Assembling Self-Supporting Structures

Deuss M., Panozzo D., Whiting E., Liu Y., Block P., Hornung-Sorkine O. and Pauly M.
ACM Transactions on Graphics - SIGGRAPH Asia 2014
doi: 10.1145/2661229.2661266

Self-supporting structures are prominent in historical and contemporary architecture due to advantageous structural properties and efficient use of material. Computer graphics research has recently contributed new design tools that allow creating and interactively exploring self-supporting freeform designs. However, the physical construction of such freeform structures remains challenging, even on small scales. Current construction processes require extensive formwork during assembly, which quickly leads to prohibitively high construction costs for realizations on a building scale. This greatly limits the practical impact of the existing freeform design tools. We propose to replace the commonly used dense formwork with a sparse set of temporary chains. Our method enables gradual construction of the masonry model in stable sections and drastically reduces the material requirements and construction costs. We analyze the input using a variational method to find stable sections, and devise a computationally tractable divide-and-conquer strategy for the combinatorial problem of finding an optimal construction sequence. We validate our method on 3D printed models, demonstrate an application to the restoration of historical models, and create designs of recreational, collaborative self-supporting puzzles.


    author  = "Deuss, M. and Panozzo, D. and Whiting, E. and Liu, Y. and Block, P. and Hornung-Sorkine, O. and Pauly, M.",
    title   = "Assembling Self-Supporting Structures",
    journal = "ACM Transactions on Graphics - SIGGRAPH Asia 2014",
    year    = "2014",
    volume  = "33",
    number  = "6",
    pages   = "214:1-214:10",
    month   = "",
    doi     = "10.1145/2661229.2661266",
    note    = "",

Related publications

Panozzo D., Block P. and Sorkine-Hornung O.Designing Unreinforced Masonry Models,ACM Transactions on Graphics - SIGGRAPH 2013,32(4): 91:1-91:12,2013 (July).


ETH Zurich
Institute of Technology in Architecture
Block Research Group
Stefano-Franscini-Platz 1, HIB E 45
8093 Zurich, Switzerland

+41 44 633 38 35  phone
+41 44 633 10 53  fax

Copyright © 2009-2024 Block Research Group, ETH Zurich, Switzerland.