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LEARNING OBJECTIVES

Formulate the search for a funicular network in 
compression that is as close as possible, in a 
least-squares sense, to a given target surface 
as a series of optimization problems.
Implement solvers for the different types of 
optimization problems.
Implement this method to optimize freeform 
shapes; and apply this method to evaluate 
the stability of structures under asymmetrical 
loading.

PREREQUISITES

Chapter 7 on thrust network analysis.

CHAPTER THIRTEEN

Best-fi t thrust network analysis
Rationalization of freeform meshes

Chapter 7 introduced Th rust Network Analysis 

(TNA) as a method for designing three-dimensional, 

compression-only equilibrium networks (thrust 

networks) for vertical loads using planar, reciprocal 

form and force diagrams. Th ese diagrams allow the 

high degree of indeterminacy of three-dimensional 

force networks to be controlled such that possible 

funicular solutions for a set of loads can be explored. 

By manipulating the force diagram (through simple 

geometric operations), the distribution of horizontal 

thrusts throughout the network is changed and diff erent 

three-dimensional confi gurations are obtained.

Th ere are infi nitely many possible variations of the 

force diagram, each corresponding to a diff erent three-

dimensional solution for given loads and boundary 

conditions. Th is provides virtually limitless freedom in 

Figure 13.1 (a) The compression-only design for the 
pavilion as form found in Chapter 7, and (b) the new 
(geometrical) proposal
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the design of three-dimensional equilibrium networks, 

but it makes it almost impossible to find the specific 

distribution of forces that corresponds to a specific 

solution, with a specific shape. For example, the 

required distribution of forces to achieve the upwards 

flaring edge of the design proposal depicted in Figure 

13.1b is not obvious, and finding it is by no means 

straightforward.

Therefore, in this chapter, we describe how TNA 

can be extended to find a thrust network that for a 

given set of loads best fits a specific target shape. We 

set this up as an optimization problem and discuss the 

implementation of an efficient solving strategy.

The brief

Chapter 7 described the design of a vaulted, unrein-

forced cut-stone masonry pavilion for a park in Austin, 

Texas, USA, that covers the stage and spectator area 

of a small performance area of 20m × 15m. The client 

has requested modifications to the shape developed in 

Chapter 7 to improve the integration of the pavilion 

into the surrounding landscape and allow access to 

its top surface to provide visitors with alternative 

views of the site and the vault. Although the dramatic 

asymmetry between the two sides of the vault is a key 

feature of the form, the client would prefer a deeper 

opening on the side of the shallow main arch to let 

in more light and make that side of the pavilion look 

more open and inviting.

The original design and the new proposal are shown 

in Figure 13.1. Key features of the new design are thus 

the smoother transition between the landscape and 

the structure on one side, and the flaring edge on the 

other.

We have been asked to determine whether the 

new, geometrically constructed shape is feasible for an 

unreinforced, masonry stone structure.

13.1  TNA preliminaries

Since this chapter describes an extension of TNA, we 

assume the reader to be familiar with its fundamental 

principles as presented in Chapter 7. Here, we briefly 

summarize those mathematical elements, notations 

and conventions of TNA that are required for the 

optimization algorithm.

Let  and   *  be two planar graphs with an equal 

number of edges, m. If  is a proper cell decomposition 

of the plane, and   *  is its convex, parallel dual, then  

and   *  are the form and force diagram of a (three-

dimensional) thrust network G that is in equilibrium 

with a set of vertical loads applied to its nodes, and has 

 as its horizontal projection. Two graphs are parallel 

if all corresponding edges are parallel, and convex if all 

their faces are convex. We call two graphs or diagrams 

reciprocal if one is the parallel dual of the other. The 

force diagram of a thrust network G is thus the convex 

reciprocal of the form diagram of G. A proper cell 

decomposition of the plane divides the plane into cells 

formed by (unbounded) convex polygons such that:

every point in the plane belongs to at least one cell;

the cells have disjoint (i.e. non-overlapping) 

interiors;

any two cells are separated by exactly one edge.

We can describe  as a pair of matrices V and 

C. V = [x|y] is an n × 2 matrix, which contains the 

coordinates in the horizontal plane of the i-th node 

in its i-th row. n is the number of nodes in . C is the 

branch-node matrix: an m × n matrix that contains 

the connectivity information of the graph of  (see 

Section 7.3.2). Note that C is the transpose of the 

incidence matrix of . The edges of , represented as 

vectors, can be extracted from V and C by computing 

the m × 2 matrix E = CV = [u|v], which contains the 

coordinate differences of the i-th branch in its i-th 

row. Therefore, the length of the i-th edge,  l 
i
 , can be 

computed by taking the norm of the i-th row of E. 

L is the m × m diagonal matrix of the vector of edge 

lengths l.  V * ,  C * ,  E * ,  L *  are defined equivalently for the 

reciprocal diagram.

The force densities q of the network are the ratios 

of the lengths of corresponding edges of   *  and :

 Q =  L −1  L * , (13.1)

with Q the diagonal m × m matrix of q.

The nodes of  are divided into two sets, N and F, 

that denote the (non-fixed) free nodes and the (fixed) 

support nodes, respectively. The heights of the free 

nodes of the thrust network G described by  and   *  

are computed as:
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  z 
N
  =  D  

N
  −1 (p −  D 

F
   z 

F
  ), (13.2)

with  D 
N
  and  D 

F
  the columns of D =  C  

N
  T
  QC corre-

sponding to the  n 
N
  free and  n 

F
  fixed nodes, respectively. 

p is the vector of external loads applied at the free 

nodes and  z 
F
  are the heights of the fixed support nodes.

13.2 Formulation of the problem

Let G be a thrust network generated from a pair of 

reciprocal diagrams  and   * , and S a target surface. 

Keeping the form diagram  fixed, our objective is to 

optimize the force diagram   *  such that the network 

G is as close as possible, in the least-squares sense, to 

the target S. The variables we are optimizing for are 

the nodes  V *  of the force diagram. Formally:

  argmin  
      V  * 

   
 

   ∑ 
i

   

 

    ( z 
i
  −  s 

i
  ) 2  (13.3)

  subject to   *  is the convex reciprocal of , (13.4)

where i runs over the nodes of  and  z 
i
  and  s 

i
  are, 

respectively, the height of the network and the surface 

at the i-th node.

Note that the heights  z 
i
  do not directly depend 

on the variables  V * . However, we can compute the 

heights  z 
i
  from the force densities q using equation 

(13.2). The energy is thus a function of q:

 f  (q) = ( z 
N
 (q) −  s 

N
  ) 2 . (13.5)

Therefore, to find the best-fit solution, we must search 

for the force densities q that minimize the energy 

according to equation (13.5) and allow for a force 

diagram   *  that satisfies constraint, expressed in 

equation (13.4):

 argmin ( z 
N
 (q) −  s 

N
  ) 2  (13.6)

 q

 subject to   *  is the convex reciprocal of .

In the following sections, we describe the strategy for 

solving this problem.

13.3 Overview

Starting from a given target surface S, the solving 

procedure consists of two main steps.

1. Generate a starting point:

a. choose a form diagram;

b. generate an initial force diagram;

c. optimize the scale of the initial force diagram.

2. Find a best-fit solution by repeating the following 

two-step procedure until convergence:

a. find the force densities q that minimize energy 

according to equation (13.6), ignoring the 

equilibrium constraints;

b. for the current force densities, find the force 

diagram   *  that is as parallel as possible to the 

form diagram.

We discuss each of the steps and substeps in detail in 

the following sections.

13.4 Generate a starting point

In this section, we discuss the generation of a starting 

point for the iterative part of the optimization process. 

First, we choose a form diagram and generate an 

initial force diagram, and then optimize the scale of 

this force diagram.

13.4.1 The form diagram

In order to be able to obtain a well-fitting thrust 

network for a given target, a force diagram must be 

chosen that is based on the target’s features. Our 

choice of form diagram for the target surface described 

in the brief is depicted in Figure 13.2b. Note that in 

comparison with the original diagram of Chapter 

7, we have added force paths that gradually divert 

horizontal forces to the supports before they hit 

the open edges. This provides finer control over the 

equilibrium of these edges and will, for example, allow 

the upward flaring edge to develop.
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13.4.2 An initial force diagram

To generate an initial force diagram, that is, a convex 

reciprocal of the form diagram, we use an iterative 

procedure. We start with the centroidal dual of the 

form diagram, rotated 90° as depicted in Figure 13.3a. 

The form diagram’s centroidal dual is the dual of which 

the vertices or nodes coincide with the centroids of 

the faces of the form diagram. The corresponding 

edges of the form diagram and this rotated dual are 

generally not parallel. Therefore, at each iteration of 

the procedure we perform the following calculations. 

First, we compute a set of target directions  t 
i
  for the 

edges of the new force diagram by averaging the direc-

tions of the (fixed) form diagram and the current force 

diagram:

  t  
i
  *  =  (    e 

i
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i
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with  e 
i
  the i-th row of E, representing the i-th edge 

of the form diagram, and  l 
i
  its length; and, similarly,  

e  
i
  *  the i-th row of  E * , representing the i-th edge of 

the current force diagram, and  l  
 i
  *  its length. Note that  

e 
i
 / l 

i
  is constant, since the form diagram is fixed, and 

thus does not need to be recalculated at each iteration. 

Using these target vectors, the edges of the new, ‘ideal’ 

(i.e. parallel) force diagram are thus:

  e  
i
  *  =  l  

i
  *  t  

i
  * . (13.8)

Note that this new diagram cannot be properly 

connected, since its edges have the same lengths but 

different directions than before. Therefore, we search 

for a diagram that is similar to the ideal one, but 

connected, by solving the following minimization 

problem:

 argmin   ∑ 
 

   

 

    ( e  
i
  *  −  l   

i
  *  t  

i
  *  ) 2  (13.9)

 V*

 subject to  V  
0
  *
  =0 (13.10)

Note that without the constraint in equation (13.10), 

there are infinite graphs that minimize energy in 

equation (13.9), all identical up to a translation. Fixing 

a single node ( V  
0
  *
  ) to an arbitrary value makes the 

solution unique.

We repeat these steps until a convex reciprocal of 

the form diagram is found. The centroidal dual of the 

form diagram and the initial force diagram derived 

from it are depicted in Figure 13.3.

(a) (b)

Figure 13.2 (a) The form diagram of the original design, and (b) the modified form diagram used here.
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13.4.3 Scale optimization

In TNA, we can change the depth of a funicular 

network simply by uniformly scaling all horizontal 

forces, which is equivalent to uniformly scaling the 

force diagram. Higher and lower thrusts result in 

shallower and deeper solutions, respectively. Therefore, 

before starting the optimization process, we can reduce 

energy according to equation (13.5), without changing 

the distribution of forces, simply by changing the scale 

of the force diagram. The optimal scaling factor r is 

obtained by minimizing:

 argmin   ( z − s )  2  (13.11)

 
r

 subject to Dz − r p = 0, (13.12)

this is a linear least-squares problem subject to linear 

equality constraints and can be solved using the method 

of Lagrange multipliers. We rewrite the problem intro-

ducing additional variables, one for every equality 

constraint, obtaining the following Lagrange function:

Λ ( z, r, l )  =   ( z − s )  2  +  l T  ( Dz − r p ) 

 =  z T z − 2 z T s −  s T s +  l T   ( Dz − r p )  (13.13)

with l the Lagrange multipliers. The unique minimum 

of the Lagrange function is the solution we are looking 

for. Setting the partial derivatives of Λ equal to zero 

leads to the following linear system, the solution of 

which is the scaled thrust network and the scaling 

factor r:

 

⎡2 0 DT ⎤
⎢0  −  l T  0 ⎥
⎣D − p 0 ⎦  

⎡z ⎤
⎢r ⎥
⎣l⎦

 

=

 ⎡2s ⎤
⎢0 ⎥
⎣0 ⎦  

(13.14)

Figure 13.4 shows the scaled force diagram and 

corresponding thrust network in comparison with the 

target surface.

(a) (b)

Figure 13.3 (a) The centroidal dual of the form diagram, and (b) an initial force diagram, based on the centroidal dual

Figure 13.4 By uniformly scaling the force diagram we 
obtain a funicular network that is closer to the target surface
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13.5 Iterative procedure

In the previous section, we have generated an 

initial pair of reciprocal diagrams, and rescaled the 

force diagram such that the corresponding thrust 

network is, for that distribution of thrusts, as close 

as possible to the target. Rescaling the force diagram 

has changed the depth of the funicular solution, 

but the overall shape has stayed the same, because 

the proportional distribution of thrusts remained 

unchanged.

During the following iterative procedure, we redis-

tribute the thrust forces and thus change the shape 

of the thrust network until a better fit of the target is 

found. Each iteration of this procedure consists of two 

steps. In the first step, we optimize the force densities 

without taking into account the reciprocity constraint 

in equation (13.6) on the force diagram. In the second 

step of each iteration, we search for a force diagram 

that generates these optimized force densities and is 

as parallel as possible to the form diagram. We repeat 

these steps until a solution is found with optimal force 

densities and parallel diagrams.

13.5.1 Force densities optimization

To optimize the force densities, we minimize energy 

according to equation (13.5) using a gradient descent 

algorithm (Nocedal and Wright, 2000). In short, this 

means that we move from the current force densities 

to the next using

  q t+1  =  q t  − l  f  (  q t  )  (13.15)

with  f (q) the direction of maximum increase or 

decrease of f at q (i.e. the gradient) and l a step length 

that satisfies the strong Wolfe conditions (Nocedal 

and Wright, 2000).

The gradient of f can be efficiently evaluated in 

closed form:
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where  Z 
N
  and  S 

N
  are diagonal matrices corresponding 

to  z 
N
  and  s 

N
  respectively.

Using equation (13.2), the gradient of  z 
N
  can be 

written as
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where we used

  D 
F
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F 
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N
  T
  QC [   0      z 
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    ] . (13.18)

Finally, ∂ D  
N
  −1 /∂q can be rewritten using the identity 

(Petersen and Pedersen, 2008)
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Applied to  D  
N
  −1  this gives
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where we used
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Substituting equations 13.20 and 13.17 in 13.16, and 

using equation 13.2, we get

 f (q) = −2   (  z 
N
  − s )  T 
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This gives the final expression of  f ( q ) ,

   f ( q )  = 2 (  Z 
N
  −  S 

N
  )  D  

N
  −1  C  

N
  T
  Cz. (13.23)

In the evaluation of   f ( q ) , we need to compute  D  
N
  −1 . 

To avoid computing the dense inverse explicitly, we 

can compute  D  
N
  −1  C  

N
  T
  Cz indirectly by solving the equiv-

alent sparse linear system:

  D 
N
  x =  C  

N
  T
  Cz. (13.24)

Since  D 
N
  is symmetric and positive definite, we can 
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Figure 13.5 Result of the optimization process: the best-fi t funicular network for the given target surface and loads
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efficiently solve the system using the sparse Cholesky 

decomposition (Nocedal and Wright, 2000). We first 

compute the Cholesky decomposition of  D 
N
 :

  D 
N 

 = L L T  (13.25)

with L a lower triangular matrix. Then, we solve the 

system of equations

 Ly =  C  
N
  T
  Cz (13.26)

for y. This is done using forward substitution, since L 

is lower triangular. Finally, we find x by solving:

  L T x = y. (13.27)

13.5.2 Force diagram optimization

Given the current optimized force densities q, we 

search for the force diagram   *  that is as parallel as 

possible to the form diagram while generating these 

force densities.

This procedure is similar to the one discussed in 

Section 13.4. We first compute a set of target direc-

tions for the edges of   *  using equation 13.7. Then, 

we generate target lengths for the edges of   *  using 

equation (13.1),

  l   
i
  *   =  q 

i 
  l 
i
  (13.28)

Now we know the directions and lengths of the 

edges of the ideal   *  that generates the current force 

densities and is parallel to the form diagram. As 

before, this graph will generally not be connected. To 

compute a graph that is similar to the ideal one, but 

connected, we solve the same minimization problem 

as in equation (13.9).

The final result of the optimization process is 

shown in Figure 13.5. The figure depicts the scaled 

reciprocal diagram (Fig. 13.5a), which was the starting 

point for the optimization, and the final, optimized 

diagram (Fig. 13.5b). The thicknesses of the branches 

(Fig. 13.5c) visualize the distribution of forces in the 

thrust network, and the spheres (Fig. 13.5d) represent 

the deviation from the target surface.

13.6 Basic coding

Figure 13.6 is a flowchart that gives an overview of a 

complete implementation of the algorithm discussed 

in the previous section.

    

No

START

Define target surface S
and form diagram 

Generate loads p

Generate a starting point

Generate centroidal dual V*

Compute initial reciprocal V*

Rescale reciprocal V*

Optimize force diagram V*

V*Force diagram 

Convergence reached?
k < k

max

Yes

Optimize force densitites q

Iterative procedure

END

Figure 13.6 Flowchart of a complete implementation
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13.7  Assessment of the proposed 
design

A masonry structure is considered safe if a network of 

compressive forces contained within (the middle third 

or kern of ) the vault’s geometry can be found for all 

possible loading cases (see Chapter 7).

For most masonry structures, the dominant loading 

case governing their design is self-weight. Th erefore, 

to evaluate the feasibility of the proposed design, we 

fi rst use the algorithm described in Section 13.5 to 

fi nd the best-fi t thrust network for the self-weight 

of the design, off set the solution with the thickness 

used to calculate the self-weight, and then use the 

algorithm to search for thrust networks contained 

within the kern of the new geometry for other loading 

cases.

13.7.1 Self-weight

We can calculate the weight per square metre of the 

proposed design using a chosen thickness and the 

weight of the stone: 0.3m × 2,400kgm-3 = 720kgm-2. 

Th e equivalent distribution of point loads on the nodes 

of the form diagram according to their respective 

tributary areas on the target is depicted in Figure 13.7. 

Note that the compression-only solution captures the 

design intent of the client ve ry well and allows for the 

realization of the key features of the shape.

13.7.2 Additional live loads

For the further evaluation of all additional load cases, 

w e defi ne the geometry of the vault by taking the 

best-fi t thrust network determined in the previous 

step and setting it off  by 0.15m on both sides (Fig. 

13.8). As discussed, the structure can be considered 

safe if we can fi nd a thrust network within the kern 

of its geometry for all additional loading cases (see 

Section 7.1.3).

In a real project, there are many diff erent, additional 

loading cases and they should all be considered. 

However, here, we only discuss the case resulting 

from the allowed public access to the pavilion’s 

surface.

Figure 13.7 The self-weight of the structure distributed 
over the nodes according to their tributary areas

Figure 13.8 The new shell defi ned as an offset from the 
best-fi t thrust network (blue) for the structure’s self-weight

Figure 13.9 The self-weight of the vault combined with a 
hugely exaggerated additional point load
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Typical values are 5.0kNm-2 for patch and 7.0kN 

for point loads. In this example, a point load is applied, 

because it has a more noticeable effect on the vault. 

Furthermore, a much higher point load of 100kN is 

used, to further emphasize the effect. Note that this is 

roughly equivalent to Godzilla standing on one leg on 

the viewing platform. The location of the additional 

load is depicted in Figure 13.9.

diagram that radiates from the point of application 

of the additional load to the supports (blue in Figure 

13.10).

With this new form diagram and combined loads 

(self-weight and point load), we repeat the best-fit 

search to find the best-fit funicular network to the 

target surface. The result of this search is depicted 

in Figure 13.11. Note that, for such an extreme 

loading case, it is sufficient that the thrust network 

stays within the entire section of the vault (not just 

the middle third), although this would represent an 

equilibrium state at the onset of collapse. If such a 

solution cannot be found, the vault’s thickness should 

be modified; for example, by iteratively searching for 

the bounding box of all loading cases.

13.8 Conclusion

This chapter has shown how to find a thrust network 

that best fits a given target surface for a given set of 

loads, formulate this search as a series of optimization 

problems, and use appropriate and efficient solving 

strategies for each of them.

The presented technique was applied to the 

assessment of the structural feasibility of a vaulted 

masonry structure with a complex, geometrically 

designed shape (Fig. 13.4). This entailed the search 

for a best-fit thrust network for the dominant loading 

case of self-weight, the derivation of a new geometry 

from this result, and the assessment of the safety of 

the new geometry in all other loading cases.

Another important application of the technique 

described in this chapter is the equilibrium analysis 

of historic masonry vaults with complex geometry, 

such as the sophisticated nave vaults of the Church 

of Santa Maria of Bélem at the Jerónimos monastery, 

completed in the early sixteenth century, shown on page 

156. The approach to such an analysis is very similar 

to the previously discussed assessment of a design 

proposal. Provided that sufficient information about the 

geometry of the structure in its current state is available, 

the target surface can be taken as the surface that lies at 

the middle of the structure’s section, and an appropriate 

form diagram can be derived from the structure’s rib 

pattern and stereotomy. Otherwise, the procedure is 

exactly the same. The results for the nave vaults of the 

Jerónimos monastery are depicted in Figure 13.12.

Figure 13.10 To find a best-fit funicular network for the 
combination of self-weight and additional live load(s) we 
draw a new form diagram that provides appropriate force 
paths

Figure 13.11 Comparison of the best-fit thrust network 
corresponding to the original force pattern (blue) and to the 
modified force pattern (black). The modified pattern clearly 
produces a much better fitting result

In order to find a compression-only force network 

that fits within the newly determined kern of the vault, 

we simply run the algorithm as before using point 

loads that represent the combination of self-weight 

and the additional loading.

However, as before, it is important that we start 

with a form diagram that provides force paths along 

which the loads can ‘flow’ to the supports. Therefore, 

we superimpose a force pattern on the previous form 
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Key concepts and terms

A graph of a network of branches and node is 

a drawing that visualizes the connectivity of the 

network.

A planar graph is planar if it can be drawn on a sheet 

of paper without overlapping edges; in other words, if 

it can be embedded in the plane.

A dual graph is a graph with the same number of 

edges as the original, but in which the meaning of 

nodes and faces has been swapped.

The centroidal dual of a graph is the dual of which 

the vertices or nodes coincide with the centroids of 

the faces of the original graph.

The convex, parallel dual is a dual graph with convex 

faces and edges parallel to the corresponding edges of 

the original graph.

Reciprocal diagrams are two planar diagrams or 

graphs that are said to be reciprocal if one is the 

convex, parallel dual of the other. See Chapter 7 for 

an alternative definition.

Line search strategy is one of the two basic iterative 

approaches to finding a local minimum of an objective 

function; the other is trust region. It first finds a 

descent direction along which the objective function 

reduces and then computes a step size that decides 

how far it should be moved along that direction. The 

step size can be determined either exactly or inexactly.

A gradient descent algorithm is a type of line search 

in which steps are taken proportional to the negative 

of the gradient of the objective function at the current 

point.

Strong Wolfe conditions ensure that the step length 

reduces the objective function ‘sufficiently’, when 

solving an unconstrained minimization problem 

using an inexact line search algorithm. Strong Wolfe 

conditions ensure convergence of the gradient to 

zero.

Closed form means that a mathematical expression 

can be expressed analytically in terms of a finite 

number of certain well-known functions.

Cholesky decomposition is used in linear algebra for 

solving systems of linear equations. It is a decompo-

sition of a Hermitian, positive-definite matrix into the 

product of a lower triangular matrix and its conjugate 

transpose.

Exercises

Define a target surface and draw a form diagram 

according to the features (e.g. ribs, open edges) of 

the surface – for instance, within the plan of the 

standard grid (Fig. 6.12). Make sure to provide 

force paths that allow those features to develop.

For a simple target surface, draw a form diagram 

and an initial force diagram and compute and draw 

the corresponding thrust network. Try to manually 

(b) (c)(a)

Figure 13.12 (a) Rib and stereotomy pattern of the nave vaults of the Jerónimos monastery. Resulting (b) form diagram with 
sizing proportional to the forces in (c) the force diagram
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modify the force diagram such that a better fit of 

the simple target is obtained.

Compare the outcome of best-fit optimizations 

for the same target surface, using different force 

diagrams (i.e. allowed force flows).

For a simple target surface and a form diagram 

corresponding to the standard grid (Fig. 6.12), 

generate an initial force diagram and corresponding 

thrust network as explained in Chapter 7 consid-

ering only the structure’s self-weight.

Calculate the squared sum of the vertical distances 

between the nodes of the thrust network and the 

nodes of the target, as a function of the force 

densities in the edges of the network. Calculate 

force densities that make this squared sum smaller 

or, even better, as small as possible. Attempt to 

generate a force diagram with edges parallel to the 

form diagram and the length of the edges equal to 

the calculated force densities.

Increase the load on one of the nodes of the 

network. Draw the thrust network for the current 

force diagram. Repeat the steps of the previous 

exercise until a network is found that is close to 

the target again.

The architectural program for the Texas shell 

has changed. The architect now envisages a shell 

supported on the four corners and one central 

support. Attempt to generate such a target surface 

and draw a form diagram according to the features 

which include ribs and open edges. Hint: make 

sure to provide force paths that allow those features 

to develop.

Further reading

Numerical Optimization, Nocedal and Wright 

(2000). This book describes efficient methods in 

continuous optimization, including the gradient 

descent algorithm in Section 13.5.
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