## 2.5 Compendium Structural Design I & II Dimensioning

Given is the form diagram of a cable made out of steel S235 under the live point load  $Q_k = 30$  kN. The required diameter of this cable is to be found.

First the characteristic value  $\binom{1}{k}$  of the acting force Q must be brought to the design level  $\binom{1}{d}$ . This is achieved by multiplying with the safety factor. Since the magnitude of a load over the lifetime of a structure cannot always be exactly predicted, a safety factor is calculated for each load. For dead loads the safety factor is  $_{G}$ =1.35 and for live loads  $_{Q}$ =1.5. With the found force  $Q_{d}$  the force diagram can be drawn.



To calculate the cable diameter, the relevant force  $N_{dmax}$  in the structure is determined. The relevant force is understood to be the largest internal force. In this case, this is element 1 with a length of 4 cm, and therefore a magnitude of 40 kN.

If the relevant force  $N_{dmax}$  is divided by the material strength  $f_d$ , the required cross-sectional area  $A_{req}$  is obtained.

The strength of the given material can be taken from the formulary. Since 1 is a tensile element, the allowable tensile stress  $f_{tk}$  is relevant. A material safety factor <sub>M</sub> is also included in the values of the material's strength to consider errors in the material. In contrast to the safety factor of the load, however,  $f_{tk}$  is divided by <sub>M' M</sub> is material-specific and can therefore also be taken from the formulary.

Finally, the diameter is found using the formula for the circular area. Important: The result is always rounded up, as rounding off would result in a diameter smaller than the minimum requirement.

## Stress proof

A cable cross-section of steel S355 with a diameter D=20mm under a relevant tensile force  $N_d = 80$ kN is given. The proof is sought whether the cross-section of the cable can withstand the given load.

First, the maximum allowed force  $N_{allow}$  of the cable is to be found. This is calculated by multiplying the designed allowable tensile stress  $f_{td}$  with the effective cross-sectional area  $A_{cf}$  based on the given diameter of the cable.

Second, the found force  $N_{allow}$  is then compared with the relevant force  $N_{d}$ . If  $N_{allow}$  is equal to or larger than  $N_{d}$ , the proof is provided and the given cross-section withstands the applied load. If the proof is not fulfilled, the cable must be re-dimensioned.



| $N_1 = 40 \text{ kN} = N_{dmax}$ |
|----------------------------------|
| N <sub>2</sub> = 20 kN           |
| A = 40 kN                        |
| B = 20 kN                        |

$$A_{req} = N_d / f_{td}$$

 $f_{td} = f_{tk} / \gamma_M$ = 235 N/mm<sup>2</sup> / 1.05 = 223.81 N/mm<sup>2</sup>

$$A_{req} = N_d / f_{td}$$
  
= 40 kN / 223.81 N/mm<sup>2</sup> = 178.7 mm<sup>2</sup>

A = r<sup>2</sup> • π = (D/2)<sup>2</sup> • π D = 2 • √A/π = 2 • √178.7 mm<sup>2</sup> / π = 15.08 mm ≈ <u>16 mm</u>

 $N_{d} \leq N_{allow} = f_{td} \cdot A_{ef}$ 

$$A_{ef} = r^2 \cdot \pi = (D/2)^2 \cdot \pi$$
  
= (20 mm/2)<sup>2</sup> \cdot \pi = 314.16 mm<sup>2</sup>

$$N_{allow} = f_{td} \cdot A_{ef}$$
  
 $N_{allow} = 338.1 \text{ N/mm2} \cdot 314.16 \text{ mm}^2 = 106.2 \text{ kN}$ 

$$N_d = 80 \text{ kN}$$
  $N_d \leq N_{\text{allow}}$