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A B S T R A C T   

The structural assessment of doubly-curved vaulted masonry structures, such as pavilion vaults, poses challenges 
specific to their high degree of indeterminacy. Two-dimensional equilibrium analysis methods may provide a 
lower bound of load or displacement capacity, but they do not accurately describe the three-dimensional (3D) 
behaviour of these structures, particularly when shear deformation (e.g. sliding) is important. Therefore, discrete 
element modelling (DEM) methods, which can effectively simulate 3D load re-distribution, have been used to 
investigate support displacement capacity and corresponding 3D collapse mechanisms. DEM analyses are usually 
conducted on perfect digital geometries. Meanwhile, both real structures and small-scale physical models have 
implicit assembly and fabrication imperfections, which may significantly alter their response. The present paper 
aims to investigate the influence of geometrical and mechanical imperfections by comparing DEM analyses with 
the results obtained from tests on a scale model. In particular, a new method to simulate imperfections within the 
DEM framework is proposed, and a DEM parametric analysis is compared to the measured behaviour of a 3D- 
printed scale model of a pavilion (or cloister) vault on spreading supports. The influence of both mechanical 
imperfections and geometrical imperfections, due to element geometry deviations or imprecision of the assembly 
process, have been investigated. Based on these analyses, the three-dimensional behaviour of a pavilion vault 
subjected to horizontal displacement of the supports is described, and the variability of results due to imper-
fections is demonstrated. A good agreement between DEM analyses and 3D-printed scale model tests is achieved, 
in terms of crack patterns and mechanisms. Geometrical imperfections did change the load paths within the 
vault, as expected, and also influenced the displacement capacity.   

1. Introduction 

Despite the significant number of vaulted masonry structures 
throughout the world, there is still a lack of knowledge regarding their 
capacity to withstand support displacements, and computational simu-
lation of structural response under large displacements is still a chal-
lenge. Many advanced mechanical methods, based on a large number of 
mechanical parameters, have been developed in recent years. The 
definition of these parameters requires an extensive characterization of 
the material. Meanwhile, even after an extensive survey, the intrinsic 
heterogeneity of masonry structures and of constructions techniques can 
lead to a large variability of responses which may limit the utility of 
extremely detailed mechanical models for practical assessment. For this 
reason, in order to avoid some of this uncertainty, scholars have focused 

on the ultimate state of masonry structures by applying Limit Analysis. 
Many methods, based on Limit Analysis, have been developed, but their 
use for the assessment of 3D complicated geometries is still a challenge. 
In the last decades, the Discrete Element Method has been applied as a 
reliable way for the assessment of 3D geometries, using relatively few 
mechanical parameters. The next paragraphs will give an overview of 
existing methods and outline the remaining challenges in the assessment 
of unreinforced masonry vaulted structures. 

1.1. Equilibrium analysis 

In 1966, Heyman [1] defined Limit Analysis in the context of Un-
reinforced Masonry URM structures by formulating three fundamentals 
requirements for its application: masonry has infinite resistance in 
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compression, no tensile strength, and infinite friction, that is, sliding 
cannot occur. The application of Limit Analysis leads to an important 
conclusion: the stability of URM structures depends on geometry rather 
than material strength. The oldest method for the assessment of URM 
structures that perfectly fits in the framework of Limit Analysis is Thrust 
Line Analysis (TLA). TLA is a powerful method that has been applied 
since the mid-1800’s for investigating the stability of arches and vaults. 
Although this method describes the behaviour of two-dimensional 
structures very well [2,3], expedients such as the slicing technique 
have to be adopted to apply it to three-dimensional geometry. The 
downside of this procedure is that it does not capture the three- 
dimensional behaviour of the structure, e.g. in a dome, hoop forces 
cannot be taken into account [4]. For the analysis of fully 3D behaviour, 
other methods have been developed in the last decades, such as Thrust 
Network Analysis [5,6] or 2D compressed membranes [7–10]. Most of 
these methods are a computational application of the Safe Theorem, 
which means that they assess the stability through lower bound solu-
tions: if at least one purely compressive singular “structure” can be 
found within the geometry, the structure is considered safe. In recent 
years, the piecewise rigid displacement (PRD) method, a novel energy-, 
displacement-based approach, has been developed by [11] to solve Limit 
Analysis problems for normal, rigid, no-tension materials following the 
Heyman hypotheses. It allows finding mechanisms and their corre-
sponding internal stress states due to different boundary conditions [12] 
and to also perform displacement capacity analyses [13]. Beyond these 
approaches, Limit analysis methods discretising the masonry as an 
assemblage of interlocked blocks having interfaces with a finite friction 
capacity, have been developed [14–17]. 

1.2. Discrete element modelling 

On the computational side, among the methods dealing with three- 
dimensional URM structures, the Discrete Element Modelling (DEM) 
method [18] has shown good results in the simulation of large dis-
placements or collapse of masonry structures [19,20]. A DEM software 
has three main peculiarities: the model consists of finite-size bodies able 
to move and deform independently; large displacements are possible; 
the blocks can completely detach from each other, and new contacts 
between other blocks can form. The possibility of modelling rigid blocks 
with contact interfaces with no tensile strength, make this method 
suitable for URM structures. Moreover, as stated in [21], by using spe-
cific values for the mechanical parameters, DEM is suitable for 
approximating Heyman’s assumptions [1]. Several works have been 
conducted using DEM to investigate the static and dynamic behaviour of 
masonry structures, [22–29]. The application of this method shows good 
results in the description of collapse mechanisms and displacement ca-
pacity. In [30] and [31], DEM analysis results have been compared with 
physical tests on 3D-printed models to investigate the dynamic behav-
iour of stone spires and to determine the displacement capacity and 3D 

collapse mechanisms of a cross vault under differential support dis-
placements, respectively. Recently also, other DEM approaches have 
been developed using macro-elements and non-linearity conditions at 
the interfaces to model masonry structures [32,33]. 

1.3. Scale models 

The use of physical scale models was one of the first methods his-
torically applied (e.g. tests made by Danyzy in 1732 [34] and reported 
later in Frèzier 1737–39 [35]). Particularly when the complexity of the 
building project increases, architects and engineers have used scale 
models to demonstrate the feasibility of the project, the assembly 
sequence or the general behaviour of the structure [36]. Since stability 
of URM structures is predominantly a problem of geometry rather than 
stress, scale models well approximate the behaviour of actual structures 
for the assessment of the level of stability, for the investigation of three- 
dimensional collapse mechanisms, or for predicting the displacement 
capacity of a structure under given foundation settlements. The only 
concerns related to physical models refer to the non-scalability of the 
effect of friction and the necessary simplification of the stereotomy. In 
recent years, the advent of new technologies for their fabrication has 
changed the use of scale models considerably. Digital design and fabri-
cation allow the design and construction of complex geometries in a 
short amount of time and with a limited budget. Additive manufacturing 
such as 3D printing makes the fabrication of scale models cost efficient, 
fast and flexible. The same model can be re-used for several tests (e.g. 
[30]), and it can be easily combined with other tools as optical mea-
surement systems [31,37] or force sensitive robotic arms for a more 
advanced testing setup [38] (Fig. 1). 

1.4. Geometrical and mechanical imperfections 

Physical models are not only useful for understanding the collapse 
mechanisms and the fully three-dimensional behaviour of URM struc-
tures, but also for calibrating computational tools such as DEM. Physical 
scale models, as well as full-scale structures, contain geometrical im-
perfections, which can be due to fabrication deviations, assembly errors 
during construction, or damages. Imperfect contacts lead to a different 
type of interaction between adjacent blocks, which influences the in-
ternal stress state, that is impossible to find precisely [39]. Moreover, 
especially in historical buildings, mechanical parameters such as the 
friction angle are not homogeneous throughout the structure. Very 
often, virtual models tested with computational tools represent a “per-
fect” version of the structural geometry with no imperfections, neither 
geometrical nor mechanical, and the role of imperfections has not been 
extensively investigated. However, it has been shown that the flow of 
forces can change within a structure due to non-perfect contact condi-
tions and due to the mechanical parameters of the material. For 
example, photo-elastic analysis of a scale model of a masonry wall 

Fig. 1. (a) Physical model (left) and digital model (right) in [31]. (b) Point load test with a force-sensitive robot in [38].  
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subject to a vertical point load was used to demonstrate a load perco-
lation phenomenon [40,41]. Specifically, in case of low external applied 
load, the forces are localised because they are transferred throughout 
points contact between the blocks (Fig. 2a). Only by increasing the load 
value, because of the mechanical parameters of the material used in the 
test, the contact points become contact areas, and the load distributes 
more uniformly (Fig. 2.b). In the case of unreinforced masonry, the 
material is relatively stiff, the working stress is relatively low compared 
to the strength of the material, and thus, the deformation is much 
smaller, which reduces the load redistribution. 

Similarly, the influence of geometrical imperfections due to material 
production tolerances has been investigated for concrete blocks of a dry- 
stacked masonry wall [42]. The results show that imperfections lead to 
localisation of the flow of forces, resulting in a non-homogeneous dis-
tribution of the stresses. 

1.5. Structural behaviour of a pavilion vault 

Few studies have addressed the structural behaviour of pavilion 
vaults. In [43] a detailed study has been conducted comparing different 
methods: a non-linear finite element analysis, an approach based on 
limit analysis, membrane theory considering unilateral material and a 
2D approach considering the pavilion vault as an assembly of 2D arches. 
The main results of this comparison are: the horizontal thrust of a 
pavilion vault on the supports is almost constant along the perimeter, 
and tension forces along the bottom part of the diagonals and the webs 
are responsible for the pavilion vault’s typical crack pattern, which 
means that cracks can not be traced back to the support displacements. 
Moreover, [43] shows that a 2D analysis of a pavilion vault, results in a 
triangular distribution of the horizontal thrust on the supports, 
completely ignoring the thrust in correspondence of the diagonals 
(Fig. 3). 

1.6. Objectives 

Comparisons between physical tests and computational models are 
useful to validate DEM tools and to calibrate mechanical parameters 
used in the analyses. Although such comparisons have already been 
conducted, the influence of the imperfections due to fabrication and 
assembly errors has not yet been addressed. This discrepancy among 
physical and digital model could cause mistakes in understanding the 
behaviour of real structures. This paper, therefore, investigates the 
importance of mechanical and geometrical imperfections on the 

behaviour of a pavilion vault in terms of force distribution, displacement 
capacity and collapse mechanisms. This is achieved in two steps: 1) 
comparison of the results of [37] on a physical model of a generic 
pavilion vault subject to horizontal displacements of the supports with a 
computational analysis conducted on a numerical model of the same 
geometry using the DEM software 3DEC by Itasca [44–46]; 2) investi-
gation of the influence of mechanical and geometrical imperfections on 
the structural behaviour and displacement capacity. In the current work, 
an entire pipeline to generate imperfect digital models and analyse them 
has been implemented. 

2. Methodology 

The analysis carried out in this paper started with the comparison of 
the 3D-printed scale model studied in [37] with its digital version tested 
using 3DEC. The digital model considered in this phase had perfect ge-
ometry (i.e. blocks have perfect straight edges and planar surfaces, 
resulting in perfect face-to-face contact conditions between them), and 
the same friction angle value was assigned to all the blocks. Then, me-
chanical imperfections were applied, considering a stochastic distribu-
tion of the friction angles assigned to the voussoirs (see 2.3.1). Finally, 
the influence of geometrical imperfections due to material fabrication 
and assembly errors was investigated (see 2.3.2). The whole analysis has 
been preceded by a sensitivity analysis to investigate the influence of the 
joint stiffness in the 3DEC calculation, as described in more detail in 
Section 2.4. The analyses performed have been implemented in COM-
PAS, an open-source, Python-based, framework developed at ETH Zur-
ich for research and collaboration in architecture, engineering, 
fabrication and construction [47]. The main library of COMPAS pro-
vides flexible data structures, a geometry processing library, numerical 
solvers and other components as a base framework for computational 
research. Moreover, several additional COMPAS packages provide tools 
for processing, visualising and interacting with datastructures. Indeed, 
the meshes created in [37] using the CAD software Rhinoceros® have 
been translated in COMPAS meshes using the package compas_assembly, 
which provides tools for the generation of assemblies of discrete ele-
ments and for the management of the relationships between the indi-
vidual parts. After this step, the geometry can be fully managed, and 
operations, such as the introduction of imperfections, are made possible. 
Once the geometry is ready, files readable by 3DEC have been created. 
These files contain all the information needed to set up a model and run 
an analysis in 3DEC: not only geometric data and material properties are 
stored but also boundary conditions including loads and (applied) dis-
placements. In this step, mechanical imperfections are generated. Dur-
ing the analysis, at each step of the calculation, custom 3DEC functions 
store all model information and results. After the analysis, these results 
have been post-processed: the resultant contact forces at each interface 

Fig. 2. Image taken from [40]. Photoelastic fringes of a model of dry masonry 
with thin vertical joints detected with a linear transmission polariscope. In (a) 
low vertical load of 125 N. (b) High vertical load of 400 N. For further details, 
the reader is referred to [40]. 

Fig. 3. Image taken from [43]. Horizontal thrust on the support calculated 
using 2D analysis. For further details, the reader is referred to [43]. 
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between blocks have been computed, and the flow of forces within the 
structure visualised. 

2.1. Description of the physical model 

The reference model for this study is the pavilion vault of [37]. The 
vault has a square base, an internal span of 343 mm, a rise of 111 mm, 
and a constant thickness of 12 mm (Fig. 4). The vault’s pattern is 
characterised by a shift of half a block between consecutive courses. The 
average dimensions of the blocks are 12 × 12 × 48 mm except for the 
ones close to the edges, which have a particular stereotomy. For the 
physical collapse tests in [37], all the blocks had been printed with the 
ZPrinter 650 by 3D Systems having a printer tolerance of 0.1 mm. The 
material used is the zp151 powder, and the infiltration product is the Z- 
Bond 90. According to the 3D Systems ZPrinter Consumables Catalogue, 
a 3D-printed part made out of zp151 and infiltrated with Z-Bond 90 has 
Young’s modulus equal to 9450 MPa. This value has been used for the 
calculation of the joint stiffness in the 3DEC analysis. The material’s 
density was equal to 1460 kg/m3. The friction angle has been measured 
using an inclined testing table on more than 60 blocks. The average 
value found is 45̊ with a standard deviation of +/- 9̊ (20%). The tests 
performed in [37] consisted of the spreading of the supports of the 
pavilion vault scale model, obtained by the movement of three plates of 
a modular testing table, controlled by an actuator in displacement 
control. 

The tests were quasi-static, and the applied velocity was 0.6 mm/s. In 
[37], different types of horizontal displacements have been simulated: 
symmetric displacement involving half, one quarter and one eighth of 
the supports (see Fig. 5) and also displacements involving asymmetric 
part of the supports. In this paper, only the symmetric displacements of 

the supports have been simulated in the numerical model. 

2.2. Digital model and computational DEM analysis setup 

The digital model of the pavilion vault was converted to a numerical 
model and analysed with the commercial DEM software 3DEC by Itasca. 
The voussoirs have been modelled as rigid with dry joints. Because of 
these hypotheses, only four parameters need to be specified: the material 
density, friction angle, and the two values of the joint stiffness 
(described in detail in 2.4). As mentioned in 2.1, the material density is 
equal to 1460 kg/m3, and the average friction angle measured is 45̊ with 
a standard deviation of ± 9̊. Gravity has been applied gradually in ten 
steps to avoid dynamic effects. The velocity used for simulating the 
displacements of the supports is the same as in [37], 0.6 mm/s. The 
displacements have been applied in small increments of 0.6 mm. After 
each step, the velocity of the support was set to 0.0 mm/s, and the 
equilibrium calculation ran for two seconds in order to dissipate the 
effects of support movement in the static structure. During the appli-
cation of the gravity load, viscous damping has been used to absorb the 
vibrational energy as rapidly as possible. The vibrational energy is 
absorbed in proportion to the rate of change of kinetic energy [46]. For 
the simulation of the supports’ displacement, a non-viscous energy 
dissipation has been applied. This type of damping is appropriate for 
quasi-static analysis because it applies a damping force to the blocks not 
proportional to the velocity, but to the unbalanced force [48]. For all the 
computational analyses conducted, the detection of the collapse step in 
3DEC has been done by plotting the “out of balance” forces, computed 
by 3DEC, per block at each step of the calculation. Each voussoir has 
been plotted with a colour related to the magnitude of its out of balance 
force. 

2.3. Imperfections 

To understand the influence of imperfections on the structural 
behaviour of the pavilion vault, geometrical and mechanical imperfec-
tions have been generated on the digital model. Mechanical parameters 
in real structures are not homogeneous for two main reasons: variation 
in the materials used for the construction, especially in historical URM 
buildings, and imperfections at the interfaces that could change the 
contact conditions. Geometrical imperfections are due to material pro-
duction errors, mistakes in the placement during the assembly and 
construction, or to damages. 

2.3.1. Mechanical imperfections 
Usually, the friction angle in discrete element analyses is applied as a 

single value to all elements of the model. In this work, analyses are 
performed using non-uniform distributions of the friction angle to un-
derstand the influence, on the structural behaviour, of uncertainty about 
the material properties in real structures. Friction angles have been 

Fig. 4. Physical model of the 3D printed pavilion vault tested in [37].  

Fig. 5. The three symmetric support displacements in [37] tested in this paper through DEM analysis.  

A. Dell’Endice et al.                                                                                                                                                                                                                            



Engineering Structures 228 (2021) 111499

5

assigned randomly from uniform distributions around 45̊, within ranges 
of +/- 10%, 20%, or 30%. 

2.3.2. Geometrical imperfections 
Geometrical imperfections from material fabrication and assembly 

errors have been generated on the digital model as well. Fabrication 
errors are chosen in relation to the 3D printer tolerance, which is equal 
to 0.1 mm. For each block, a random deviation in the range of +/− 0.1 
mm is added to the coordinates of every vertex. Fig. 6 shows an example 
of a block before and after the application of fabrication errors. The 
imperfections due to assembly errors have been generated by translating 
each block in the direction of one of its face normal directions (Fig. 7). A 
range for the translation displacement has been generated considering 
+/- 2% of the largest block dimension (+/− 2% of 48 mm). In this paper, 
the digital model has been analysed first applying only printer tolerance 

imperfections and then adding on top of that assembly imperfections. 

2.4. Sensitivity analysis on the joint stiffness 

At the beginning of this work, a sensitivity analysis has been con-
ducted to study the effects on the displacement capacity of parameters 
needed by 3DEC to perform the calculation, such as the two joint stiff-
ness values (normal and shear). According to [20], the joint stiffness 
values should be specified as high as possible in order to reduce joint 
deformations (penetration and sliding between voussoirs), but the use of 
high values significantly increases the calculation time and presumes the 
existence of perfectly planar and smooth joints. On the other hand [31], 
shows that a reduction of the joint stiffness values by ten times does not 
significantly affect the results in the case of a digital model of a cross 
vault, but it considerably decreases the calculation time. In the case of 
the cross vault in [31] or for the structure examined in the present paper, 
geometry plays an essential role in the stability. A reduction of the joint 
stiffness values physically means allowing penetration and sliding be-
tween blocks. Nevertheless, since the starting values of the joint stiff-
nesses are high, and their reduction is relatively small, the effect of 
decreasing them, inside certain limits, does not affect the stability 
significantly. In addition, smaller values are more representative in the 
case of reduced contact area due to imperfections and roughness of the 
joints. Regarding the relation between joint stiffness and calculation 
time, as explained in [46], the magnitude of the time steps used by 3DEC 
for the analysis is inversely proportional to the joint stiffness values. 
Hence, a reduction of the joint stiffness values increases the magnitude 
of the timesteps, which results in fewer calculation cycles needed by 
3DEC to complete the analysis. The value of the normal joint stiffness 
has been evaluated as in [26]: 

Fig. 6. Example of fabrication imperfections generation: in black, the perfect 
voussoir and in red the modified geometry: just for clarity, in this figure, the red 
block has been modified with a deviation, multiplied by a factor 10 (+/- 10 
mm), than the one used for the analyses. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 7. Example of assembly imperfections generation: (a) perfect assembly, (b) imperfect assembly after the translation of the blocks.  

Fig. 8. Displacement of ½ of the support. Normal (in red) and shear (in blue) components of the contact forces after one step displacement (0.6 mm) in the direction 
of the grey arrows. (a) joint stiffness equal to the calculated value, (b) calculated value multiplied by 1/8, (c) calculated value multiplied by 1/16. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Jkn =

(
E

hblock
+ E

lblock

)

2
(1)  

where Jkn is the normal joint stiffness, E is the Young’s modulus of the 
material, hblock and lblock are respectively the average block height and 
block length. To understand the effect of the reduction of the joint 
stiffness values, in the case of the structure analysed in this paper, the 
digital, perfect geometry has been analysed considering the two joint 
stiffness values reduced by five different scaling factors: starting from 
the joint stiffness value calculated as shown in Eq. (1), the model was 
tested scaling the joint stiffness values by 0.5, 0.25, 0.125 and 0.0625. 

For the evaluation of the joint shear stiffness, the E (Young’s 
modulus) has been replaced by G (shear modulus). Because no data is 

available on the value of G of the 3D-printing material, it has been 
evaluated as 

G =
E

2(1 + υ) (2) 

where v is the Poisson’s coefficient considered equal to 0.2. 
Then, the value of the shear joint stiffness has been evaluated as in 

[26]: 

Jks =

(
G

hblock
+ G

lblock

)

2
(3) 

The reduction of the joint stiffness values, normal and shear, from the 
values calculated to 1/16 did not show a significant effect on the 
displacement capacity, and it did not result in interpenetration phe-
nomena or considerable sliding. Fig. 8a–c show the influence of the 
reduction of the two joint stiffness values on the normal (in red) and 
shear (in blue) components of the contact forces, after one step of the 
displacement (0.6 mm), in the case of displacement of ½ of the support 
and friction angle equal to 45̊. A reduction of the joint stiffness by a 
factor of 16 did not cause any significant variation in the distribution of 
the contact forces. Meanwhile, from a computational point of view, this 
reduction showed a positive effect related to the calculation time, which 
decreases by almost 85%. For this reason, in this paper, the analyses 
with mechanical imperfections employ a joint stiffness reduction factor 

Table 1 
Displacement capacity values: in the second column the results from the 3D- 
printed model in [37]; in the third column the results of the analyses on the 
perfect digital model in 3DEC; in the fourth column the variation between 3DEC 
analyses and physical tests in [37].  

Test (support 
displacement) 

Results from  
[37] 

3DEC analysis with perfect 
digital geometry 

Variation 

1/2  2.72%  2.90% +0.18% 
1/4  2.82%  3.58% +0.76% 
1/8  2.65%  3.58% +0.93%  

Fig. 9. Horizontal displacement of ¼ of the support: (a) and (b) front view and lateral view of the physical model [37], (c) and (d) front view and lateral view of the 
digital model in 3DEC. 
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Fig. 10. Horizontal displacement of 1/8 of the support: (a) and (b) front view and lateral view of the physical model [37], (c) and (d) front view and lateral view of 
the digital model in 3DEC. 

Fig. 11. Digital model used for the comparison with [37]. This figure shows the terminology used in the description of the tests and the direction of the 
displacement applied. 
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of 8, while the analyses with geometrical imperfections employ a joint 
stiffness reduction factor of 16. 

3. Results: perfect digital model 

In this section, the results related to the perfect digital model of the 
pavilion vault will be described and discussed. In 3.1, the results of the 
comparison with the analyses conducted in [37] on the physical model 
will be presented. In the sub-section 3.1.1, the structural behaviour and 
the three-dimensional mechanism observed during the support 
displacement until the collapse of the perfect digital geometry will be 
described. 

3.1. Comparison with the physical model 

In Table 1, a comparison between the displacement values in [37] 
and those obtained from the tests performed in 3DEC on the perfect 
digital geometry, with friction angle equal to 45̊ and joint stiffness 
values calculated as in (1,3) is reported. The percentages provided in 
Table 1 correspond to the ratio between the ultimate displacement at 
collapse and the vault’s span. 

The values in Table 1 show that the ultimate displacement capacity 
measured in the numerical model is quite similar to the one described by 
[37] for each of the three support displacements. With regards to the 
slight variation, it is worth saying that to identify the collapse in this 
paper and in [37], two different approaches were used. In [37], the 
ultimate displacement is judged during the test on the testing table with 
the help of an optical measuring system. In 3DEC the collapse was 

detected when the unbalanced forces of the voussoirs were not equal to 
zero. From a qualitative point of view, the comparison between the 
numerical 3DEC model with perfect geometry and the results in [37] 
showed a good agreement in terms of crack patterns and collapse 
mechanisms. Both models showed similar typological behaviour for 
each type of supports displacement (i.e. ½, ¼, 1/8). Only small differ-
ences can be seen on the location of the hinges just before the collapse. 
The following figures (Fig. 9a–d, Fig. 10a–d) compare the collapse of the 
physical model with the collapse observed in the digital simulation. 

3.2. Three-dimensional behaviour of a pavilion vault subject to horizontal 
displacement of the supports 

In this section, the three-dimensional structural behaviour of (the 
digital model of) a pavilion vault subjected to horizontal displacement of 
the supports will be described. Fig. 11 shows the terminology adopted to 
describe the different parts of the model. 

All the analyses conducted showed that as soon as the support starts 
moving horizontally, two cracks, one per side, on the lateral webs, 
appear. These cracks propagate from the location where the support 
starts splitting to the edge of the vault (Fig. 12). The horizontal 
displacement would cause a diagonal crack on the lateral web, but the 
geometry of the crack is influenced by the stereotomy of the vault 
(staggered pattern). 

Once the lateral cracks propagate and reach the front web, the 
vault’s edges could be considered split into two parts, a bottom and an 
upper part. The joints, in the bottom part, open immediately because the 
displacement due to the opening of the crack is transferred to the edge 
bottom part, while the joints on the upper part only open as we get closer 
to collapse (Fig. 12). The visualization of the flow of forces highlights the 
increment of shear forces at the voussoirs’ interfaces of the lateral web 
due to the horizontal displacement of the support (Fig. 13), causing the 
sliding in that area. In the analyses, the Mohr-Coulomb failure criterion 
is adopted: 

τ = σtan(ϕ) + c (4)  

where τ is the shear strength, σ is the normal stress, ϕ is the friction angle 
and c the cohesion. In the numerical analyses conducted, a non-cohesive 
behaviour of the interfaces has been assumed, thus the cohesion was 
specified to be zero. 

At the interfaces, where the maximum value of the shear strength is 
reached, cracks open. The achievement of the maximum value of the 
shear strength is related to the magnitude of the normal stress acting on 
the interface. In each course, the distribution of the normal forces varies 
in relation to the stereotomy, that is, to the offsetting of the blocks 
(Fig. 13). 

Regarding the front web, once the horizontal displacement of the 

Fig. 12. Digital model with perfect geometry after a displacement equal to 
0.85% of the vault’s span. 

Fig. 13. Normal components in red and shear components in blue of the contact forces in the numerical model. (a) numerical model subject to self-weight, (b) 
numerical model after a displacement equal to 0.85% of the vault’s span. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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Fig. 14. Numerical model after a displacement equal to 1.7% of the vault’s span. (a) plane YZ, (b) plane XZ.  

Fig. 15. (a) section in the plane YZ, the red dots show the position of the hinges. (b) Positions of Hinge A, B and C after a displacement equal to 3.07% of the vault’s 
span. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 16. Section on the plane XZ, the red triangles show the position of the hinges. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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support starts, the voussoirs move in the negative z-direction, and a 
three-dimensional behaviour connected to the cracks on the lateral webs 
has been observed. For clarity, we describe the three-dimensional 
mechanism in two different planes, YZ and XZ, as shown in (Fig. 14a,b). 

In the plane YZ (Fig. 15a), the structure behaves as an arch on 
spreading supports with a three-hinges mechanism. The hinge B in the 
central area of the front web is located along the line connecting the two 
points where the lateral cracks touch the edges. Hinge A and Hinge C 
(Fig. 15b) are respectively at the bottom and the top of the front web. 
This observation is in contrast with what was concluded by [37], where 
only hinge A was considered to be influenced by the lateral cracks. 

In the plane XZ, the horizontal courses of voussoirs start behaving as 
a horizontal discretised “beam”, i.e. a flat arch, supported at the ends. 
The deflection of these horizontal elements in the negative z-direction 
causes the opening of cracks on the intrados and at the edges (Fig. 16). 

The combination of the two phenomena causes small amounts of 
sliding during the collapse. The observation of the flow of forces clarifies 
both behaviours. In the plane YZ, the resultants of the contact forces at 
the interfaces touch the boundaries of the vault thickness in the three 
points which correspond to the hinges A, B and C (Fig. 17). Increasing 
the horizontal displacement of the support will increase the opening of 
the hinges until the collapse. 

In the XZ plane, (Fig. 18), the voussoirs are touching each other only 
in the upper part, transferring compression forces horizontally to the 
lateral webs. When the displacement increases, at the points where the 

Fig. 17. Contact forces in the plane YZ. Contact forces and hinges position in the plane YZ with the displacement of ½ of the support.  

Fig. 18. Contact forces in the plane XZ. Contact forces in a horizontal row of the front web after seven displacement steps.  

Table 2 
Results of the 3DEC analyses conducted on the numerical model with perfect 
geometry and mechanical imperfections.  

Test (support 
displacement) 

Friction 
angle 
range 

Displacement 
capacity 

Variation 
compared to 
[37] 

Variation 
compared to 
perfect digital 
geometry 

1/2 45̊
+/− 10%  

3.24% +0.52% +0.34% 

1/2 45̊
+/− 20%  

3.41% +0.69% +0.51% 

1/2 45̊
+/− 30%  

3.24% +0.52% +0.34% 

1/4 45̊
+/− 10%  

3.24% +0.42% − 0.34% 

1/4 45̊
+/− 20%  

3.24% +0.42% − 0.34% 

1/4 45̊
+/− 30%  

3.24% +0.42% − 0.34% 

1/8 45̊
+/− 10%  

3.58% +0.93% 0.0% 

1/8 45̊
+/− 20%  

3.58% +0.93% 0.0% 

1/8 45̊
+/− 30%  

3.58% +0.93% 0.0%  
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horizontal rows of voussoirs touch the edges, the contacts are no longer 
represented by face to face contacts, but by unpredictable vertex to face, 
vertex to edge or edge to edge contact typologies. The weakness of the 
newly formed contacts compromises the stability of the horizontal rows 
of blocks and consequently of the entire front web. 

4. Results: Mechanical and geometrical imperfections 

In this chapter, the results of the analyses with mechanical and 
geometrical imperfections will be depicted. In 4.1, the numerical 

analyses on the perfect digital geometry with mechanical imperfections 
will be presented. Finally, in 4.2, the results of the analyses conducted 
on the digital model with geometrical imperfections will be outlined, 
together with all the observed phenomena related to geometrical 
imperfections. 

4.1. Role of mechanical imperfections 

The application of mechanical imperfections has shown a certain 
effect on the displacement capacity of the numerical model of the 
pavilion vault. The results obtained assigning a different value of the 
friction angle at each block, picked inside a certain range, diverge from 
the results observed in the case of one unique value of the friction angle 
assigned to all the blocks (Table 2). For the tests with mechanical im-
perfections, the two joint stiffness values calculated using Eqs. (1) and 
(3) have been reduced by eight to reduce the computational time. 

From a qualitative point of view, in the case of mechanical imper-
fections, the crack patterns observed were more similar to the one 
observed in [37] as shown in (Fig. 19a–d). Even if the exact distribution 
of the friction angles in a physical model is impossible to measure and 
replicate, the simulation of mechanical imperfections based on the 
friction angles and the standard deviation measured, showed a better 
approximation of the crack pattern observed in the physical model. 

Fig. 19. Horizontal displacement of ½ of the support: (a) and (b) front view and lateral view of the physical model [37], (c) and (d) front view and lateral view of the 
numerical model in 3DEC with mechanical imperfections applied (friction angle 45̊ +/- 20%). 

Table 3 
Results of the 3DEC analyses conducted on the numerical model with geomet-
rical imperfections (printer tolerance +/− 0.1 mm).  

Test (support 
displacement) 

n̊ of 
tests 

Displacement capacity Variation 
compared 
to [37] 

Variation 
compared to 
perfect 
digital 
geometry   

Average 
value 

Standard 
deviation   

1/2 20  3.43%  0.35% +0.71% +0.53% 
1/4 10  3.36%  0.19% +0.54% − 0.22% 
1/8 10  3.70%  0.24% +1.05% +0.12%  
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4.2. Role of geometrical imperfections 

All real structures have geometrical imperfections, which can be 
caused by fabrication deviations, material placement errors or damages. 
In Table 3 and Table 4, the results of the analyses conducted in 3DEC on 
the numerical model with geometrical imperfections are presented. 
Table 3 shows the results of the numerical model with fabrication de-
viations (in this work it corresponds to a printer tolerance equal to 
+/− 0.1 mm), with friction angle 45̊ and joint stiffness values reduced by 
a factor of 16. Table 4 shows the results of the numerical model with 
fabrication imperfections (printer tolerance equal to +/− 0.1 mm) and 
assembly errors (+/− 2% of the block’s longest side), with friction angle 
45̊ and joint stiffness values reduced by a factor of 16. 

In the appendix, Table 5 shows a full overview of the results obtained 
in 3DEC on the numerical model with geometrical imperfections. The 
results presented in Table 3 and 4 show that geometrical imperfections 
also influence the displacement capacity. On average, the displacement 
capacity with the application of imperfections is higher compared to the 

Table 4 
Results of the 3DEC analyses conducted on the numerical model with geomet-
rical imperfections (printer tolerance +/− 0.1 mm + assembly errors 2% of 
block’s length).  

Test (support 
displacement) 

n̊ of 
tests 

Displacement capacity Variation 
compared 
to [37] 

Variation 
compared to 
perfect 
digital 
geometry   

Average 
value 

Standard 
deviation   

1/2 15  3.57%  0.39% +0.85% +0.67% 
1/4 10  3.31%  0.22% +0.49% − 0.27% 
1/8 10  3.50%  0.20% +0.85% − 0.08%  

Fig. 20. Flow of forces in the numerical model used for the comparison with [37]. (a) resultant contact forces in green in the model with perfect geometry and 
resultants on the supports (grey arrows), (b) resultant contact forces in green in the model with geometrical imperfections and resultants on the supports (grey 
arrows). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 21. Plan view of the flow of forces in three numerical models (a, b, c) with imperfections randomly generated considering only +/- 0.1 mm material tolerance.  
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model without imperfections, but the standard deviation is also higher, 
meaning that the models with imperfections have more uncertainty than 
the model with perfect geometry. 

To better understand how they influence the structure, the flow of 
forces has been studied during the analysis. After the application of 
geometrical imperfections, the initial configuration of the flow-of-forces 
changes entirely. Fig. 20.a represents the flow of forces and the 

resultants on the supports in the perfect geometry, while Fig. 20b shows 
the flow of forces and the resultants on the supports in the case of 
geometrical imperfections (printer tolerance +/− 0.1 mm). In 20.a, with 
perfect geometry, the structural behaviour is a combination of areas 
(central part of the web) where the forces flow bi-dimensionally down 
(single curvature), and areas close to the edges where the flow of forces 
deviates (double curvature). This combination influences the thrust 

Fig. 22. Plan view of the flow of forces in three steps of the analysis on the same numerical model. (a) just gravity applied, (b) displacement equal to 1.5% of the 
vault’s span, (c) after the collapse. 

Fig. 23. Distribution of the vault’s weight on the supports after application of gravity. Each number in the red oval indicates the amount of weight carried by the 
portion of the support in that area. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

A. Dell’Endice et al.                                                                                                                                                                                                                            



Engineering Structures 228 (2021) 111499

14

distribution on the supports, that goes from maximum value at the 
centre of the supports to a minimum value at the corners. The applica-
tion of geometrical imperfections modifies the way the forces flow in the 
vault, and it also influences the distribution of the thrust on the supports. 

Fig. 21 shows three different cases generated with a small amount of 
imperfections (printer tolerance +/− 0.1 mm). Imperfections redirect 
the forces inside the structures, creating three different flows. 

After the application of the displacement, the force distribution is 
influenced mainly by the support movement. As in the case of perfect 
geometry, the forces start flowing towards the lateral webs, and the 
lateral supports carry most of the vault’s weight. In Fig. 22, the evolution 
of the flow of forces from the initial step until collapse can be observed. 
The initial flow, due to the applied imperfections, has a particular in-
fluence on the following force distributions. 

The effect of the initial force distribution, due to imperfections, 
showed an influence in the analyses with the displacement of ½ of the 

supports. In fact, in these cases, the collapses happened 50% of the time 
on the front web and 50% on the back web. The reason for this phe-
nomenon is related to the symmetry of this configuration and the im-
perfections. In fact, in all the analyses with perfect geometry, this never 
happened; consistently, the front web collapsed. In order to understand 
how and why imperfections could influence on which side the collapse 
happens, the distribution of the resultant forces on the supports has been 
investigated at the initial step, when only gravity is applied without 
displacements, and the flow of forces is influenced only by the imper-
fections and not by the horizontal displacement. This study showed that 
after the application of imperfections, the flow of forces changes and the 
weight of the pavilion vault was distributed in an asymmetric way be-
tween the left and right side, as visible in the model shown in Fig. 23. 
Consistently the collapse happened on the half of the support that car-
ried less weight of the vault (i.e. lower magnitude of the normal forces 
and consequently smaller shear strength). 

Fig. 24. Lateral web in the case of perfect geometry (a) and in the case of geometrical imperfections (b).  

Table 5 
Displacement capacity of the numerical model with geometrical imperfections.  

Displacement/span %  

Model  

Support displ Printer Tolerance [mm] Translation [%] [%] Average [%] St. Dev [%] 

1/2 0.1 0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10    
3.24 3.24 2.90 3.58 3.24 3.24 3.07 3.58 3.92 3.58 3.43 0.35  

1/2 0.1 0 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20  
3.24 3.24 4.10 3.75 3.24 3.41 3.41 4.26 3.07 3.07 

1/2 0.1 2 M1 
T1 

M1 
T2 

M1 
T3 

M1 
T4 

M1 
T5  

3.57 0.39  

3.92 3.24 3.07 3.92 4.10   

1/2 0.1 2 M11 
T1 

M11 
T2 

M11 
T3 

M11 
T4 

M11 
T5 

M11 
T6 

M11 
T7 

M11 
T8 

M11 
T9 

M11 
T10  

3.07 3.41 3.41 3.07 4.43 3.41 3.75 3.75 3.41 3.58  

1/4 0.1 0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 3.36 0.19  
3.58 3.07 3.41 3.58 3.58 3.24 3.41 3.07 3.41 3.24 

1/4 0.1 2 M1 
T1 

M1 
T2 

M1 
T3 

M1 
T4 

M1 
T5 

M1 
T6 

M1 
T7 

M1 
T8 

M1 
T9 

M1 
T10 

3.31 0.22  

3.41 3.41 3.41 3.58 3.07 2.90 3.24 3.41 3.07 3.58 
1/8 0.1 0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 3.70 0.24  

3.75 3.24 3.75 3.75 3.92 3.41 4.10 3.58 3.92 3.58 
1/8 0.1 2 M1 

T1 
M1 
T2 

M1 
T3 

M1 
T4 

M1 
T5 

M1 
T6 

M1 
T7 

M1 
T8 

M1 
T9 

M1 
T10 

3.50 0.20  

3.58 3.58 3.41 3.07 3.41 3.41 3.58 3.92 3.41 3.58  
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Another effect due to imperfections is the dissipation of the 
displacement applied. In the perfect geometry, at the start of the 
displacement, the cracks on the lateral webs appear, and the corner 
edges open up (Fig. 24a). With geometrical imperfections because of the 
non-perfect contacts between the blocks, the horizontal support 
displacement often caused more distributed cracks along the lateral 
webs (Fig. 24b), i.e. more cracks opened up, and the effect on the corner 
edges is reduced. This effect, in some cases, contributed to the increase 
of the displacement capacity because the joints at the edges started to 
opening a few steps later than usual. 

As a general effect, imperfections cause the localisation of the flow of 
forces. The theoretical face-to-face contacts become vertex-to-face, 
vertex-to-edge, edge-to-edge or edge-to-face contacts. Localisation di-
rects forces in specific directions, but also often caused joint openings to 
be more distributed. As a result, the displacement capacity of the 
pavilion vault could slightly increase or decrease. 

5. Conclusion 

This paper focuses on the comparison between the tests conducted in 
[37] on the physical scale model of a pavilion vault subjected to hori-
zontal displacement of the support and the computational analyses 
conducted on its digital version using the DEM software 3DEC by Itasca. 
The computational analysis has been conducted not only using the 
perfect digital model of the pavilion vault tested in [37] but also 
modelling mechanical and geometrical imperfections to understand 
their influence on the structural behaviour. The Python-based package 
compas_assembly has been used to manage the entire geometry, to 
generate imperfections, and to post-process the results given by 3DEC, 
both for the computation and visualisation of the flow of forces within 
the structure and for the collapse detection. 

As a first conclusion, the sensitivity analysis conducted on the joint 
stiffness values required by 3DEC for the calculation of the contact forces 
showed that their reduction in a certain range decreases the computa-
tional time up to 85% without altering the results. 

The results on the “perfect” numerical model showed good agree-
ment in terms of displacement capacity (slightly larger), crack patterns 
and collapse mechanisms compared to [37] (see Table 1). Only small 
differences can be seen in the location of the hinges just before the 
collapse. 

The visualisation of the flow of forces within the perfect numerical 
model, no subjected to horizontal displacement of the support, showed 
how the geometry influences the structural behaviour of the pavilion 
vault in the initial configuration. In particular, the internal stress state 
was characterized by forces flowing bi-dimensionally down (single 
curvature) in the central area of the webs, and forces that deviate close 
to the edges (double curvature) where the magnitudes of the shear forces 
increased. On the supports, the combination of the two effects influences 
the thrust distribution that, as shown in Fig. 20a, goes from maximum 
value at the centre of the supports to a minimum value at the corners. 

The introduction of mechanical imperfections did not show a sig-
nificant variation of the results concerning the displacement capacity 
(slightly larger than the model with no imperfections). Still, the 
observed collapse behaviour is qualitatively more similar to the one in 
the real scale model (see Fig. 19). The modelling of mechanical imper-
fections implemented in this paper can be further employed to investi-
gate the influence of not constant distributions of mechanical 
parameters, especially within historic masonry structures. 

The application of geometrical imperfections belonging to each real 
structure, developed in this work, represents another layer of uncer-
tainty that could lead to the localisation of forces, local cracks, unpre-
dictable interlocking and variation in the distribution of shear strength. 
The geometrical imperfections modified the internal stress state of the 
structure in its initial configuration, affected the distribution of the 
thrust on the supports, and influenced the displacement capacity that 
slightly increased compared to the model with perfect geometry. Even 

when the applied support displacement reduces the level of indetermi-
nacy of the structure, and dominates the internal stress state, the 
modified starting configuration due to the imperfections still had an 
influence on the evolution of the force flow. Geometrical imperfections 
dissipated the effect of the displacement allowing the opening of more 
but smaller cracks. 

More generally, the analyses confirmed the reliability of the DEM 
method for the study of URM structures, and the paper proposes a new 
strategy to model mechanical and geometrical imperfections and to test 
several various assumptions. Thanks to the newly implemented work-
flow and the visualisation of the flow of forces, it is now possible to 
follow the collapse also from a structural, i.e. force equilibrium, point of 
view and not only geometrically. The description of the three- 
dimensional evolution of the collapse, with the opening of the cracks 
and the relation between them, could be useful in practice for recog-
nising damages caused by displacements of the supports. 
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Appendix 

In this appendix is presented a full overview of the analysis on the 
numerical model with geometrical imperfections. Table 5 shows the 
results in terms of mean value of the displacement capacity and standard 
deviation. 
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