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ABSTRACT: This paper presents a novel method for computer-aided
equilibrium modelling of structures in early design stages. Based on the force
density method, an iterative procedure is developed that enables the generation
of spatial kinematic pin-jointed structures that are in equilibrium close to a
given input geometry, while satisfying additional constraints on both geometry
and forces. This method forms the core of an interactive form-finding process
that consists of alternating steps of modelling and computational optimization.
In each modelling step, the user is able to modify geometry, topology, external
forces and constraints of the structure. In each optimization step, equilibrium
is re-established while respecting the user-defined constraints. A prototype has
been implemented within an existing CAD software package, and three
examples illustrate the use of the presented method, ranging from a playful
exploration of surprising shapes to the rationalization of structural geometry.
The method allows to intuitively explore the formal freedom of spatial
equilibrium shapes with mixed compression and tension forces, within hard,
user-defined constraints. In conclusion, it is claimed that by providing
interactive equilibrium modelling methods, the design of new, surprising
spatial forms with efficient structural behaviour is facilitated.

Key Words: computer-aided design exploration, constrained form finding,
force density method, strut-and-tie models, real-time structural design tools
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1. INTRODUCTION
Architectural freeform design and construction, based
on powerful CAD software, has a tradition of more
than 15 years: the icon of freeform design, the
Guggenheim museum in Bilbao, Spain by Frank
Gehry, opened in 1997. Since then, one of the main
research objectives in the field of computational
design has been focused on bridging the gap between
formal design freedom and hard technical constraints.
Such constraints mainly arise from limitations in
construction, fabrication and structural behaviour.
Strong advances have been made in the field of
geometry rationalization and fabrication optimization
[1], while the concepts for the integration of structural
constraints remain fragmented. Recently, various

approaches in the conceptual framework of
morphogenesis have been developed, combining
parametric models with FEM analysis modules and
genetic algorithms [2], or combining FEM with
gradient-based optimization [3]. In this paper, a novel
computational design method, rooted in the tradition
of form finding using pin-jointed truss models, is
presented. 

Historically, pin-jointed truss models have played
an important role in design processes of technically
and aesthetically innovative buildings. Great structural
designers used graphic statics as well as physical
models for the generation equilibrium shapes. Graphic
statics has been used by, for example, Gustave Eiffel,
Antoni Gaudí and Robert Maillart [4]. Form finding
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based on physical models has been applied by, for
example, Christopher Wren, Antoni Gaudí, Frei Otto
and Heinz Isler [5]. Today, those methods are still used
occasionally in early design stages; for example, Jörg
Conzett used graphic statics for the design of the
second Traversiner Steg in Grisons, Switzerland [6],
and Laurent Ney used hanging models in the design of
a curved suspension bridge in Kortrijk, Belgium [7]. 

Since the early 1970s, various computational
methods have been developed for form finding of pure
compression or pure tension structures; the force
density method and dynamic relaxation, together with
their non-linear extensions, constitute the fundamental
approaches [8]. Thrust Network Analysis combines
concepts of graphic statics with approaches from the
force density method for the analysis and design of
unreinforced masonry structures [9]. Recently, the
force density method has been extended for the form
finding of mixed compression and tension structures
[10]. Kemmler mentions the statically-geometrically
coupled method for general form-finding purposes,
which is internally used in the office Schlaich,
Bergermann & Partner, without describing its
technical details. A spatial arch bridge and cable-
stayed stadium roof are presented as applications of
the method [11]. 

Through the availability of powerful interactive
modelling environments, various computational form-
finding techniques have been implemented as
modelling methods, addressing problems of real-time
user interaction: Kilian proposed a structural modelling
system based on particle spring systems [12], Rippmann
et al. presented a design method for compression vaults
based on Thrust Network Analysis [13], and Tachi
proposed a design process for tensegrity structures
derived from the force density method [14].

This paper presents a novel computer-aided
modelling approach for spatial pin-jointed structures
with mixed compression and tension forces.
Furthermore, the method allows to directly modify the
equilibrium form, and to impose constraints on both
inner forces and geometry during the design process.
The paper is structured as follows: Section 2
summarizes the concepts of graphic statics, the
relevance of pin-jointed models for design and
construction, and the basics of the force density
method; Section 3 describes the core form-finding
method of the proposed design process in full detail;
Section 4 illustrates a prototypical implementation of
the method within the CAD software package
Rhinoceros [15]; and, finally, Section 5 presents three
applications of the method.

2. BACKGROUND
Graphic statics is an important historic reference of an
intuitive approach to structural design for pin-jointed
or truss models, with direct control of forces and
geometry. Strut-and-tie models represent in an
exemplary fashion the scientific link between truss
model and construction detail. The force density
method and its extensions are the foundation of the
non-linear computational form-finding method
presented here.

2.1. Graphic statics

Graphic statics has been developed in the mid-19th

century as method for structural analysis and design by
Culmann [16]. Based on the concepts of vector
equilibrium and reciprocal diagrams, the method
enables to graphically calculate the inner forces of a
planar truss structures by the construction of force
diagrams. Furthermore, the method allows to find
efficient structural forms using a funicular polygon,
considering constraints on forces and geometry. The
free nodes of the funicular are constrained to the lines of
action defined by the direction and position of the
externally applied load vectors; the force diagram
allows to directly control the inner forces. Recently,
different approaches have been developed to extend the
design capabilities of graphic statics to spatial systems.
For example, Laffranchi [17] proposed a method for the
determination of spatial funicular polygons for the
design of curved bridges by introducing planes as
constraints for the free nodes, Lachauer [18] combined
graphic techniques with dynamic relaxation for spatial
bridge design. Block [9] extended the concept of the
funicular polygon to funicular surface networks with
fixed projection. As in graphic statics, the free nodes are
constrained to the lines of action of the load vectors, the
forces are controlled directly through force diagrams.

2.2. Strut-and-tie modelling

Funicular polygons have wide applications in the early
design of efficient, bending-free structures, beyond the
typology of tension structures. Truss models often
constitute a close link between form and construction
detail. Based on the conceptual framework of
plasticity theory, truss models are applied as strut-and-
tie models [19] or stress-fields [20] in the design and
constructive detailing of reinforced concrete. Schlaich
presented the detailed design of a cast steel component
for the anchorage of a bridge deck in concrete based
on a truss model [19]. For masonry structures, thrust
lines and thrust networks allow for the design of the
stone geometry of masonry vaults [9].
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2.3. Force density method 

The force density method has been developed in the
early 1970s by Linkwitz and Schek [21]. In its basic
form, as described in Section 2 of [22], the force
density method allows the form finding of equilibrium
networks with defined topology for a given set of
loads and support points. The key concept of the
method is the replacement of inner forces and lengths
of branches by force-length ratios, called force
densities, in order to obtain a linear system of
equations with a unique solution for the unknown
coordinates of the free nodes. 

For a given network with m branches and ns nodes,
the connectivity of the branches is described by a
branch-node matrix Cs with dimensions m × ns. If
branch K connects nodes i and j, then the element (k, i)
of Cs equals +1, and element (k, j) −1; all other
elements are 0. The columns of the branch-node
matrix are ordered such that one can define two sub-
matrices of Cs = [C Cf], C corresponding to the free
nodes, and Cf corresponding to the support nodes (for
an illustration of Cs, see [22]). Each free node is
interpreted as point i with coordinates (xi, yi, zi); the
coordinates of the fixed support points are (xfi, yfi, zfi).
These coordinates constitute the free coordinate
vectors x, y, z of length n and the fixed coordinate
vectors xf, yf, zf of length nf, hence ns = n + nf. 

The force densities are defined as the force-length
ratios , forming the vector q of length m. For a set
of force densities q and nodal loads px, py, pz, the
coordinates x, y, z of the free nodes are uniquely defined
and obtained by solving one system of linear equations. 

Linkwitz and Schek furthermore describe several
ways to extend the force density method using
iterative procedures in order to incorporate additional
constraints, such as defined branch lengths or force
values [21–23]. In [23], two conceptually different,
iterative procedures for the optimization of given
network geometries are distinguished: the
“Newtonverfahren” (“Newton approach”) and the
“Ausgleichungsansatz” (“Variational approach”). 

In the “Newton approach”, the parameter space is
constituted by the coordinates of the free nodes; the force
density method is used to compute the network geometry
atiteration t + 1 based on its previous state at iteration t:

(Δx, Δy, Δz) = gN (xt, yt, zt) (1)
(xt+1, yt+1, zt+1) = (xt + Δx, yt + Δy, zt + Δz) (2)

In the “variational approach”, the parameter space
is constituted by the force densities and the free node

coordinates; both force densities and network
geometry at iteration t+1 are calculated based on their
previous states at iteration t: 

(Δq, Δx, Δy, Δz) = gV (qt, xt, yt, zt) (3)
(qt+1,xt+1, yt+1, zt+1)= (qt + Δq, xt+ Δx, yt+ Δy, zt+ Δz) (4)

Both methods work well for the optimization of
network geometries that are close to an equilibrium
state purely in compression or tension. In the next
section, the latter approach is adopted for design
purposes, allowing to find equilibrium networks close
to a given input geometry that consist of a
combination of compression and tension branches,
while imposing additional constraints on form and
forces.

3. METHOD
The presented method is the technical core of an
interactive form-finding approach for pin-jointed
structures within a CAD environment. The design
process consists of alternating steps of user
interaction with the model and computational
optimization (Fig. 1). In each modelling step, the user
is able to modify network topology and geometry, and
external forces, or to apply constraints on force
densities and the free nodes’ coordinates. After this,
the structure is generally no longer in equilibrium, or,
alternatively, the imposed constraints are not satisfied.
The computational optimization method iteratively
minimizes residual forces through redistribution of
inner forces and through changes of the geometry,
with respect to the user-defined constraints. In
general, the optimization method converges to an
equilibrium state (all residual forces are below the
chosen tolerance) if the user-defined constraints are
feasible. This alternating process of modelling and
optimization is repeated until the equilibrium state of
the model satisfies external constraints, such as for
instance functionality or spatial and aesthetic
qualities, at which stage the form-finding process
terminates.

Inspired by the concepts of graphic statics,
constraints can be imposed both on force densities
(hence implicitly on the forces) as on the nodes’
coordinates. Force density constraints are defined as
lower and upper bounds qLB and qUB. For a set of
constrained force densities q̂, the condition qLB ≤ q̂ ≤
qUB is true. Each node that is not defined as support
node, can either be geometrically free, constrained to a
line or a plane, or fixed in 3D space. 

q f
li
i

i
=



For a given threshold value ε, the computational
optimization process works as follows:
1. Calculate a set of constrained force densities q̂0

from the initial network geometry x0, y0, z0

(Section 3.1);
2. Calculate the nodal residuals r and the gradient

(Δq̂, Δx, Δy, Δz) with respect to the constraints
(Sections 3.2 and 3.3);

3. Update the force densities q and network
geometry x, y, z; and

4. If, ||r|| > ε, return to step II), and if ||r|| ≤ ε, the
algorithm terminates

A necessary condition is that the model forms a
mechanism, and the support nodes can take reaction in
x-, y- and z- direction, which, after Timoshenko [24],
is the case if the following inequality is true: 

m < 3n. (5)
3.1. Initial step

First, the coordinate differences u, v, w per branch are
calculated:

(6)

Based on the vectors u, v, w, their diagonal matrices 
U, V, W are constructed. This allows to define the
equilibrium matrix A with dimensions 3n × 3m:

Together with the vertically stacked load vector 

(8)

the vector of nodal residuals r for a given set of m
forcedensities q is then formulated as

r = Aq − p. (9)

The system of equations (9) has m unknowns and
3n equations, and because of (5), it is thus
overdetermined. The goal is to find a set of initial force
densities q0 that minimizes the initial nodal residuals
r0 for the given initial geometry, which can be
formulated as a linear least square problem:

(10)

for which the solution can be written analytically using
normal equations:

(11)
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Figure 1. Flow chart of the form-finding process consisting of alternating user-driven modelling steps and computational
optimization steps that re-establish equilibrium.
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3.2. Constraints

Inspired by an approach for geometric modelling
developed by Bouaziz et al. [25], constraints are
implemented using projections. In the first step of the
iterative method, the constraints on the force densities,
given as lower and upper boundaries qLB and qUB, are
imposed on q0 by projecting them on the boundaries of
the constrained set, if at least one constraint is violated
(Fig. 2). Analytically, the constrained set of initial
force densities q̂0 is defined as:

(12)

In each iteration step, the residual vector r is
computed from q, x, y, z, i.e. Equations (6–9), and r is
decomposed element-wise in “unconstrained”
components rU and “constrained” components rC, such
that r = rU + rC.

The idea is to resolve the “free” components rU by
changing the geometry according to Δx, Δy, Δz, and to
resolve the “constrained” components rC by altering
the force densities according to Δq. In this section, the
decomposition r = rU + rC is explained. In Section 3.3,
the computation of the gradient (Δq̂, Δx, Δy, Δz) from
rU and rC is shown.

Each node that is not a support node, can either be
free, constrained to a line, constrained to a plane, or
fixed in space. Initially, all geometric constraints have

to be satisfied by the model, thus a node that is
constrained to a plane has to lie on this plane before
the optimization process starts. For a given node i,
depending on its degree of constraint, the
corresponding residual ri is decomposed as follows:
a. If node i is a free node, a global weighting factor

0 > α > 1 is introduced to balance change of
geometry and change of inner forces, so rUi = αri,
hence rCi = (1 – α)ri (Fig. 3a).

b. If node i is constrained to a line Γ, rUi is the
orthogonal projection of the residual ri onto the
line. Therefore, the projection matrix PΓ is
formed based on the unit vector d of the line’s
direction: PΓ = ddT. Then, rUi = PΓri, and rCi = ri –
PΓri (Fig. 3b).

c. If node i is constrained to a plane Ψ, rUi is
obtainedby an orthogonal projection of the
residual ri onto the plane. Therefore, the
projection matrix PΨ is formed based on an
orthonormal basis d1 and d2 (two orthogonal unit
vectors lying within the plane Ψ): PΨ =
[d1d2][d1d2]T. Then, rUi = PΨri, and rCi = ri – PΨri
(Fig. 3c).

d. If node i is defined as a fixed node, the node
should not move at all during the form-finding
process, so the “free” component vanishes, rUi = 0,
hence rCi = ri (Fig. 3d).

3.3. Gradient

Based on the decomposition r = rU + rC described in
the previous section, the computation of the constraint
gradient (Δq̂, Δx, Δy, Δz) is straightforward. The free
components rU are used to compute “allowed” changes
of the nodal positions within the geometric constraints
using a stiffness k:

(13)

Veenendaal and Block [8] have summarized a
variety of different definitions of stiffness matrices
used in form finding. Since this method is not counting
on any material properties, only “geometric” stiffness
is taken into account. In order to reduce the
computational cost, the stiffness k is implemented as a
lumped geometric stiffness vector, similar as proposed
by Barnes [26]. Here, the following definition for k as
unitized, lumped geometric stiffness is introduced:

(14)
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Figure 2. The diagram shows the imposing of the lower and
upper bounds qLB and qUB on the force densities q for a two-
dimensional case. The red dots represent states of q that are
not within the bounds, and their projection bounded states

q̂ represented as green dots.
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with element ki having a value of +1 if the sum of
forces in the adjacent branches of node i is greater than
0 (“tension-dominant” node), and −1 if the sum of
forces in the adjacent branches of node i is smaller
than 0 (“compression-dominant” node). Figure 4
illustrates the idea behind this definition for an
unloaded node. For tension-dominant nodes, the
residual points towards a close equilibrium position;
for compression-dominant nodes, the residual points
away from a close equilibrium position, so in this case
the direction of the residual is flipped by the
multiplication with −1. 

The matrix L is constructed from the branch lengths
along its diagonal, and is calculated as

(15)
The remaining “constrained” components rC of the

residual vector r are resolved with Δq, for which the
following system of equations is formulated:

rC = AΔq. (16)
Since A has dimensions 3n × m, and assumption (5)

is true, the system of equations (16) is overdetermined,
so Δq is computed as linear least-square
approximation:

Δq = min ||AΔq − rC||2, (17)
whose solution can be written analytically using
normal equations:

Δq = (ATA)−1ATrC. (18)
In order to impose the force density bounds qLB and

qUB during the iterative process, the bounded force
density differences Δq̂ are calculated as follows:

. (19)

3.4. Implementation

To set up an interactive computer-aided design
process, a prototype has been implemented within the
CAD software Rhinoceros [15], which is a tool,
specifically developed for 3D freeform design. The
build-in scripting language IronPython [27] with the
additional open-source library NumPy [28] has been
used for the linear algebra computations. Linear least
square problems, as equations (10) and (17), have been
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Figure 3. Constraint decomposition of residual ri if the node i is: (a) free node, (b) constrained to a line Γ, (c) constrained to a
plane Ψ, and (d) fixed.
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solved with the function numpy.linalg.lstsq. The
orthonormal basis of planes representing node
constraints is obtained by the scripting command
rhinoscriptsyntax.SurfaceFrame. For solving the
iterative process, an explicit Runge–Kutta method
with adaptive step size has been used, as described by
Kiusalaas [29].

A pin-jointed model with applied external forces is
represented by a set of lines and points in the 3D
drawing space (Fig. 5), constraining objects such as
lines and planar surfaces are modelled on a separate
layer. Geometric constraints on the nodes are modelled
with points with colours corresponding to their
constraining objects (e.g. the points coloured in cyan
are constrained to the cyan plan in Figure 5). Force
density constraints are modelled with coloured
branches; a table relates branch colours to the lower
and upper boundaries qLB and qUB.

4. DESIGN EXAMPLES
For all examples presented below, the threshold value
is defined as ε = r0/100, and the global weighting
factor α is set to 0.5. In Table 1, the legend of the
graphic symbols and conventions used in Figures 6–8
is given. 
4.1. A bifurcating arch bridge

The first example illustrates a playful design
exploration for a bifurcating arch bridge (Fig. 6). The
process starts with a very rough approximation of a
spatial arch bridge, inputted as a straight deck and a
polygonal arch, connected to the deck with hangers.
The deck’s nodes are constrained to a horizontal plane;
the bridge’s dead load is represented by a set of

vertical unit forces attached to the nodes. The force
densities of deck and arch branches (coloured in
magenta) are constrained such that the deck is force to
be in tension and the arch in compression (Fig. 6a). 

The first optimization step generates a model in
equilibrium with an almost planar arch and S-shaped
deck (Fig. 6b). Through the imposing of an upper
force density bound of −2.5, the structural height of
the arch is limited. A higher bound, for example, −1,
would result in smaller compression forces and thus in
an arch with higher rise. A spatial configuration is
enforced, by assigning a lower bound to the tension
force in the deck; otherwise a planar arch with vertical
hangers and no forces in the deck would emerge. 

In the next step, shown in Figure 6c, the designer
copies and rotates the first four segments of the deck
and the arch, using standard CAD modelling tools to
create the intended bifurcation of the bridge. In order
to heighten the rise of the structure, the upper bound of
the arch’s force densities is raised to −1. The second
optimization step generates the final equilibrium form
of the bridge (Fig. 6d). 

4.2. A curved suspension bridge

The example in Subsection 4.1 has been a playful, not
very controlled design exploration. For example, the
nodes of the bridge deck are no longer equally spaced
in the final state (Fig. 6d). To obtain geometrically
controlled equilibrium models, additional constraints
have to be imposed. The example in this section
demonstrates highly constrained form finding. It is
inspired by Laffranchi [16], who states that any
loaded, spatial polygon in space can be balanced by
two funiculars. 

The design process starts with a freeform curve,
defining the intended pathway of the bridge (Fig. 7a).
This curve is subsequently discretized as polygon,
forces are added as dead load, and constructive axes
are introduced (dashed lines), defining the intended
layout of the structure in plan (Fig. 7b). Two different
configuration as starting point of the form-finding
process are explored (Fig. 7c and 7e). 

In order to preserve the geometry of the intended
pathway and the structural axes, the position of the
deck nodes are fixed, and the nodes of the two
funiculars are constrained to planes that are vertically
extruded from the axes in both cases. Additionally,
positive force density constraints are imposed on the
part of the structure that is supposed to act as tension
cable. In the first case (Fig. 7c), the form-finding
process generates an equilibrium model with the deck
in compression, horizontally balanced by a

Figure 5. Screenshot of the CAD model used for the
example presented in Section 4.1. Supports are modelled with
white points, geometrically fixed nodes with points in cyan;
planar constraints are encoded by points and planes with the
same colour; force density constraints are imposed on the

coloured branches.



compression arch, and vertically supported by a
tension funicular (Fig. 7d). In the second case
(Fig. 7e), the process generates an equilibrium model
also with the deck in compression, but now
horizontally and vertically equilibrated by tension
funiculars (Fig. 7f). In both cases, the horizontal
funicular in compression (Fig. 7d) and the horizontal
funicular in tension (Fig. 7f) are inducing almost the

same force in the deck. Hence, the other parts of the
structure, the deck and the vertical funicular, are
almost identical in inner forces and geometry.

4.3. A pre-stressed, cable-stayed roof

The examples shown in Subsections 4.1 and 4.2 are
linear structures. This subsection presents the
application of the method to a two-dimensional
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Figure 6. A spatial, bifurcating arch bridge: (a) Initial, user-defined input geometry (b) generated equilibrium geometry of the
single arch: (c) the designer copies and rotates the first four segments of the deck and the arch; and (d) final form-found

equilibrium geometry of the bifurcating bridge.

q ϵ ]-∞; -2.5]

q ϵ [1; ∞[

q ϵ ]-∞; -1]

q ϵ [1; ∞[

(a) (b)

(c) (d)

Table 1. Legend of the graphic symbols and conventions used in Figures 6–8

Input model with constraints and Resulting constrained model in equilibrium
external loads
branch with force density bounds compression force, line weight proportional to

the square root of the force
branch without force density bounds tension force, line weight proportional to the

square root of the force
external force external force
support node support node
unsupported node constrained to position geometry of the input model
unsupported node constrained to plane
constraining plane
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structure. Inspired by an article by Göppert and Stein
[30], describing the principle of pre-stressed “spoked
wheel” roof structures for sports stadiums, the aim in
this example is to design a pre-stressed wheel structure

based on a given freeform surface. This is not an
obvious goal as the geometry of both rings depend on
each other. For this type of structures, an outer
compression ring is connected to an inner tension ring

Figure 7. An example of highly constrained form finding of a bridge: (a) the intended path geometry, defined by a freeform
curve, and (b) the discretized path with dead load and structural axes (c) constrained model, with positive force density

constraints on the cable, and second funicular on the same side of the deck, and (d) the resulting equilibrium model with the
deck in compression, horizontally supported by a compression arch, and vertically supported by a tension funicular

(e) constrained model, with positive force density constraints on the cable, and second funicular on the opposite side of the deck
and (f) resulting equilibrium model with the deck in compression and the two funiculars in tension.

(e) (f)

(d)(c)

(a) (b)

q ϵ [0; ∞[

q ϵ [0; ∞[



via radial cables The dominant loading case is self-
stress. To create structural depth in the vertical cross-
section, usually either the compression or the tension
ring is doubled. The radial cables are then also
doubled, forming radial cable girders with additional,
connecting vertical cables. 

The design process starts with a 3D freeform loop
surface, representing the intended geometry of the roof
(Fig. 8a). In the next step, the surface is discretized in
quadrilateral polygons (Fig. 8b). The edges of the

polygons are interpreted as branches. In the current
implementation, it is not possible to run the method
without application of external forces, so one branch is
replaced by two forces of same magnitude and
opposing direction, representing the pre-stressing
force. The structure does not have any structural
supports (Fig. 8c). The form-finding process generates
an equilibrium model working as pre-stressed wheel,
but the spatial shape of the initial structure collapses to
a plane (Fig. 8d). 
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Figure 8. Modelling of a spoked-wheel roof structure: (a) the intended geometry of the roof defined by a freeform surface in
space, and (b) discretized surface as polygonal model (c) structural model without any supports, externally pre-stressed, and

(d) resulting equilibrium model collapsed to a planar structure (e) geometrically constrained input model with additional columns
and supports, and (f) the resulting equilibrium model (g) refined input model with doubled compression ring and radial cable

girders, and (h) final equilibrium model.
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prestress force

(g) (h)
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It is the designer’s intention to stay closer to the
original freeform surface, so the idea is to use columns
for balancing the out-of-plane forces of the ring. In
order to preserve the exact input geometry of the outer
surface edge, the nodes of the ring are fixed in space
(Fig. 8e). The resulting equilibrium model is closer to
the initial form, only the inner edge deforms into a
tension hoop (Fig. 8f). 

Based on this geometry, a refined model is built up
by the designer. The compression ring is doubled, and
the radial cables are replaced by two layers of cables,
connected by short vertical elements (coloured in
magenta). The force densities of these vertical elements
are bounded to a small positive value in order to induce
a minimum tension pre-stress (Fig. 8g). Based on the
equilibrium geometry yielding from the refined model
(Fig. 8h), a generic spoked wheel roof construction
with a membrane cover is rendered (Fig. 9).

5. DISCUSSION AND FUTURE WORK
The presented examples demonstrate that the method
offers both an intuitive approach to playfully explore
spatial, mixed compression and tension equilibrium
forms in early design stages, but also enables form
finding of equilibrium shapes with bounds on the force
densities and constraints on the geometry. The
equilibrium model resulting from the optimization
process usually forms the starting point for a following

part of the design process that deals with questions of
constructive detailing and erection. Since the approach
is limited to structures that form mechanisms, a
stiffening and bracing scheme has to be developed
after a satisfying equilibrium model is obtained.
Subsequently, member dimensions are assigned, and
analysis regarding structural safety for live loads,
stability and serviceability has to be carried out. 

In general, form-finding methods are mainly
relevant for the design of structures with high
permanent loading compared to live loads; such
permanent loads are, for instance, high self-weight or
high pre-stress. For structures with live loads that have
a similar or higher magnitude than the permanent
loads, form found geometry might serve as starting
point for the design process; but these live loading
cases become the dominant factors for structural
design. By running the form-finding process with
permanent loading combined with live load cases, the
designer could gain qualitative insight in equilibrium
states for these specific combinations. Furthermore,
the designer could even use superposition strategies,
combining several equilibrium states to generate form. 

The method, implemented using an explicit Runge–
Kutta solver with adaptive step size, performs well.
Simpler third- and fourth-order Runge–Kutta methods
have been tested and work in principle, but need
much higher number of iterations, since small step
sizes have to be used. Table 2 shows the number of
iterations and calculation times for the examples
discussed in the paper. The iteration number, for
example, of the example shown in Figure 8d is
remarkably high. This probably is a consequence of
the “floating” setup of the model; without any
supports, the system is determinate up to a rigid-body
translation. In general, the solving times are not
competitive in the sense of a real-time simulation
environment; this is mainly a result of the lack of
sparse matrix computation routines in the NumPy
implementation available for IronPhyton. An
implementation of the method as compiled plugin
using a fast linear systems solver should speed up the
solving time by two orders of magnitude. 

Although the method allows an intuitive modelling
of equilibrium forms, background knowledge in
structural design is obviously required from the
designer. A general issue with the equilibrium
modelling process is the possibility to create over-
constrained models easily, resulting in slow
convergence or no convergence at all. Developing a
general approach to detect such situations is difficult
and remains future work. Another source for possible

Figure 9. Rendering of a cable-stayed roof based on the
equilibrium model presented in Figure 8h. The pre-stressed,
spoked-wheel construction forms the primary supporting

structure for a membrane roof.



failing of the form-finding process is topologic
degeneration, i.e. branches with vanishing lengths. 

Future work will also include the implementation of
further geometric constraints, such as nodes
constrained to spatial curves, non-planar surfaces or
polygonal meshes. In this case, the “free” component
of the residual will be obtained by projecting the
residual onto the tangential line or plane of the
constraining object. The gradient decomposition
described in Section 3.2 can easily be extended to other
constraints such as e.g. fixed branch lengths or bounds,
or even constraints, on forces directly, rather than on
force densities. Furthermore, more specific support
conditions, such as movable supports constrained to
geometric objects, or supports that can take forces only
in specific directions, will be implemented.

6. CONCLUSION
The presented form-finding method, implemented
within a CAD environment, allows for the intuitive
exploration of spatial, pin-jointed, kinematic
structures with mixed compression and tension forces
in equilibrium for given design loads. Through the
definition of various constraints on form and forces,
the method can also be used for the geometric
rationalization of structures according to constructive
requirements. This opens up new possibilities in the
design of efficient structural forms that visually blend
between freeform design and known typologies of
lightweight structures. 
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