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This paper presents a new computational framework for 3D graphic statics based on the concept of
disjointed force polyhedra. At the core of this framework are the Extended Gaussian Image and area-
pursuit algorithms, which allow more precise control of the face areas of force polyhedra, and conse-
quently of the magnitudes and distributions of the forces within the structure. The explicit control of the
polyhedral face areas enables designers to implement more quantitative, force-driven constraints and it
expands the range of 3D graphic statics applications beyond just shape explorations. The significance and
potential of this new computational approach to 3D graphic statics is demonstrated through numerous
examples, which illustrate how the disjointed force polyhedra enable force-driven design explorations of
new structural typologies that were simply not realisable with previous implementations of 3D graphic
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1. Introduction

Recent extensions of graphic statics to three dimensions have
shown how the static equilibrium of spatial systems of forces
can be represented by a polyhedral force diagram, or closed force
polyhedra. In 3D graphic statics, the areas and normals of the faces
of the force polyhedra represent the magnitudes and directions of
the corresponding forces in the system [ 1,2]. With explicit, bidirec-
tional control of both the geometry of the structural form and its
force equilibrium, polyhedral reciprocal diagrams can be used for a
wide range of design applications. Most notable implementations
include equilibrium analysis, design and form finding of complex
spatial geometries through various subdivision schemes [3] and
additive transformations [4] of force polyhedra.

1.1. Problem statement

One of the most powerful benefits of computational graphic
statics is that it enables dynamic interaction between the reciprocal
form and force diagrams with real-time, visual feedback [5]. In
2D graphic statics, the length of an edge in the force diagram
represents the magnitude of the axial force in the corresponding
member of the structure. Therefore, changing the geometry of
the force diagram has a direct influence on the magnitude of the
internal forces. The vertices of 2D force diagrams can be geomet-
rically constrained to explore force-constrained structural forms,
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such as constant-force trusses [6]. However, in 3D graphic statics
using polyhedral reciprocal diagrams, the influence of changing
the geometry of the force polyhedra on the force magnitudes is
not as direct or intuitive. For example, modifying the locations
of the vertices of the force polyhedra changes the areas of the
polyhedral faces, but there is no clear visual relationship between
the operation and the resulting face areas of the polyhedra. The
lack of means to explicitly and precisely control the face areas
of the force polyhedra (or equivalently, the magnitudes of the
axial forces within the corresponding members) limits 3D graphic
statics applications to abstract shape explorations. Subsequently, it
is difficult to incorporate quantitative, force-driven considerations
during the design process, which is necessary for addressing more
realistic structural design problems and boundary condition con-
straints.

Additionally, current computational implementations of 3D
graphic statics require that every constituent polyhedron or a poly-
hedral cell of the force polyhedra, is constrained to have the same
contact face geometries and areas with each of its neighbouring
cells. This geometric constraint of the contact faces intrinsically
enforces the area constraint, and therefore it is convenient for
constructing consolidated force polyhedra and applying global ge-
ometric subdivisions and transformations. However, design ex-
plorations using consolidated force polyhedra strictly limit the
corresponding form diagrams to also be geometrically polyhedral
(i.e. subdivided tree structures, faceted domes, polyhedral mesh or
surface structures, crystalline aggregations, etc.). In addition, the
contact face geometry constraint makes it impossible to construct
consolidated force polyhedra for equilibrated structures that are
non-polyhedral (i.e. structures with overlapping members, non-
planar faces, etc.). The range of structures that can currently be
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explored with polyhedral reciprocal diagrams is therefore limited
to polyhedral geometries only.

1.2. Objectives

In order to expand the range of design applications using poly-
hedral reciprocal diagrams beyond abstract shape explorations, a
new computational framework that enables the control of polyhe-
dral face areas is needed. In current implementations of 3D graphic
statics, polyhedral force diagrams are computationally constructed
as volumetric meshes with matching contact faces and shared ver-
tex coordinates between any pair of adjacent cells. In the proposed
approach, any pair of adjacent cells are constrained to have the
same contact face orientations and areas, but each with its own
vertex locations and topology.

The new computational framework for 3D graphic statics pre-
sented in this paper will provide the necessary datastructure, func-
tionalities and algorithms to enable designers to interactively and
intuitively control the face areas of the force polyhedra. The ability
to explicitly control the polyhedral face areas allows integration
of quantitative, force-driven constraints and exploration of new
typologies that are not realisable with previous applications of
3D graphic statics. This new framework is developed and pre-
sented with the ultimate goal of maintaining and improving the
inherent and most important benefits of computational graphic
statics: legible visualisation of force equilibrium, intuitive designer
interactivity, and provision of new structural design insights.

1.3. Contributions and outline

The outline of the paper is as follows.

In Section 2, we introduce the concept of disjointed force poly-
hedra and present the relevant theoretical background. Various
polyhedral reconstruction techniques from different disciplines
are summarised and discussed, with emphasis on methods based
on polyhedral face normal and areas.

In Section 3, we provide an overview of the computational
implementation of the presented approach to 3D graphic stat-
ics. The algorithms for reconstructing or modifying a polyhedron
with specified face normals and areas are described in detail with
illustrations and condensed code snippets. A new datastructure
is also presented, which synthesises the above-mentioned algo-
rithms and functionalities to seamlessly integrate the presented
approach in an interactive design environment.

In Section 4, the design potential of the presented framework
is demonstrated through several examples to highlight the new
structural typologies that can be explored, and force-driven design
applications using disjointed force polyhedra.

We conclude the paper with a discussion on the practical po-
tential of the presented approach, and its relevance to other spatial
form-finding methods such as the Force Density Method (FDM) [7]
and Thrust Network Analysis (TNA) [8].

2. Theoretical background

This section describes the underlying principles of the concept
of disjointed force polyhedra.

First, we briefly review the basic properties of polyhedral recip-
rocal diagrams and establish the nomenclature that will be used
throughout the paper. Next, we graphically show how any pair
of adjacent cells of a force polyhedra can be interfaced with a
collapsed cell corresponding to a fictitious node in the structure,
thereby allowing the two initial cells to have contact faces that
are different in geometry but have the same areas. We then give a
brief overview of previous work on various polyhedral reconstruc-
tion methods, and relevant techniques that allow computation
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Fig. 1. (a) I" of node v; in equilibrium; (b) the sum of all the internal force vectors
at the node (for a more detailed explanation of this proof, we refer the readers to [2,
p. 120]); and (c) I"'* and the corresponding cell, c;.

of polyhedral geometry from face normals and areas. Polyhedral
reconstruction techniques previously presented within the context
of 3D graphic statics are also reviewed. We conclude the section
by summarising the limitations of the current state of the art, and
identifying key areas for improvements.

2.1. Polyhedral reciprocal diagrams

In 3D graphic statics, the equilibrium of the external forces or
the i th node v; of a structure (Fig. 1a) is represented by a closed
polyhedron or a polyhedral cell, ¢; (Fig. 1c). For each cell ¢;, the nor-
mal fi;; and the area Ay, . of the j th face f; j represent the direction
and magnitude of the axial force fij in the corresponding member
or the edge e;; of the polyhedral form diagram, respectively. The
interpretation of f;; at node v; as either compression or tension
can be made by comparing the polyhedral face normal fi; j and the
orientation of the corresponding edge in the form diagram [9,4].

In this paper, I" will refer to a polyhedral form diagram, which
represents a pin-jointed spatial truss in equilibrium that is polyhe-
dral in its geometry. I"* will refer to a polyhedral force diagram or
a consolidated force polyhedra, which is both dual and reciprocal
torl.

2.2. Disjointed force polyhedra

Previously presented design explorations using 3D graphic stat-
ics have been based on aggregations, subdivisions or transfor-
mations of polyhedral force diagrams where all pairs of adjacent
cells have matching contact faces (Fig. 2a), and therefore can be
assembled into a consolidated force polyhedra, I't. The concept
of neighbouring cells with dissimilar or mismatching contact faces
was first introduced by McRobie [10] (Fig. 2b). In more recent
papers, McRobie [11,12] showed that the equilibrium of two neigh-
bouring cells with mismatching contact face geometries can be
explained using “face cushions” or collapsed cells. The “face cush-
ions” represent fictitious nodes in I" with a net force of zero
at that node, which is important in constructing I for more
complicated structures. The addition of a collapsed cell in-between
two adjacent cells allows the two initial cells to become disjointed;
the two adjacent cells need to have contact faces that are equal in
area, but do not necessarily have the same geometry.

While the collapsed cells are necessary for graphically repre-
senting and describing the concept of disjointed force polyhedra,
W+ they do not need to be visualised for practical purposes in an
interactive design environment. Especially for a ¥ that contains
a large network of cells, the collapsed cells do not need to be
computed or represented, as it would only cause additional visual
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Fig. 2. (a) Two adjacent nodes in equilibrium where the two corresponding cells have matching contact faces; (b) two adjacent nodes in equilibrium where the two
corresponding cells are disjointed with mismatching contact faces; and (c) the addition of fictitious node v,, and the corresponding cell c; linking the two mismatching

contact faces, in convex and collapsed states.

clutter and consume unnecessary computational time. Rather, in
order to digitally implement ¥, a robust computational setup and
algorithms are needed, that ensure that the contact faces of every
pair of adjacent cells have the same area and parallel orientations.

Note that the corresponding form diagram ¥ of a disjointed
force polyhedra ¥ can be in equilibrium, but not necessarily
polyhedral inits geometry. ¥ and ¥ are also not necessarily topo-
logical duals, which means they cannot be defined as reciprocal;
¥ is a collection of cells that are individually reciprocal to its
corresponding nodes in ¥. The polyhedral form and force diagrams
I" and I'* are mutually dual and reciprocal, and are special cases of
a non-polyhedral form diagram ¥ and disjointed force polyhedra
Wl respectively.

2.3. Polyhedral reconstruction

Computation of polyhedral geometry, or more commonly
known as polyhedral reconstruction, is a well-researched topic for
a variety of applications in many disciplines, such as computer
vision, computational geometry and combinatorics. In most ap-
plications, the objective is to reconstruct the polyhedral geometry
from partial information about the polyhedra (i.e. from projected
images, vertex locations, edge lengths, face geometries, face nor-
mals, face areas, dihedral angles, etc.) [13]. The polyhedral recon-
struction method that is most relevant to 3D graphic statics and
the objectives of this paper, is the one based on face normals and
areas.

2.4. Reconstruction from face normals and areas

The theory of polyhedral reconstruction from its face normals
and areas, or modifying the polyhedral geometry with target face
areas, originate from Minkowski’s theorem [14]. Alexandrov’s in-
terpretation of the theorem is recited below, with modified nota-
tions to stay consistent with the nomenclature used in this paper:

If Ay, ...,A,, are non-coplanar unit vectors and Ay, ...,An are
positive numbers such that Y A; - fij = 0, then there
exists a closed convex polyhedron whose faces have outward
normals f; and areas Aj, [... with uniqueness up to translation]
[15, p. 311].

Although proofs for this existence theorem can be found in
numerous texts in the literature [15-17], the reconstruction pro-
cedure was never explicitly mentioned or developed in detail.

It was not until the 1980s that this problem was revisited with
adequate computational tools. Ikeuchi [18] first proposed a tech-
nique by using a constrained minimisation procedure, followed

by Little’s [19] iterative minimisation solver using the Extended
Gaussian Image (EGI), which is a topological representation of a
surface or a polyhedral object on a unit sphere [20]. Moni [21]
added another layer to the EGI-based technique by using zero-area
faces to address indeterminate face adjacencies. Xu and Suk [22]
introduced hierarchical EGI to reconstruct concave polyhedra. In
these implementations, while robust in their theory and setup,
the methods were demonstrated on only a few simple examples.
The general computational complexity and hardness of this recon-
struction problem was addressed in [23].

Especially with EGI-based methods, the complexity and diver-
sity of polyhedra that can be reconstructed were not demonstrated
through a large sampling of convincing examples. Furthermore,
the ultimate goal of these methods is to simply demonstrate the
improved efficiency over its predecessors, rather than to manip-
ulate or interact with the resulting geometry of the polyhedra.
The designers’ ability to customise the method and control the
computed geometry of the polyhedra is not addressed, which is
crucial in an interactive design environment for architecture and
structural design.

In a more numerical approach, Lachand-Robert and Oudet [24]
presented a variant of a convex hull method that could recon-
struct convex bodies with more than 1000 given face normals
and areas. Such powerful numerical methods are necessary for
large optimisation problems in various engineering applications.
However, in the context of architectural and structural design
using polyhedral form and force diagrams, individual cells have
relatively low number of faces; a structure would typically not
have nodes where more than six members come together. Instead,
structures are typically a large network of simple cells. Rather than
a powerful solver that can reconstruct a single cell with a large
number of faces, a flexible and interactive setup that can control
a large network of simple cells is needed.

2.5. Polyhedral reconstruction in 3D graphic statics

As mentioned above, previous design applications of polyhedral
reciprocal diagrams have been largely based on geometric trans-
formations of a single cell or a network of cells, then computing
I using the reciprocation (L) algorithm [2,4]. The initial ' was
typically assumed to be a pre-existing condition (i.e. abstract solid
objects modelled manually or generated parametrically in CAD
software). There have been two main contributions within the
context of 3D graphic statics with regards to reconstruction and
generation of I'+.

The first method is based on translation of procedural tech-
niques used in 2D graphic statics to 3D, using resultant forces,
trial funiculars and “closing planes” to construct the global force
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polyhedron, A+ [25,26]. A+ represents the equilibrium of only
the external loads and reaction forces in the form diagram, A.
Although the step-by-step procedure is important for teaching and
explaining the principles of graphic statics, repeated reconstruc-
tion and constant redrawing of trial funiculars for every node of the
structure would be cumbersome and undesirable. Furthermore,
the construction method is entirely geometric, which means that
the face areas cannot be controlled explicitly.

The second method is based on projective geometry, which
is aligned with the founding principles of graphic statics and
therefore provides some invaluable insights. Using conic sections
and paraboloids of revolution, I"* can be directly computed and
drawn for spatial structures with complex topologies [27]. This
method is also important in explaining the geometric relationships
between n-dimensional reciprocal diagrams and their dual (n+1)-
dimensional Airy stress functions [28,29]. However, similarly to
the procedural geometric approach, this method has not yet shown
how the face areas of the polyhedra can be controlled during the
reconstruction process.

3. Computational setup

This section provides an overview of the computational imple-
mentation of the proposed approach.

Three algorithms will be presented: the Extended Gaussian Im-
age (EGI) algorithm, the area pursuit (AP) algorithm, and the unified
diagram (UD) algorithm. The EGI algorithm constructs a flexible
datastructure for cells without initially knowing its final face ad-
jacencies. Once the flexible datastructure is established, the AP
algorithm re-sizes the faces of the cell towards their target areas,
without having to reconstruct the datastructure at every iteration.
These two algorithms together provide a method for not just re-
constructing cells from prescribed face normal and areas, but also
modify existing cells with new target face areas. Condensed code
snippets of the algorithms with illustrations will be provided.

Adatastructure for disjointed force polyhedra will be presented,
which is in essence a nested network of closed meshes. While
the EGI and AP algorithms operate on individual cells, this new
datastructure allows implementations of these algorithms for a
larger network of cells.

We conclude the section by demonstrating how the unified dia-
grams can be constructed for disjointed force polyhedra using the
UD algorithm, thereby increasing the legibility and the potential
insights and intuition the designers can gain from the interactive
visualisations.

3.1. General approach

Previous work in polyhedral reconstruction have been generally
based on optimisation schemes that seek to maximise the process-
ing efficiency or the output capacity of the method itself. Therefore,
these methods are not ideal for a design environment where the
geometry of the force polyhedra may require constant interaction
and change.

The algorithms presented are based on geometric iterative
solvers which are more easily customisable, to address a large net-
work of simple cells rather than a single cell with a large number
of faces. Although the presented approach only addresses convex
cells, we later show that the use of concave and complex cells can
generally be avoided all together.

The presented approach is developed using the COMPAS library,
an open-source computational framework for collaboration and
research in architecture, engineering and digital fabrication [30].
Written in the Python scripting language [31] without any depen-
dencies, the presented approach can be implemented with any
desired CAD software.

3.2. EGI algorithm

EGI is a representation of surfaces or solid objects on a unit,
Gaussian sphere using its face orientations and areas [20]. If the
tails of the unitised normals of the faces are placed at the centre of
the Gaussian sphere, then the heads of the unitised normals lie on
the surface of the Gaussian sphere. The face areas, whether already
known or input as targets, are placed as point masses at the heads
of the corresponding normals on the Gaussian sphere (Fig. 3b).
An equivalent representation is the spike model of the EGI, where
the normal vectors are scaled by their corresponding area values
(Fig. 3a).

Based on the duality principle of projective geometry, which
maps faces into points, points into faces and edges to edges, the
EGI is then a spherical dual image or topological dual of a convex
polyhedron [32] (Fig. 3c). A polyhedron with n number of faces will
have n number of point masses on the Gaussian sphere. Since any
two faces of a polyhedron are adjacent if they share a common
edge, an edge of a polyhedron can be represented on the EGI as a
connection between two point masses as an arc. This arc is defined
as the minor arc of the great circle containing any pair of points
on the EGI [21]. It is possible for two points that are antipodal
with each other to be connected, for example in the cases of a
dihedron or a flattened polyhedron. However, such instances are
not considered in this paper, and any two diametrically opposite
points are assumed to be not adjacent.

However, the face adjacency information of a polyhedron or a
cellis not directly recoverable from the location of the point masses
and arcs alone. Consider the three cells shown in Fig. 4. These three
cells have the same face orientations but different face areas. Based
on the definition of an arc stated above, the face normals and areas
of the three cells result in the same EGIs (middle row of Fig. 4).
However, the actual EGIs of the cells (bottom row of Fig. 4) are
different, as the different face area distributions result in different
face adjacencies. Depending on the face area distribution, various
face adjacencies occur: faces 1-4 are all adjacent with one another
atavertex; faces 1and 3 are adjacent; or faces 2 and 4 are adjacent.

This indeterminacy of face adjacencies occurs where an arc
crosses another arc on the EGI. Moni [21] defines these arc inter-
sections as cross-adjacencies, where various face adjacencies could
occur depending on different face area distributions. By adding a
fictitious, zero point mass at these arc intersections, and subse-
quently a face with zero-area, or a zero face, all possible face adja-
cencies can be embedded and represented in a single EGI (Fig. 5a).
Once all zero point masses have been added, the datastructure of
the EGI as the dual spherical polyhedron is complete, and the unit
cell can now be constructed, which is simply the topological primal
of the dual spherical polyhedron (Fig. 5b). All zero faces have a
target area of zero, and will eventually collapse to either an edge
or a vertex as a result of the AP algorithm, which will be described
in the next section.

One of the most remarkable properties of EGI is that the centre
of mass of the EGI's point masses has to lie at the origin of the Gaus-
sian sphere [20]. This means that there cannot exist a hemisphere
on the EGI that does not have a point mass, which would represent
an unbounded polyhedron. However, there are commonly used
node elements in structural design for which the corresponding
EGI may have one or multiple empty hemispheres, such as: a 2D
node (Fig. 6a) where all members at that node are coplanar; an
open node (Fig. 6b); or a node with members that may temporarily
be unequilibrated during the form-finding process (Fig. 6¢).

For these special cases, virtual faces are introduced to complete
the geometric reconstruction of the cells. Virtual faces are not the
same as zero faces, and have no target area values; the only purpose
of the virtual faces is to facilitate the geometric construction of cells
in these special situations, and have no corresponding member
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Fig. 3. (a) Spike model of equilibrated force vectors; (b) normalised force vectors and the point masses on the Gaussian sphere; (c) EGI with adjacency arcs, or equivalently
the dual spherical polyhedron; (d) spherical polyhedron, which is the topological primal of the EGI; and (e) the geometry of the polyhedron or cell.
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Fig. 4. Three cells with same face orientations, but with different areas: (a) faces
1 through 4 are adjacent with one another at a single vertex; (b) faces 1 and 3 are
adjacent along an edge; and (c) faces 2 and 4 are adjacent along an edge.

(b)

Fig. 5. (a) The EGI with zero point mass 5 added; and (b) the corresponding unit
cell with an added zero face.

in I'. In general, if the centre of mass is not at the origin of the
Gaussian sphere, or if there are any empty hemispheres, virtual
point masses are placed at the centre of the empty hemispheres.
In the case of a 2D node, only two virtual faces are required
to complete the prism-like cell, with an arbitrary scale factor of
¢ [4] (Fig. 6a). For an open node, at least three virtual faces are
required to complete the cell (Fig. 6b). During the interactive
design process, some cells could become temporarily unbounded.

Fig. 6. (a) A 2D node, its EGI and the cell with two added virtual faces; (b) an
open node, its EGI and the cell with four added virtual faces; and (c) a temporarily
unequilibrated node with one added virtual face, which in this case is also a zero
ace.

A virtual face can be added for each empty hemisphere, and only
in such unbounded cases, the virtual faces will be treated as zero
faces.

Using the COMPAS framework, a cell is represented with a Mesh
class, which is an implementation of a half-edge datastructure
(Fig. 9b). The EGI is topologically dual to the cell. Therefore, it can
also be represented by a Mesh (Fig. 9a-1). During the construction
of the EGI, geometric arcs are temporarily used to determine the
points of adjacencies and cross-adjacencies (Fig. 9a-2, 3). Once
all the points of cross-adjacencies are found, topological edges
can be added to the datastructure. Depending on the node type
and whether there are any empty hemispheres, virtual faces are
appropriately added (Fig. 9a-4). With all the edges added, all the
faces of the mesh can be found (Fig. 9a-5). An EGI datastructure
with vertex, edge and face information can then be used to easily
construct the Mesh datastructure of the initial, unit cell (Fig. 9b-6,
7, 8).

The EGI algorithm can operate on an existing cell, or manually
provided information about the force vectors. Various properties of
the point masses, such as its type (real, zero or virtual) can be input
as vertex attributes. The unit cells shown in this paper have faces
that are planar to the plane defined by its corresponding normals
and the point masses in the EGI. However, the faces of the unit cell
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(a) (b)

Fig. 7. Face re-sizing with respect to a target area: (a) face partitioned into sub-
triangles; (b) two new inner edges and the angle 8 that can be used to determine
the area of each sub-triangle; and (c) the new face now with the target area, scaled
by factor of s.

do not necessarily have to be in the correct target face orientations
in the beginning, as the planarisation process is built into the AP
algorithm.

3.3. Area pursuit algorithm

Once the topological datastructure of the unit cell has been
constructed, the AP algorithm re-sizes each face of the cell towards
their target face areas. At each iteration, the faces are re-sized
individually and then new vertices are computed for the cell.

Re-sizing a face with a target area can be formulated as a
polygon scaling problem. The same technique is implicitly men-
tioned in [9], but no detailed procedure was provided or explained,
especially for non-general cases. Assuming a cell is closed and
convex, then all of its constituent faces are polygons that are also
closed and convex. The area of face f;; with n number of edges
can be computed by deconstructing the face into n number of sub-
triangles using the barycentre b;; (Fig. 7a).

The area Ay ; of face f;; is the sum of the areas of all the sub-
triangles. The area Afjn of the nth sub-triangle f;; , can be com-
puted using simple trlgonometry

1 .
Ajn = Ay = 5 Il - [P - sin B (1)

where ¢ is the ratio of the area of the nth sub-triangle Apj, tO the
area of the total area Ay, of face f;;, and B is the angle between I,
and r,,q (Fig. 7b). If the face f;; is scaled by the factor of s from
b;; to satisfy the target face area of A[ 5 the new area of the nth

sub-triangle f; j » is:

Ay =0 A
1 .
= 7 [Tn -S| - [Tpyq -S| - sin B (2)
1, .
ZE'S “|rn] - [Xpqa] - sin B.

Solving for q from Egs. (1) and (2), the scale factor can be
obtained as:

With this factor s, each face can be scaled such that the new face
area is equal to the target area. At any point during the iteration,
faces may become self-intersecting, or complex [9] (Fig. 8a). The
area of a complex face may be found by splitting the edges of the
face wherever there is a self-intersection (Fig. 8b). Keeping the
original directions of the parent edges, all sub-faces now have split
edge cycles in either clockwise or counter clockwise directions
(Fig. 8c). Using the split edge cycle directions of the sub-faces, the
normal directions of the sub-faces can be determined using the

017N,

(@

Fig. 8. (a) A complex face with self-intersecting edges; (b) edges split at the self-
intersections, while maintaining the parent edge directions; (c) areas of the sub-
faces with the normal directions taken into account; (d) face collapsing; and (e)
face untangling.

right-hand rule, and the area of the face is the sum of the sub-
face areas, with its normals determining whether it contributes
positively or negatively.

However, determining the scale factor s for a complex face is
not straightforward since some sub-faces contribute negatively
towards the total face area. Because it is assumed that the eventual
cell is convex and has no faces that are complex in its final state, it
is unnecessary to have complex faces present at any point during
the iteration. For a face that has become complex, its vertices can
either be collapsed or untangled. If the target face area is 0, the face
vertices can collapse towards the closest self-intersection (Fig. 8d).
If the target face area is greater than 0, the face vertices of negative
sub-faces can be untangled (Fig. 8e).

After re-sizing, collapsing or untangling (Fig. 9¢c-9,10), the new
face vertices can be projected onto the target plane defined by its
target normal and its current centroid. The target plane can also
be redefined for each iteration as the best-fit plane from the new
vertex coordinates (Fig. 9c-11). Allowing faces to be adaptive to
the new target planes is an essential feature that will enable ¥+
to adjust its face orientations to satisfy the given force-constraints
and therefore output a new form-found geometry of the structure.
This feature will be demonstrated in Section 4.4. Because each
face is scaled independently, each iteration results in multiple
coordinates for each of the cell vertices (Fig. 9c-12). The new co-
ordinates for the cell vertices can be computed by averaging these
new coordinates (Fig. 9c-13). Iteration continues until a desired
tolerance has been reached for all of the cell faces (Fig. 9c-14).

3.4. Datastructure

Previous computational implementations of 3D graphic statics
have been based on either the winged-edge [2] or the VolMesh [4]
datastructures. These datastructures are ideal for top-down design
workflows like global subdivision and transformation operations
(Fig. 10a). In a ¥+, adjacent cells are detached and do not neces-
sarily have matching contact faces. Therefore, a single volumetric
mesh cannot be used to represent the datastructure of ¥ .

A new hybrid datastructure is proposed, where a Mesh datas-
tructure represents the cell of each node, and a Network datas-
tructure represents the assembly of those individual cells. This
datastructure is implemented as Network of disjointed force poly-
hedra (NDFP) using the Network and Mesh classes of the COMPAS
library [30]. The EGI algorithm runs in the background to ensure
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from compas.datastructures.mesh import Mesh

(a) def EGI(forces_dict, origin): W f
1 egi = Mesh() _—
for key in forces_dict:
egi.add_vertex(vkey=get_new_vkey(egi), f
coordinates=forces_dict[key]['normal'] + origin, 0
attributes={'type' : 'real’,
‘area' : forces_dict[key]['magnitude'],
"normal’': forces_dict[key]['normal']})
2 arcs = {} Step 1

for vkeyl in egi.vertex:
for vkey2 in egi.vertex:
if vkeyl != vkey2:
arc = egi_arc(vkey1, vkey2)
if (length(arc) != 0) or not (is_antipodal(vkey1, vkey2)):
arcs[frozenset([vkeyl, vkey2])] = []
for arcl in arcs:
for arc2 in arcs:
if arc1 != arc2:
intersection = arc_arc_intersection(arc1, arc2)
if intersection:
new_vkey = get_new_vkey(egi)
egi.add_vertex(vkey=new_vkey,
coordinates=intersection,
attributes={'type' : 'zero',

'area' : 0,

'normal': intersection - origin})
arcs[arc1].append(new_vkey)
arcs[arc2].append(new_vkey)

for arc in arcs:
ordered_vkeys = reorder_vkeys(list(arc) + arcs[arc_key]['inner_pts'])
for i in range(len(ordered_vkeys) - 1):
egi.add_edge(ordered_vkeys[i], ordered_vkeys[i + 11)

4] check_for_empty_hemispheres(egi)
51 find_egi_faces(egi)
return egi
(b) def cell_from_EGI(egi):

cell = Mesh()
cell.attributes.update({'egi’ : egi})
0| for fkey in egi.face:
cell.add_vertex(coordinates=egi.face_centroid(fkey), vkey=fkey)
for vkey in egi.vertex:
cell_face = egi.vertex_faces(vkey)
cell.add_face(cell_face, fkey=vkey)
| cell.add_edges_from_faces()
return cell

(c) def area_pursuit(cell, iterations, threshold):
while iterations:
new_xyz = dict((vkey, []1) for vkey in cell.vertex)
for fkey in cell.face:
face = cell.face[fkey]
9 if not is_face_complex(face):
s = (target_area(face) / current_area(face)) ** 0.5
new_face = scale_face(face, s)
new_face = collapse_short_edges(new_face)
else:
10 if target_area(face) == 0:
new_face = collapse_face(face)
else:
new_face = untangle_face(face)
11 if is_face_dapative(face):
project_face(new_face, best_fit_plane(new_face))

else:
project_face(new_face, (initial_normal(face), centroid(face)))
12 for vkey in new_face:
new_xyz[vkey].append(new_face[vkey])
13 for vkey in new_xyz:

final_xyz = sum_avg_xyz(new_xyz, vkey)
cell.update_vertex_coordinates(vkey, final_xyz)

14] if max_deviation(cell) < threshold:
break
iterations -= 1

return cell

Fig. 9. Condensed Python code snippets for: (a) the EGI algorithm; (b) function for constructing the cell Mesh datastructure from the EGI; and (c) the AP algorithm.

17
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I'* as VolMesh() W as NDFP()

cell

dual

EGI as
Mesh()

I' as Network()

(@) (b)

Y as Network()

Fig. 10. (a) A typical winged-edge or VolMesh datastructure used in 3D graphic
statics; and (b) a NDFP datastructure, with EGI data and cell geometry embedded
into each node.

that the topology and geometry of the individual cells are correct
and up to date. The AP algorithm ensures that all pairs of adjacent
cells have contact faces with equal areas. The _L algorithm, enforces
perpendicularity between ¥ and ¥.

3.5. Visualisation

Although one of the most valuable benefits of computational
graphic statics is the visualisation and the explicit control of both
the structure’s geometry and its equilibrium of forces, the form
and force diagrams increasingly become visually cluttered and
illegible as structures become more complicated. The illegibility
is even more severe for polyhedral reciprocal diagrams, where
it is quite difficult to perceive quantitative information through
volumes and face areas of solid geometries [33], especially when
they are represented as 2D images on flat media.

Therefore, the visualisation of I'* and ¥+ needs to be improved
in order to fully take advantage of the inherent benefits of graphic
statics, and make the polyhedral reciprocal diagrams more legible,
useable and interactive.

3.5.1. Unified diagram

The unified diagram, I'“(«), represents both the geometry and
internal forces of a structure in a single diagram, thereby improving
the legibility of reciprocal diagrams [34] (Fig. 11). Contributions
by McRobie have extended this unified diagram concept to 3D
structures using the “Minkowski Sum” diagrams, and has shown
its numerous benefits in providing new insights and deeper math-
ematical explanations behind the unified diagrams [35,11]. By
parametrically modifying the scaling factor «, all cells of I' (o) are
scaled relative to its corresponding nodes of the structure such that
the distance between any pair of adjacent cells is « - L, where L is
the length of the corresponding member in I".

A scaling factor of 1 results in I", whereas lower values of «
closer to 0 will result in a I"*(«) that more closely resembles

(0 =0.5)

(a=0.75)
(a) (®)

(o= 0.90) (= 0.99)

Fig. 11. (a) A simple structure in equilibrium; and (b) the I'*(«) with varying
scaling factor of «.

(a) (b) (©) (d)

Fig. 12. (a) Interstitial prism between two cells of a I'*(«); (b) the collapsed cell

and the two interstitial prisms between two cells of a ¥*(«); and (c, d) the convex
hull as a visual alternative to (b) with the collapsed cell omitted for two cells with
the same valency, and two cells with different valencies.

the polyhedral force diagram I'* (Fig. 11b). The volume of the
interstitial prisms that are formed in between the adjacent cells
is equivalent to the work f - L being done by the corresponding
member, where f is the internal force in the member between the
two nodes, and L is the length of that member (Fig. 12a).

I''(«) is not only more discernible, but also provides an inter-
esting visual representation of the material required for a uniform
stress design [35]. The unified diagram reveals visual insights in re-
lation to some of the most fundamental principles of structural en-
gineering and analysis, such as: kinematics and mechanisms [34];
virtual work and displacements [36]; and stress-fields and strut-
and-tie models [37,38].

3.5.2. Unified diagram algorithm

For a ¥+, construction of the unified diagram, ¥ («), is not
as straightforward since the prisms cannot simply be extruded
due to the mismatching contact faces. A true ¥ *(«) would show
the collapsed cells between two disjointed cells, with two prisms
instead of one (Fig. 12b). However, with the priority being placed
on maximising visual clarity and legibility of the diagrams, the rep-
resentation of the two prisms and a collapsed cell can be simplified
by using a convex hull of the two contact faces (Fig. 12c-d). Note
that the volume of this convex hull is not f - L.

The UD algorithm re-sizes and relocates the cells of ¥ to their
correct locations relative to one another. Once the ¥ and ¥ are
in their final, perpendicularised states, the scale factor o and the
lengths of the corresponding members can be used to determine
the distance between any two adjacent cells in ¥ -(«). The relative
positions between the cells are iteratively computed.

It is important to note here that the UD algorithm is applied
purely as a visual approximation to improve the legibility of &+, A
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(©)

Fig. 14. (a) I of a Jessen icosahedral tensegrity structure; (b) the complete I"*(«) using complex cells and “zero bars” (after [42]); and (c) ¥ *(«), without the use of any

complex cells, “zero-volume cells” or “zero bars”.

¥H(a=0.80)

Fig. 15. A twisting arch bridge with non-planar faces, and the corresponding ¥ (a).

I for a structure having both compression and tension elements
typically consist of cells that are both outward and inward in their
cell directions; the face normals of some cells point inward, and
some cells outward [4,9]. In this paper, all cells of a ¥ are rep-
resented as inward or outward. Therefore, the distance between
any two neighbouring cells as a result of the UD algorithm is not
necessarily precisely « - L. Although the cell directions are inher-
ently embedded in the winged-edge or VolMesh datastructures,
determining the correct cell directions in a network of equilibrated
cells that are disjointed is not trivial, and not addressed in this

paper.
4. Results

This section presents examples that demonstrate new struc-
tural design possibilities using disjointed force polyhedra.

All structures presented are pin-jointed spatial trusses carrying
axial forces only. Fully pinned nodes are shown as circles outlined
in black, and partially restrained nodes (explained per example)
are shown as dotted circles. Applied loads are represented in green.
In the force diagrams, cell faces in red correspond to tensile mem-
bers, and in blue or white correspond to compression members.
Interstitial prisms that are represented in pink correspond to mem-
bers that are in tension, and in light blue correspond to members in
compression.

4.1. Simple examples

In order to validate the presented methods, EGI and AP algo-
rithms are applied to reconstruct known polyhedral geometries in
literature and an irregular polyhedron, only from its face normals
and areas. In Fig. 13, the first column shows the equilibrated force

vectors as spike models. The second column shows the correspond-
ing EGIs with adjacency and cross-adjacency arcs. The third column
shows the unit cell with zero faces highlighted in orange. Finally,
the last column shows the final geometry of the polyhedron with
face areas that match the magnitudes of the corresponding force
vectors.

4.2. Improved visualisation for 3D graphic statics

Some structures have extremely complicated force diagrams
with complex faces and cells. While necessary for constructing
a complete I't, such overlapping elements only make " more
difficult to read and understand. For a designer who is interested
in exploring the design space using I"*, these additional “zero-
volume cells” and “zero-bars” serve little purpose.

Complicated self-stressed structures, such as the Jessen icosa-
hedral tensegrity (Fig. 14a), are used commonly in literature to
demonstrate the need for zero-volume cells and zero bars to con-
struct a complete I'+ (Fig. 14b)[10,35,27]. All of the complex faces
of the central, “zero-volume cell” highlighted in Fig. 14b have areas
of zero, and therefore the cell has a volume of zero. The geometric
properties of the Jessen icosahedron is well known [39-41], and
since tensegrity structures are self-stressed and self-equilibrated,
the construction of ¥ is simple and straightforward once the
vertex locations have been determined. ¥ +(«) shown in Fig. 14c
is drawn with the same « as the I"*(«) in Fig. 14b, but without
the “zero-volume cells” and “zero bars” and therefore reducing
significant amount of visual clutter.

With the equilibrium of the external loads and reaction forces
always being verified by A+ and the individual cells being gener-
ated and visualised per node-by-node basis, ¥ can be constructed
for any structure in static equilibrium without using any complex



J. Lee et al. / Computer-Aided Design 99 (2018) 11-28 21

\ ULl

= =
—r — 7 ——=

S

D)

D

PH(0=0.90)

Fig. 16. A layered and self-overlapping shell structure supporting a flat surface that is uniformly loaded.

Wi

Fig. 17. A spatial tree structure with non-polyhedral sub-spaces, as a result of node-by-node transformations of ¥+.

faces, complex cells or any additional fictitious nodes or prisms.
This example shows that ¥ («) can be used as a simplified and
improved visualisation alternative to a complete but more compli-
cated ' (a).

4.3. New structural typologies

In this section, we present several new structural typologies for
which a ¥ can be constructed and used for design.

4.3.1. 2D and 3D combined structures

Using prism-like cells with virtual faces to represent 2D nodes
in equilibrium as described in Section 3.2, ¥ for structures with
both 2D and 3D nodes can now be constructed. Fig. 15 is a twisting
arch bridge, with 2D nodes along the arch, and point loads applied
to the deck. Combination of 2D and 3D nodes in the same structure
means that the members that form a face of ¥ are not necessarily
planar, and thereby allows incorporation of twisted faces and
features into the structure.

4.3.2. Overlapping structures

A complete I"* can be constructed only if I is a planar graph
[43]. This is because there does not exist a topological dual of a
graph that cannot be redrawn in the plane without crossing edges,
or untangled in space without any self-overlapping edges.

The example in Fig. 16 is a layered shell structure with over-
lapping vertical support elements. Although this structure is in
equilibrium, the complete I'* cannot be constructed. However,
through a network of disjointed cells that are individually in equi-
librium, a ¥ can be constructed.

4.3.3. Non-polyhedral structures
The dual and reciprocal relationship between I and I means
that both diagrams are polyhedral in their geometric properties.
Subsequently, any structure generated through subdivisions or
transformations of I"* has sub-spaces that are also polyhedral.
The spatial tree structure shown in Fig. 17 was generated by
node-by-node transformations, which result in an equilibrated and
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Fig. 18. Overview of the main steps of the force-driven design workflow using the
NDFP datastructure, and the four algorithms (_L, EGI, AP, UD).

yet non-polyhedral form diagram, ¥. ¥ allows exploration of
equilibrated structures that do not have polyhedral geometries,
and investigation of free-form designs that are more organic in
their aesthetic is now possible. Furthermore, any force equilibrium
of structures generated with other form-finding methods such as
FDM and TNA can be translated into ¥+,

4.4. Force-driven design

This section presents applications of disjointed force polyhedra
where the faces are adaptive, and are now allowed to re-orient
themselves at each iteration. Applied in conjunction with the L
algorithm to a larger network of cells, the adaptive faces enable
force-constrained form finding and design explorations using 3D
graphic statics.

4.4.1. Workflow

While polyhedral transformations of I'* are ideal for initial
form generation and explorations, ¥ provides a means for de-
signers to interactively incorporate force-driven constraints. A typ-
ical design workflow using both of these design processes is as
follows.

First, boundary conditions of the design problem are clearly
identified by the designer, from which the initial A+ can be gener-
ated using the EGI and the AP algorithms (Fig. 18a).

The designer then can proceed to subdividing or transforming
the AL (Fig. 18c). Using the L algorithm, the designer can inter-
actively generate I', and explore the geometry of the structure
in real-time (Fig. 18d). During this interactive exploration, the
designer can set various form-driven constraints such as node
locations, fixities, edge lengths and orientations (Fig. 18b).

Once a general form and topology of I" have been determined,
the designer can proceed to disjointing the I"* using the EGI and
AP algorithms (Fig. 18e), which subsequently converts I" to V.
Because the force in every member is already known, the construc-
tion of the initial ¥ is straightforward. The designer can now set
various force-driven constraints such as target force magnitudes or
orientations for specific members of the structure (Fig. 18f). At this
point, the designer can still apply any form-driven constraints to
I, or polyhedral transformations to ¥,

Because ¥ and ¥ have an interdependent relationship, the
geometry of ¥ needs to be updated at each iteration as each of
the cells adapts to the new force constraints (Fig. 18h). At the
end of each iteration, the two corresponding contact faces of a
member may not necessarily be parallel or have the same areas. For
members that do not have target member forces or orientations,
the average of the two contact face normals and areas are used as
targets for the next iteration.

The iteration is terminated when the desired tolerance or a
designated iteration count has been reached. The edges of ¥ and
the corresponding cell faces of ¥+ should now be close to being
perpendicular to one another, unless the form and force constraints
input by the designer in the previous steps caused the polyhedral
reciprocal diagrams to be over-constrained and a solution satis-
fying all of the constraints could not be found. In this case, the
designer will need to consider eliminating some of the constraints.

As the final step, the designer has the option to visualise the
unified diagram, ¥*(«), which aids in understanding the force
magnitudes and distributions relative to ¥ (Fig. 18i). The designer
can also go back to the previous steps to continue the design
exploration.

4.4.2. Construction of global force polyhedron

The resolution of the resultant force and the construction of
the global force polygon or polyhedron are some of the most fun-
damental principles of graphic statics. By constructing the global
force polyhedron, A+, the equilibrium of the external loads and
reaction forces is established [25,26,44]. This means that any poly-
hedral subdivisions or transformations of A+ results in a structure
that is also internally equilibrated. Because the internal equilib-
rium of the structure is guaranteed, a wide range of structures
can be explored very rapidly. The EGI and AP algorithms allow
quantitative boundary condition constraints to be incorporated
during the construction of AL,

Suppose that a shell structure with five supports is considered
for a hypothetical site shown in Fig. 19a. The client has requested
for two of the supports to be on piers 1 and 4. For the first iteration,
a solution was found where all of the supports had the same mag-
nitude of reaction forces (Fig. 19b). However, it became evident
that the two piers may be susceptible to high horizontal thrusts.
By limiting the horizontal thrusts on piers 1 and 4 to not exceed
a certain amount, a much shallower A+ was found (Fig. 19¢c). As a
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Fig. 19. (a) A hypothetical site for a shell-like structure with five supports; (b) A+ where all the reaction force magnitudes are equal; (c) A+ where all the reaction force
magnitudes are equal, but the horizontal components of the reactions at piers 1 and 4 are limited to stay below a desired amount; and (d) imposing constraints from both

(b) and (c), while keeping all of the supports clear of the water front area.

I(0=0.80)

¥*(a=0.80)

Fig. 20. (a) An indeterminate truss with four horizontally restrained supports (1-4) and one pinned support (5), and the corresponding I'*(«); and (b) one possible
equilibrium solution for the same truss with a point load applied to the interior node, and the corresponding ¥ and ¥ *(«).

last constraint, the client requests that none of the supports land
on the water front area. By constraining the supports 2, 3, and 5 to
stay clear of this zone marked by the red lines shown in Fig. 19d,
while satisfying the force constraints imposed in Fig. 19a and b, a
new A~ is found.

Once a A* has been found that meets the main boundary con-
dition criteria, the designer can then proceed to applying various
subdivision and transformations to A to explore more specific
forms and topologies of the structure, knowing that the required
boundary condition criteria have already been satisfied.

4.4.3. Placing point loads anywhere

One of the main limitations of previous graphic statics applica-
tions is that the external loads must be applied at the periphery
of the structure, meaning there cannot be any “inner leaves” [43].
This is also true for 3D graphic statics, where any inner leaves
or crossing members mean that a topological dual does not exist.
With ¥, point loads can be placed anywhere in the structure in
any direction.

Fig. 20a is an indeterminate truss with four horizontally re-
strained supports (1-4) and one pinned support at the bottom (5).
If a point load were to be applied to the inner, central node of the
structure, a complete ' cannot be constructed as there does not
exist a topological dual for such configuration of edges.

However, in Fig. 20b, a point load of 0.25P is applied to the
central node at an arbitrary angle, from which a new ¥ and ¥+
were found. The new added freedom to place loads anywhere in
the structure, allows investigation of irregular loading scenarios,
asymmetric loading conditions, and potentially incorporate self-
weight loads.

4.4.4. Tributary area

While polyhedral subdivisions and transformations allow gen-
eration of intricate spatial structures, the resulting distribution
of applied loads on the structure does not end up representing
realistic loading scenarios.

Consider the spatial tree structure shown in I of Fig. 21a,
which is designed to support a triangle-shaped roof that weighs P.
Suppose that the points on top and the bases of the structures are
finalised by the design team, and are fixed for the remainder of the
design exploration. As shown in I" of Fig. 21a, the distribution of
applied forces as a result of polyhedral transformations of " often
do not correctly reflect the true tributary areas of the structure.
With the top and the base points fixed, and the correct distribution
of applied loads imposed, the new shape of the design is found
(Fig. 21b).

A designer is typically concerned with rapid shape explorations
during early stages of design. As the design is gradually finalised
and a specific topology of the structure is chosen, the designer can
begin to adjust the design load case of the initial "'+ to a more
correctly calibrated loading scenario to continue developing the
design towards a more realistic version of the initial concept.

4.4.5. Interactive force-driven design
Implementation of the proposed method in an interactive mod-
elling environment allows designers to explore various spatial
structures based on specific force-driven constraints in real-time.
Consider a vertically loaded column in Fig. 22a, with a fully
pinned support at the bottom and a horizontally restrained sup-
port at the top. Any combination of edges in ¥ or cell faces of
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I(a=0.85)

¥(0=0.85)

Fig. 21. (a) A tree structure generated through polyhedral subdivisions and transformations of 1", with a distribution of applied loads that do not reflect the correct tributary
areas; and (b) the same structure with correct distribution of applied loads according to the actual tributary areas, and the subsequently form-found, new tree structure.

¥ can be selected to input specific target force magnitudes. In
general, ¥ for a given force distribution is not always unique, and
is subject to certain geometric constraints such as maximum and
minimum length of edges allowed, and node location constraints
during the form-finding process. Consequently, a design problem
can become over-constrained and an equilibrium solution may not
be found that satisfies all of the input constraints. In such cases,
the converged solution then provides the designer with the closest
solution given the input constraints, and indicates where certain
constraints can be removed or modified. The presented framework
allows designers to interactively set different combinations of con-
straints to explore various equilibrium solutions.

4.4.6. Synthesising polyhedral methods
This last example demonstrates the full potential of force-
driven structural design using disjointed force polyhedra.
Suppose that a design for a roof structure generated through
polyhedral subdivisions is being considered (Fig. 23). Through
polyhedral transformations of ", various equilibrium structures
can be explored, while the faces of I" are inherently constrained

to be planar. This built-in planarity property of I" is ideal for both
fabrication and construction of the geometry without the need of
any additional optimisation processes.

The roof will be placed on six existing columns, therefore no
horizontal reactions are allowed at the base of the roof. Rather
than using straight cable ties to counterbalance the horizontal
thrusts, the designers want to explore a more integrated cable-
net-like design to maximise the visual and spatial experience from
below. Furthermore, the designers want to consider using two
perimeter cables that have constant force throughout their length.
Constant force members in trusses and various other structures are
beneficial in that it allows a single cross section to be used, and the
material is utilised to its full capacity throughout its length [6].

In 2D graphic statics, the construction of constant-force trusses
is intuitive and can be completed procedurally using a circle as a
geometric constraint on the force diagram. However, in 3D graphic
statics, such geometric constraint is not easy to define or impose.
An optimisation technique is mentioned and applied to an example
in [9, p. 148-150]. As the author notes, however, optimising the
face areas of a complete " may not always converge, and is highly
dependent on the initial geometric properties and topologies of
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Fig. 22. Interactive design explorations of a vertically loaded column using various combinations of target force magnitudes for specific members of the structure. Each
example shows: the initial structure with the target force magnitudes; the corresponding ¥+ («); and the form-found ¥.

the cell faces, since the topologies of the cells are not allowed to
change.

Using disjointed force polyhedra, the force distribution in the
cable net can be controlled more precisely; the cell faces corre-
sponding to the perimeter cables of the structure are constrained to
have the same areas. At the same time, the geometry of the primary
compression structure above can be constrained to remain purely

polyhedral with planar faces, which is more ideal for fabrication-
driven constraints.

While similar to other force-constrained form-finding meth-
ods such as FDM and TNA, the presented force-driven design
explorations are based on an exclusively geometric framework
with various built-in polyhedral properties. The designers’ ability
to maintain and impose these built-in polyhedral constraints to
either the entire structure or only specific parts of the structure
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Fig. 23. Combinatorial application of polyhedral design methods for a roof structure with no horizontal reactions. Transformation of 7"+ is used to generate the polyhedral
geometry of the structure and the outer layer of the roof, where the equilibrium and fabrication constraints are dominant. For the cable net, ¥ is used to enforce a

constant-force constraint on the two main cables.

as needed, is a unique feature that is not possible with other
methods.

5. Conclusions

This paper presented a computational framework for disjointed
force polyhedra, which is an extension of 3D graphic statics that
broadens the range of design applications of polyhedral reciprocal
diagrams.

Building upon the previous work on polyhedral reconstruction
methods from face normals and areas, we presented the robust
EGI algorithm that constructs a flexible and versatile datastructure
that is more suitable for the purposes of interactive structural

design. In conjunction with the EGI algorithm, the AP algorithm
is an iterative geometric solver that computes the geometry of the
polyhedra with target face normals and areas. These algorithms,
with previously presented reciprocation algorithm, were synthe-
sised into a hybrid, NDFP datastructure that allows designers to
use disjointed force polyhedra in an interactive way, with the
ability to set a variety of geometric and force-driven constraints at
any point during the design process. Lastly, the UD algorithm was
presented, which extends unified diagram representation method
for disjointed force polyhedra.

Through a series of examples in Section 4, we demonstrated
how disjointed force polyhedra can be used to simplify the visual-
isation of polyhedral force diagrams by eliminating complex faces
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and cells. These examples also showcased new typologies of struc-
tures that can now be explored with disjointed force polyhedra.
Furthermore, we showed how the computational framework for
disjointed force polyhedra can be used independently from, or in
combination with existing design techniques of 3D graphic statics
and potentially other form-finding methods such as FDM and TNA.
Most importantly, these examples presented how polyhedral force
diagrams can now address force constraints, which allows incorpo-
ration of more realistic structural design and engineering criteria,
and enable force-driven graphical method of structural design that
was simply not possible with previous implementations of 3D
graphic statics.
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