected the 29 input features representing the edges of the
network. Batches of 500 were used in this model for 2000
steps.

After training the neural network models on the 5000
trials, they were both able to classify new sets of previously
unseen (testing) data to an accuracy of 98 to 100%.
This means that they were able to correctly identify new
independent sets leading to a good or bad value of ¢. From
the results of the RF and NN classifiers, we can see that both
have a similar prediction accuracy.

4.4 Weights and importance

From the results of the random forest and neural network
classifiers, it is clear that there is an underlying behaviour
from the independent sets that will control whether a good
¢ will occur or not, otherwise the classifiers would not have
been able to classify the data so accurately. Additionally,
the method of classifying the data did not appear to be
influential, as the success rates are similar in the range of
97% and 100%, which is a significant increase to the base
13.1% from the raw data.

The random forest classifier can also allow for a quick
assessment of the importance of the underlying features
during the learning process, via a predefined method that
returns an array with the normalised importance of each
feature. An insight into the importance factors of the edges
allows for the identification of which edges should appear
(or not) in the M set, to preferentially bias the set to give a
low value of ¢. The edge importance factors for the training
data Xy and y is plotted in Fig. 15a, with darker shades of
red highlighting a greater importance. One can see that the
straight edges at the topmost free boundary of the network
have been identified very prominently as important for the
labelling of a set, as well as some edges near the corner.

From the image training data Xj, an equivalent plot to
the importance factors can be made by showing the weights
of the pixels. These weights are shown in Fig. 16 and are
similar to the importance factors from the RF, but also
inform us if an edge was important for a good (red) or
bad (blue) result, not just that it was influential. The same
border edges at the top are highlighted, and their weights are
similarly identified, with another symmetry edge suggested
to omitted for a good solution.

Given that Figs. 15a and 16 show a strong emphasis on
the top border edges (the reason for this will be described
later), the X}, data was split into a subset containing the
trials where the independent set of edges included at least
one of the edges on the boundary. It was then found that
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High TLow a) b)

Fig. 15 Plot showing the RF edge importance factors for labelling the
X}, data. In a, the first important edges were identified along the top
border, while in b, the second level of important edges were identified
along the main diagonal

the success increased from 13.1 to 41.5%, thus quantifying
the importance of activating one of these edges to achieve a
lower ¢. One can continue the classification and importance
factors process, but now to assess the next most influential
edges given one of the top border edges is pre-selected.
This is plotted in Fig. 15b, showing the highest importance
factor on the edge located along the main diagonal of the
network near the corner support. When this edge is present
in Mj along with an edge at the top border, the success ratio
now increases further from 41.5 to 68.2%. This edge can be
understood as being structurally important for the definition
of the thrusts for the main arches of the thrust network,
and so controlling these edges gives stability to the main
load-bearing arching paths.

4.5 Interpretation

From the investigation of the load path algorithm stability
(or success rate) in connection with the identified impor-
tance or weights of the edges, it was found that the straight
border edges were influential. This is because for these
edges of the compression-only network, the thrusts from the
connected edges have no possibility to transmit forces to the

Fig. 16 Plot showing the a) b)
weights of each edge (converted
from pixel data) in obtaining a
good (red) or bad (blue) load
path for labelling the data X;.
Edges a, b and ¢ were critical in
finding a good solution, while
edge d would lead to poor
solutions.

Good independents
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Fig. 17 Adjusted network introducing a slight curved arc at the free
border edges. Identical to the original network, the 140 edges plotted
in grey were reduced to the 29 edges in red by using the eight helper
symmetry edges.

free border as their connection is perpendicular. The border
edges that were identified as being so critical to the optimi-
sation then generate their own separate arch in the vertical
plane, disconnected from the main structure. Therefore, if
no independent edges were selected in this straight line, the
optimisation process was not effective as it could not con-
trol the stability of this arch. Based on this observation, and
relaxing the constraint that the border edges need to form a
straight line, the altered network presented in Fig. 17 was
investigated, where the four straight edges were given a
slight arc.

This new network was analysed for 5000 trials to
generate new binary Zj, and image Z;; training data. The load
path optimisation performance is significantly increased by
introducing the curvature at the borders, with the observed
success percentage rising from the original (straight) 13.1%
to the new (curved) 53.2%. When we train the random
forest classifier on the data and test the model on new trials,

c)

d)

Bad independents
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Fig. 18 Plot showing the RF edge importance factors for labelling the
Zy data for the network with introduced curved border

we obtain a similar classification accuracy as before of
96%. Proceeding with the same analysis of the importance
factors, one can study the feature importance of this
network. The result for analysing the data Zj, is presented
in Fig. 18, showing a strong influence from the edges on the
main diagonal and the edges around the (global) centre of
the network at label ). When an edge at @) is selected in
conjunction with a diagonal edge to appear in the M set, the
success percentage further increases to 80.8%. Notice that
none of the edges at the now curved border are considered
important to have in M. The NN edge weights in Fig. 18
show very prominently a preference to including a main
diagonal edge into the independent sets, as well as edge b),
which was similarly picked up by the RF importance.

5 Conclusions

This paper presented the load path optimisation method
for minimising the volume of compression-only thrust
networks at given constant stress level. There is a practical
construction incentive to optimise such thrust networks, as
they can represent material savings and structural efficiency
in the design of compression-only structures such as shells
by emphasising membrane action and reducing the demand
on reinforcement. The research outlined a process to
generate a compression-only thrust network and calculate
its load path, under given boundary conditions and a
network defined in-plan, and then how to minimise the load
path by solving a constrained optimisation problem.

The optimisation works by finding optimal force
densities for sets of independent network edges, which
define the statical indeterminacy pattern of the network,
and allows the optimisation to progress more efficiently
with fewer degrees of freedom and so a smaller search
domain. The number of independent edges to consider
can be further reduced by utilising helper symmetry
edges, which represent the equal and opposite forces at
a symmetry line. A method to find the independent sets

of the network was presented through the use of the
Reduced Row Echelon form of the network’s equilibrium
matrix.

There exists such a wide territory of different inde-
pendent sets that data-driven methods were employed to
quantitatively analyse many thousands of cases. Two sep-
arate data-driven methods, a random forest classifier and
neural networks, gave similar and accurate results when
classifying the independent sets. It was shown that with a
very high level of accuracy (96—100%), a trained model can
reliably predict if an independent set will lead to a good
load path value or a divergent optimisation. This showed
that there were underlying features within the indetermi-
nacy of the network, which drive good and bad optimisation
solutions, and that randomly selecting an independent set
is not an effective strategy. It was found that networks can
have certain independent edges that have a significant influ-
ence on both the stability of the optimisation algorithm,
and in the final load path/volume of the structure. Thus it
was key to identify which edges held this influence on the
optimisation’s success.

These embedded features could be brought to the surface
by plotting the importance or weight each independent edge
had in labelling sets as good or bad. These visual outputs
provided insight to infer structural patterns and highlight
influential edges in the network. By doing so, it was possible
to filter edges that were deemed to be influential, and so
drastically increase the quality of the independent sets from
13 to 68%. The importance and weights also highlighted
areas that allowed structural judgement and changes to be
made, for which a modified network from the base case
study was created. The new network broke the identified
straight edges forming at the boundary and introduced a
structural arch. This further improved the success of the sets
from 13 to 53%, eventually leading to a 81% success rate in
picking good sets.

Given the reliability and speed of classifying and
determining useful information about the weights and
importance of each edge, there is great scope in using
trained data-driven models to aid the user in finding the best
weight optimised network for their problem.

6 Replication of results

All of the source code used in this research is freely
available online at github.com through the following open-
source respositories: (1) compas-dev/compas for the net-
work datastructure and evolutionary optimisation solvers,
(2) BlockResearchGroup/compas_loadpath for the complete
load path optimisation algorithm code, and (3) Block-
ResearchGroup/compas_ml for all machine learning code
using TensorFlow. The specific examples used in this
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research are found in compas_loadpath/data with files
arches_flat.json and arches_curved.json.
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