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Introduction

This research tackles the encoding or parameterisation of 
design and optimisation of the topology – or connectivity 
– of patterns of surface structures. The approach follows a 
generic generative-design strategy based on a grammar of 
topological rules encoded in an L-system, whose applica-
tion is driven by multiple objectives, which can relate to 
aesthetics, sustainability, structural efficiency and con-
struction affordability.

Motivation

Surface patterns apply to a wide range of systems in struc-
tural design, particularly shells, from voussoir tessellations 

to beam layouts, or force patterns. These patterns are char-
acterised by their high structuredness. Optimisation-
oriented design methods focus on structural efficiency, 
generating both the topology and the geometry of 
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the pattern.1,2 However, strong fabrication and assembly 
constraints drive the construction feasibility and affordabil-
ity of these patterns at an architectural scale.3 Although 
multi-objective approaches exist for the design of their 
geometry,4 generic methods are missing for the design of 
the topology of such patterns. Moreover, decoupling topo-
logical from geometrical design and optimisation would 
provide a more modular workflow, whose steps can easily 
be exchanged from one design project to another and even 
evolve during the design process with the modification and 
specification of the design requirements. A generic 
approach to topological exploration allows the designer – 
architect or engineer – to decide on the specific form-find-
ing algorithms to apply and on the specific performance 
metrics to use for evaluation.

Literature review

Structural topology optimisation. Topology optimisation 
classically refers to either continuous topology optimisa-
tion, optimising the material distribution and density in a 
given domain,1 or discrete topology optimisation, optimis-
ing the element selection and cross-section in a dense lay-
out called ground structure.2 These methods rely on 
structural analysis to provide a design that performs the 
best for the input support and load conditions. However, 
post-processing is necessary to make these ideal designs 
feasible, as fabrication constraints command their applica-
bility for architectural-scale structures. Although post-
rationalisation using geometrical optimisation potentially 
allows enforcing specific constraints related to fabrication, 
the requirements are challenging to generalise, as they are 
specific to the project and can evolve along the design 
process.

Surface field integration. Surface structures are a specific 
set of structural systems that can be represented by a mesh 
whose vertices, faces, and edges can represent nodes, pan-
els and beams. They can efficiently be described using 
only structured quad meshes, made of quadrilateral faces 
and a few irregular nodes, as such discrete parameterisa-
tions are natural to map 2D objects like surfaces. These 
structured quad meshes have embedded the regularity that 
is necessary for a wide range of patterns of structural sys-
tems to be built, are easy to scale up computationally 
through mesh densification for long-span structures, and 
leverage the methods and algorithms in the field of mesh 
processing. Cross-field integration provides the opportu-
nity to inform pattern design by various requirements. 
Indeed, integration of a stress field provides structural effi-
ciency, whereas integration of a curvature field provides 
fabrication ease.5 However, topology and geometry are 
still coupled and considering combinations of multiple 
objectives remains challenging.

Grammatical generative design. Leaving mathematical, 
geometrical, and structural optimisation, generative 
design offers solutions to control the design space and 
its exploration. Grammatical generative design relies on 
a set of grammar rules that perform modifications on an 
initial design to produce and explore a variety of designs 
by applying combinations of these rules. Such genera-
tive approaches have already been applied to an exten-
sive range of designs, starting from shape grammars for 
visual arts6 to architectural design like Palladian houses7 
and many more applications.8 Specifically to the field of 
generative structural design, the literature includes 
grammars with rules that integrate functional and 
structural aspects for houses,9 towers,10,11 halls,12 
bridges,13 trusses,14,15 or gridshells.16 Grammars origi-
nated with formal grammars from the field of natural 
language processing with pioneer work of Chomsky in 
the 1950s.17–19 Formal grammars evolved into another 
field of computer-aided design called L-systems, intro-
duced by Aristid Lindenmayer in 1968.20 L-systems 
combined formal grammars as a string encoder and 
computer graphics as a string interpreter to initially 
generate and explore the morphology and growth of 
plants.21 Since then L-systems have found popular 
applications like fractal generation. L-systems have also 
been applied to structural topology optimisation using 
genetic algorithms by evolving a structural layout 
within a domain22–24 or by evolving a partition of a 
domain.25,26 These methods generally yielded layouts 
that were too unstructured and coarse for the design of 
surface patterns

Problem statement

Existing methods for topology optimisation are power-
ful and efficient to inform the designer with a topologi-
cal design optimised for a specific criterion, like material 
volume of a ground structure using layout optimisation 
or strain energy of a quad mesh using field integration. 
However, strategies are missing to explore structured 
designs, characterised by a regularity that is necessary 
for architectural and construction reasons, and tackle 
multi-objective exploration with flexibility in perfor-
mance metrics. Generative methods that decouple topo-
logical and geometrical design allow such flexibility. 
Although L-systems have been used to generate struc-
tural patterns using grammars based on the addition of 
nodes and edges, they lacked structuredness for the 
design of shell systems like vaults, nets, or gridshells. 
The fundamental question lies in the encoding of the 
design problem to parameterise a design space of struc-
tured designs to search, that is, developing a L-system 
with a grammar that allows for the generation of viable 
surface structures for architecture.
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Research objectives

We aim to develop an encoding strategy for the description 
of the topology of quad meshes. Quad-mesh parameterisa-
tions can describe a large variety of structural systems, 
including voussoir tessellation of vaults and beams layouts 
of gridshells. Moreover, the structuredness of quad meshes 
provide a key regularity to build structures at an architectural 
scale, while their singularities allow to locally change the 
layout of elements. A singularity, or an irregular vertex, is 
opposed to a regular node, which is adjacent to four other 
nodes in a quad mesh – or three if the node is on the bound-
ary. Figure 1 shows a set of singularities in mesh patches, 
including a pole singularity and singularities with valencies 
of two, three, five and six. As for defects in crystals, singu-
larities have a deep influence on the various performances of 
a design.

In a workflow as in Figure 2 where the topology of a 
coarse quad mesh is explored first, the pattern’s density 
and shape then result from integer and real parameters, 
respectively, and can be designed independently with full 
control on the density and geometry of the resulting quad-
mesh pattern.27 This paper provides an L-system encoding, 
a type of formal grammar coupled with a decoding genera-
tion machine, to describe the singularity design of quad 
meshes. This strategy is compatible with form finding and 
multi-objective trade-off search as downstream steps of 
any design workflow. The encoding must allow for the 
description of all quad-mesh topologies, for comprehen-
siveness, and only quad-mesh topologies, for efficiency. 
Describing a quad-mesh topology as a succession of such 
rules or operations in a vector encoding offers then the 
potential to be interpreted with integer programming, 
genetic-algorithm or machine-learning processing.

Contributions

Achieving the desired granularity of a design space that 
includes all but only quad-mesh topologies is obtained by 
developing an L-system based on grammar rules that mod-
ify the fundamental strip structure in quad meshes, which 
indirectly modifies the singularities. Section 2 develops 
the methodology and its mathematical and computational 
foundation for the description of quad-mesh topology, 
with a quad-mesh grammar and its string encoding and 
decoding as an L-system. The formal grammar based on 
this encoding strategy is developed and the structure of the 
resulting design space discussed, along with its potential 
for grammatical topology optimisation. Section 3 applies 
this method to the structural design of patterns for different 
workflows and structural systems to demonstrate the rele-
vance and flexibility of this approach. The two case studies 
are the form finding of a cable net and the multi-objective 
design of a steel-and-glass gridshell. They highlight the 
relation between the topology, the geometry and the struc-
tural and multi-objective performance of quad-mesh pat-
terns. This work is implemented and shared publicly in 
compas_singular28 as a Python package of COMPAS,29 an 
open-source Python-based computational framework for 
collaboration and research in architecture, engineering and 
digital fabrication.

Mathematical and computational 
foundation

The proposed exploration approach decouples topology, 
density and geometry, allowing to focus on the topology of 
a coarse quad mesh before densification and geometrical 
processing. Figure 2 shows how a coarse quad mesh, in 

Figure 1. Singularities in quad meshes have a valency different from four. The singularities in pink include a high-valency pole 
singularity and singularities with valencies of two thee, five and six. Boundary singularities, which have a valency different from 
three, are not highlighted.

(a) (b) (c)

Figure 2. Approaching exploration of singularities in quad meshes via a coarse quad mesh in black to decouple topology from 
density and geometry. The boundaries are in red, the singularities in pink and the dense quad mesh in grey: (a) topology, (b) density, 
and (c) geometry.
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black with its boundary in red and singularities in pink, can 
describe the topology of a pattern before densification into 
a dense quad mesh, in grey, and constrained relaxation on 
a surface. A specific mesh grammar is developed for the 
exploration of the topology of singularities in quad meshes 
by modifying the connectivity of such coarse quad meshes. 
Then a formal grammar and L-system encoding of the 
mesh grammar is presented and its properties discussed for 
potential automatic search and optimisation.

Quad-mesh grammar

This grammar of rules applies topological modifications 
allowing to indirectly change the set of singularities in a 
quad mesh by changing the fundamental strip structure in 
quad meshes, in order to create a design space that encap-
sulates all but only quad-mesh topologies.

Strip structure. Beyond vertices, edges and faces, quad 
meshes contain strips that constitute a description of quad 
meshes at a larger scale. Strip-based modelling already 
found applications for digital30,31 or physical32,33 
approaches, also referred to as loops, rings or chords. The 
strips also correspond to the independent parameters for 
densification of a quad mesh. The connectivity of these 
quad mesh strips depends on topology, not its geometry. 
The strips are constructed based on the relationship 
between pairs of opposite edges across quad faces. The 
strip data is collected as a list of edges, as illustrated in 
Figure 3:

1. initiate data: start with an initial complete list of 
edges;

2. collect one strip: initiate the collection of a strip 
by getting one edge from the list (label A in Figure 
3(a)). Complete the strip by adding the edges 
across the adjacent quad faces in both directions 

(strip A in Figure 3(b)). Termination occurs when 
collection yields two boundary edges in the case of 
an open strip (strips A to H), or until it forms a loop 
in the case of a closed strip (strip I);

3. update data: store the strip data as the list of col-
lected edges and remove them from the initial list 
of edges;

4. collect all strips: repeat from step 2 until the initial 
list of edges is empty (Figure 3(c)).

This structure offers the opportunity to develop a quad-
mesh grammar that is tailored for the exploration of a com-
prehensive design space constrained to quad meshes.

Topological grammar. As the topology of a quad mesh is 
fully determined by its strip structure, only two low-level 
rules are necessary to be able to modify its topology: add-
ing a strip and deleting a strip. Figure 4 illustrates how 
these two reciprocal rules apply to different configurations 
of strips and their corresponding polyedge – a continuous 
series of edges – in blue.

Strip addition. To add a strip along a polyedge described 
as a list of n  adjacent vertices [ ... ... ]0 1V V Vi n− − − − − , the 
following operations are sequentially applied on the poly-
edge, as illustrated in Figure 5:

1. first element: two vertex copies of V0 , ′V0  and ′′V0 , 
are created and the first edge V V0 1−  yields a trian-
gular face ′ ′′( )V V V0 1 0, , ;

2. regular elements: ∀ ∈ −i n1; 3� � , two vertex cop-
ies of Vi , ′Vi  and ′′Vi , are created, the edge V Vi i− +1  
yields a triangular face ′ ′′( )+V V Vi i i, ,1  and the previ-
ous triangular face ( , , )1 1′ ′′− −V V Vi i i  becomes a quad 
face ( , , , )1 1′ ′ ′′ ′′− −V V V Vi i i i .

3. last element: two pairs of vertex copies of Vn−2  
and Vn−1 , ′−Vn 2  and ′′−Vn 2 , and ′−Vn 1  and ′′−Vn 1 , 

A

(a)

A

(b)

B

A

C

D

E

F

G

H

I

(c)

Figure 3. The strip structure, in blue, completely defines the topology of a quad mesh and its singularities, with nine strips from A 
to I here. The strip data is collected as the lists of topologically opposite edges across the quad faces: (a) get edge, (b) collect strip, 
and (c) repeat.
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respectively, are created and the last edge V Vn n− −−2 1  
yields directly a quad face ( , , , )2 1 1 2′ ′ ′′ ′′− − − −V V V Vn n n n ;

4. clean: the old vertices, which are now discon-
nected, are deleted.

When a pair of new vertices ′Vi  and ′′Vi  replaces an old 
vertex Vi , Vi  is substituted for ′Vi  in the faces on the left 
side of the polyedge and for ′′Vi  on the right side. This left/
right convention is defined by the sense of the polyedge 
and the normal of the vertices. Therefore this method is 
specific to orientable meshes.

Visually, the polyedge is unzipped to become a strip. 
The temporary pseudo-quads have their poles oriented 
downstream the polyedge. In Figure 6, a strip is added 

along polyedge ( )A B C− −  without modification of the 
singularities, only the density, because the polyedge is 
topologically parallel to an existing strip. In Figure 7, a 
strip is added along polyedge ( )A B C− −  inducing new 
3- and 5-valent singularities.

Some modifications are necessary for the addition rule 
to be valid for strips of any configuration.

To add a closed strip, marked with º, along a closed 
polyedge [ ... ... ]0 2 0V V V Vi n− − − − −−

 , the last edge 
( )2 0V Vn− −  becomes the quad face ( , , , )2 0 0 2′ ′ ′′ ′′− −V V V Vn n  
using the vertices added from the first vertex, as illus-
trated in Figure 8 along polyedge ( )A B C D− − −  .

A closed polyedge [ ... ... ... ]0 2 0V V V Vi n− − − − − −− , 
without º, marks the addition of an open strip. With V0  

add

delete

add

add

delete

delete

add

delete

Figure 4. A low-level grammar rules of two reciprocal rules that add and delete strips and their corresponding polyedges in quad 
meshes, applied to different configurations of elements in blue.

0'

0''1''

2 3

1'

1''

2'

2''

3'0'

0''

1 2 3

3''

1'

0'

0'

0 1 2 3

Figure 5. Detailed addition of a strip along a polyedge.
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Figure 6. Add a strip changing the density.
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occurring twice, this configuration is a case of a strip with 
repeated vertices.

Polyedges with repeated vertices have at least one ver-
tex Vi  occurring more than once in the polyedge. When Vi  
is replaced in the mesh by the vertices ′Vi  and ′′Vi , the 
polyedge updates and replaces the remaining Vi . When 
inserting a strip along the polyedge:

... ... ...1 1 1− − − − − − −+ − +V V V V Vi i j i j

and after deletion of Vi , the remaining polyedge does 
not exist in the mesh anymore and is updated as:

V V f V V Vi j i i j+ − +− − − ′ ′′ − −1 1 1... ( , ) ... ,

where f V Vi i( , )′ ′′  is the combination of the new vertices 
′Vi  and ′′Vi  that constitutes the shortest sub-polyedge from 
Vj−1  to Vj+1 , in order to reconstruct the polyedge. This 
shortest path is found using an A* search34 in the graph 
made of the edges connected to vertices Vj−1 , ′Vi , ′′Vi  and 
Vj+1  only. If the repeated vertex is the last vertex of an 
open polyedge at the position n −1 , then the sub-polyedge 
is from Vn−2  to the boundary. The choice for the shortest 
polyedge is not constraining when combined with other 
rules to lengthen the polyedge. In Figure 9, the self-cross-
ing polyedge [ ]A B C D E B F− − − − − −  yields a self-
crossing strip. When deleting B , the shortest path from E  
to F  is [ ]′ − ′′B B . The remaining polyedge to add there-
fore updates to [ ]C D E B B F− − − ′ − ′′ − .

In Figure 10, the self-overlapping polyedge [ ]A B A− −  
yields a self-overlapping strip. When deleting A, the 

B-CA-B-C
C'' C'

A'

A''

B'

B''
B

C

A''

A'

C

BA

Figure 7. Add a strip changing the singularities.
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B

CD
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C

B'A'

C''
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B''
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D
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A''

A B'

B''

D
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Figure 8. Add a closed strip.

shortest path from B  to the boundary is either ′A  or ′′A . 
The two options yield the same result.

In order to add a strip with pole singularities at one or 
two extremities, the corresponding face extremities 
become triangles with a pole at the extremity of the strip to 
count as pseudo-quad faces. The poles are marked as *  
like V Vn0

*
1

*...− − −  for strip with two poles, as shown in 
Figure 11. A strip with two pole extremities must stem 
from a polyedge with at least two edges. On the contrary to 
a regular extremity, the pole extremity of a strip is not nec-
essarily on the boundary.

Strip deletion. To delete a strip by collapsing it into a 
polyedge, the following operations are sequentially applied 
on the strip, as illustrated in Figure 12:

1. get the edges of the strip to delete;
2. build a graph from these edges;
3. collect the disconnected parts of the graph as 

groups of vertices;
4. delete the faces of the strip;
5. merge vertices per group into a new vertex.

Visually, the strip edges are collapsed to zero-length 
edges, resulting in the collapse of the strip faces. This pro-
cess applies to any configuration of strips, open, closed, with 
repeated vertices and with poles, as shown in Figure 13.

Deleting a strip causes the collapse of a boundary if less 
than three edges represent the boundary after deletion of 
the strip edges. This collapse changes the Euler’s charac-
teristic of the mesh and therefore its shape topology, 
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though this grammar should only modify the pattern topol-
ogy, that is, its singularities. Figure 14 illustrates how the 
problem and its solution, obtained by refining some strips. 
Before deleting a strip, a verification predicts potential 
boundary collapse if:

| |< 3,E Estrip boundary∩
 (1)

where Estrip  is the set of edges of the strip and Eboundary  
is the set edges of the boundary. The boundary edges to 
remain are refined to avoid boundary collapse by guaran-
teeing the minimum number of three edges. For one strip 
deletion, there is always at least one remaining edge to 
refine. Indeed, the minimum number of boundary edges is 
three, and the maximum number of boundary strip edges is 
two. Refining a strip does not add singularities, it only 
modifies its density, using a special case of strip addition 
when it is topologically parallel to an existing strip, as 
illustrated in Figure 6. Therefore, to avoid the collapse of 
the boundary marked in grey due to the deletion of the strip 
in blue in Figure 14, the remaining strips that end at this 

boundary are refined. One of the two polyedges along 
these strips serve as input for strip addition, to split a strip 
in two. Should one boundary edge remain, the strip is sub-
divided in three. Should two boundary edge remains, the 
two strips are both subdivided in two, to avoid any bias.

Strip data update. After the application of each rule, the 
strip data requires an update. Re-collecting all strips is not 
efficient, as only the added or deleted strip and the ones 
crossing the modified faces have been modified. Due to 
topological modifications, the labels of the vertices and 
faces change. Nevertheless, the labels of the strips are 
preserved in order to keep strip attributes and to combine 
multiple rule deletions for instance.

When the deletion rule is applied:

•• the deleted strip is removed;
•• the old vertices ′Vi  and ′′Vi  are replaced by the new 

one Vi ;
•• the collapsed edges ( , )′ ′′V Vi i , which become ( , )V Vi i , 

are removed;

A-B-C-D-E-B-F B-C-D-E-B-F C-D-E-B'-B''-F D-E-B'-B''-F

C''

C'B'

B''B''

B' A'

A''

A'

A''A''

A'

FFF

EEE DDD

CCB

F

E D

CBA

E-B'-B''-F B'-B''-F B''-F

B'''' B''

B'B'''B'B'''

F'F''

E''

E'

E''

E'

E''

E'

D''

D'

D''

D'

D''

D'

D''

D'

C''

C'

C''

C'

C''

C'

C''

C'

B''

B'

B''

B'

B''

A'

A''

A'

A''

A'

A''

A'

A''

FFF

E

Figure 9. Add a self-overlapping strip with update of the polyedge.

B-A''A-B-A

B''

B'

A'''A''A'A''A'

B

A

B

Figure 10. Add a self-crossing strip with update of the polyedge.
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•• the duplicated edges ( , ), ( , )1 1V V V Vi i i i
′ ′ ′′ ′′+ + , which 

become ( , ), ( , )1 1V V V Vi i i i+ + , are merged to become 
( , )1V Vi i+ .

When the addition rule is applied:

•• the added strip is stored as [( , ),..., ( ))]0 0 1 1′ ′′ ′ ′′− −V V V Vn n ;
•• the old edges ( , )1V Vi i+  are replaced by the pair of 

new edges ( , )1′ ′+V Vi i  and ( , )1′′ ′′+V Vi i  in the order to 
complete the strip;

•• the old vertices Vi  in the edges ( , )V Vi j  are replaced 
by the new one among ′Vi  and ′′Vi  that is adjacent 
to Vj .

As illustrated in Figure 15, a designer can interactively 
select polyedges along which to add a strip, like the closed 
polyedge in blue, and select strips to collapse into a poly-
edge, like the two strips in green, changing the connectiv-
ity of the nodes and therefore the singularities, in pink.

Selecting these mesh elements allows interactive 
exploration. However, directly encoding these rules into a 
vector as a list of element labels, whether strips, edges or 
vertices, to modify is not possible. Indeed, the connectiv-
ity evolves with a varying number of elements along with 
their labels. Therefore, another strategy is necessary to 
encode the application of the grammar rules in a vector to 
be generated and read by exploration and optimisation 
algorithms.

Formal grammar

An approach based on L-systems permits to encode the 
mesh grammar into a string using a formal grammar, a set 
of characters specifying orders to a moving object that 
applies the two rules of the quad-mesh grammar. In the 

A'
B

A''
A

B''

B'
CA B C A

B''

B' C'

C''

A*-B-C A*-B-C* A-B*

Figure 11. Add strips with poles.

Figure 12. Delete a strip.

following figures, the moving object is depicted as a blue 
arrow marker.

Movement operations. Instead of moving freely within a 
blank domain, the marker moves along the edges of the 
mesh. A node Vi  as position and an adjacent node Vj  as 
direction define the marker ( , )V Vi j . Two movement opera-
tions allow to relocate the markers anywhere in the mesh: 
turn moves the marker to the next edge of the leftward face 
following an anticlockwise rotation, shown in Figure 16(a), 
and pivot moves the marker to the next edge rightward to 
the position node following a clockwise rotation, shown in 
Figure 16(b). The orientations are defined by default by the 
mesh normal. Thereof, the marker can move to select poly-
edges and strips as inputs for the mesh-grammar rules.

Thanks to these movement operations, the marker visits 
the mesh edges based on a string encoding the sequence of 
these two operations.

Modification operations. While moving, the marker can 
select the mesh elements to which apply strip rules. Two 
modification operations allow the marker to modify the 
quad-mesh topology. The add operation, shown in Figure 
17(a), toggles the collection of a polyedge, in red, as the 
successive positions of the marker when applying a com-
bination of turn and pivot operations and adds a strip 
along it. The first add operation initiates the collection of 
the polyedge and the second one stops and adds the cor-
responding strip. The * and ° parameters are specific for 
the addition of strips with poles and closed strips, respec-
tively. The delete operation, shown in Figure 17(b), 
deletes the strip transverse to the marker. Before deleting 
the strip, the marker is moved using the pivot operations 
until the marker lies on the polyedge that correspond to 
the collapsed strip.
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Figure 18 further illustrates the addition of a strip by 
representing the topological modification at different 
steps.

If a delete operation is applied during polyedge collection 
for the add operation, the collected polyedge must be 
updated. The old polyedge [ ,..., ]0 1V Vn−  is updated by replac-
ing the old vertices by the new vertices after strip deletions in 
a new polyedge [ ,..., ]0 1′ ′−V Vn , and removing redundant verti-
ces when two successive vertices are identical.

In the example in Figure 19, addition begins and the 
one-edge polyedge [0,1] , in red, is collected. Then, the 
strip in green is deleted, mapping the old vertex 1 to the 
new vertex 6. Therefore, the polyedge [0,1]  becomes 
[0,6] . Finally, addition ends, and the strip in red added.

Design space structure

Thanks to the L-system approach, the two-rule mesh gram-
mar can be encoded in a string to describe a topological 
design, when the initial quad-mesh topology and position 
of the marker are known. The four-character formal gram-
mar is T for turn, P for pivot, D for delete and A for add. 
The parameters for closed strips,º, and strips with poles, * , 

are variations of A. The relation between the string and the 
pattern is the one of genotype and phenotype, as used in 
evolutionary algorithms. Various aspects will influence the 
application of search algorithms of patterns via their string: 
the lack of isomorphism between the pattern phenotype and 
string genotype, the potential mutations on the string geno-
type space, and the resulting space metric – or distance.

Isomorphism. The string encoding can generate any quad-
mesh pattern topology thanks to the underlying mesh 
grammar. There is therefore a surjection from the genotype 
to the phenotype. However, different strings can result in 
the same pattern. For instance, operation that move the 
marker without modifying the strips do not have an effect 
on the pattern, or a strip can be added starting from one 
extremity or the other. This redundancy means therefore 
that there is no injection from the genotype to the pheno-
type. Thus, there is no bijection, or isomorphism, between 
the genotype space of strings and the phenotype space of 
quad-mesh topologies for the proposed L-system.

This lack of isomorphism can be problematic for the 
application of evolutionary algorithms.35,36 Indeed, a pool 
of varied genotypes does not then necessarily result in a 

Figure 13. Disconnected graphs of vertices to merge for the strip deletion rule.

refine deletedelete

with collapse

Figure 14. When deleting some strips, in blue, refining other strips avoids boundaries to collapse to less than three edges and 
close an opening, in grey.

+ -

Figure 15. Selecting the polyedge in blue to add a strip and the strips in green to delete changes the connectivity of the 
singularities.
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diverse pool of phenotypes. A lack of variety of designs 
and therefore of performances may cause the genetic algo-
rithm to stagnate and stop improving. This risk depends on 
the degree of redundancy, that is, the proportion of geno-
types resulting in the same phenotypes.

Mutations. For editing a string or combining different 
strings, modifications can be applied, also called muta-
tions mutations, following the analogy with genotypes.

Three canonical modifications for strings stem from the 
work of Levenshtein in linguistics and information theory37:

1. insert(X, i): insert character X at index i;
2. remove(i): delete the character at index i:
3. substitute(i, X): replace the character at index i by 

character X.

For instance, inserting a combination of Ts and Ps 
between two As will change the added strip, as well as the 
other rules.

Distances. The topological distance between two quad 
meshes is defined as the minimum number of strips to add 
and delete to obtain an isomorphism between the two 
quad meshes, as defined by Oval et al. 38 This definition of 

the distance applies to the level of the phenotype of the 
design. The allowed mutations can also help measure a 
distance between two strings, at the level of the genotype. 
The Levenshtein distance between a pair of strings is 
defined as the minimum number of modifications to apply 
using insertions, deletions and substitutions.37 Other 
string metrics, like the Hamming distance39 that only con-
siders substitutions, can be considered. These distances 
verify the three properties of distances on the space of 
strings: the distance is symmetric; the distance from a 
string to itself is null and if their distance is null two 
strings identical; and the triangle inequality is respected. 
The phenotype and genotype distances structure their 
string and mesh design spaces, respectively, differently, 
meaning that similarity between two objects is different 
between these two spaces, which influences exploration 
and search. For instance, due to the lack of isomorphism 
between the string space and the pattern space, two differ-
ent strings yielding the same mesh have a non-null geno-
type distance but a null phenotype distance.

Structural design applications

The presented grammar is applied to two illustrative struc-
tural systems: a net and a gridshell, to produce quad-based 

TURN PIVOT

(a) (b)

Figure 16. The two movement operations to relocate the marker, in blue, along the edges of the mesh: (a) turn operation and (b) 
pivot operation.

TURN
PIVOT x2
TURN x2

ADDADD

DELETE

(a)

(b)

Figure 17. The two modification operations to modify the mesh based on the position of the marker and the collection of input 
polyedges or strips, in red: (a) add operation and (b) delete operation.
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patterns with different topologies. The influence of topol-
ogy on geometry and performance is highlighted.

Form-finding of a cable-net

Cable nets are lightweight structures that can span large 
areas thanks to negative double curvature and prestress. To 
design such shapes, Frei Otto used experimental methods 
to obtain minimal surfaces resulting from a soap film based 
on a set of boundary conditions. However, geometries at an 
architectural scale are discretised. Therefore, the structure 
is not an isotropic and homogeneous material like soap but 
a finite set of cables in the case of a net. The surface must 
be discretised and the transition from a continuous surface 
with a stress distribution to a discrete pattern with a force 
distribution can influence the resulting form-found geom-
etry in equilibrium. One of the most famous examples of 
Frei Otto is based on a rectangle and two offset circles as 
boundary conditions. Here, these boundaries serve as input 
for a skeleton-based decomposition algorithm40 to obtain 
an initial coarse quad mesh with singularities at the farthest 

from the boundaries and at the kinks, shown in Figure 
20(a). Four additional topologies are produced in Figure 
20(b), resulting from different applied rules combining the 
addition of an intermediary strip between the rings and the 
deletion of the strips along the rectangular or the circular 
boundaries.

The coarse quad meshes are all systematically densified 
based on the same target length. Although a non-uniform 
distribution of prestress can be applied to control the 
shape, a uniform Laplacian smoothing, a mean curvature 
flow, is performed on the dense quad meshes to obtain a 
discrete minimal surface in equilibrium with these bound-
ary conditions. Smoothing is applied for 500 iterations, 
enough to provide shape convergence, and with a damping 
value of 0.5. As form follows topology, the shapes in equi-
librium differ although the same form-finding algorithm 
has been applied. Figure 21 shows the superposition of the 
five meshes with red lines highlighting the local range of 
deviations between them. The average and maximum 
deviations equal 29% and 67% of the average edge length, 
respectively.

TURN

ADD

PIVOT
TURN
ADD

TURN

PIVOT
TURN

Figure 18. Illustrating the application of a pair of add operations by representing the topological modifications at different steps.

1 0 1 2

3 4 5

2

3 4 5

0

3

0 1 2

3 3

6

7 74 5

8

9

10

110

DELETETURN
PIVOT ADDADD

[0,1] [0,6][0]POLYEDGE: - -

Figure 19. The collected polyedge in red for strip addition is updated after deleting the strip in green, by replacing the old vertices 
by the new ones.
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Other patterns than quad meshes may be relevant for 
cable nets. A family of structured patterns can be obtained 
by applying Conway et al. operators.41 Here, the new pat-
terns in Figure 22 are based on the initial quad-mesh 
parameterisation, with corresponding singularities. The 
three examples are quad dominant, with a dual, a diagonal 
(join) and a diagonal-dual (ambo) patterns, though an 
entire design space of hybrid tessellations of triangles, 
quads, pentagons and so on remains to be explored.42,43

Multi-objective design of a gridshell

The topology of a pattern influences its aesthetics, as well 
as its structural performance, its fabrication process, and 

its sustainability. The design choice of singularities can 
modify the trade-off between the multiple objectives with-
out necessarily changing the density, that is, the number of 
elements to produce and assemble, nor the overall geome-
try. The gridshell of the Great Court Roof of the British 
Museum, shown in Figure 23, serves as case study to high-
light this influence of topology on multi-objective trade-
offs. This glazed steel gridshell spans between a rectangular 
and a circular boundaries and is supported vertically along 
its entire boundary and horizontally at the four external 
corners. The pattern of steel beams and glass panels is 
revisited as a quad-mesh pattern.

The designs in Figure 24, shown in top view, have differ-
ent pattern topologies. Initial design 0 results from a skele-
ton-based decomposition of the surface.40 Then, different 
combinations of grammar rules encoded in the descriptive 
strings produce the other designs 1–7. This open-ended 
exploration aims at generating highly different patterns in 
terms of topology and performance. The density is set to a 
0.5 m target length and the quad mesh is relaxed using 
Laplacian smoothing on the original shape of the roof as a 
constraint,44 for 100 iterations and a damping value of 0.5 
with area weights. The same workflow is applied to each pat-
tern topology. This workflow can be freely modified but the 
resulting multi-objective performance depends on it.

The engineering and construction details are found in 
Sischka et al.45 The beams of the actual structure have a 
box cross-section with a width of 80 mm and a height vary-
ing from 80 to 200 mm, oriented with the surface normal. 

-

(a)

TPTATPPTPPTA TPTATPPTPPTATTPDTTPTPD TPTATPPTPPTATDDTTTDTDDDTPTPPDD

(b)

Figure 20. Five topological designs for the discretisation of Frei Otto’s soap film based on a rectangular and two circular 
boundaries and minimal surface meshes in equilibrium for the five pattern topologies: (a) initial design and (b) four other designs 
with corresponding generative strings.

Figure 21. Local maximum deviations among the five meshes 
marked as red lines.
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Here, the S355 steel beams all have the same cross-section 
to favour patterns with a homogeneous force flow, although 
another cross-section could have been considered to stiffen 
the simply-supported boundary.46 The beams have built-in 
connections and must be stiffened due to the lack of trian-
gulation of the quad mesh: they have a width of 250 mm, 
and an assumed wall thickness of 20 mm. The height of the 
beams is minimised to reduce the structural weight while 
complying with the relevant structural requirements. 
Several structural requirements apply to different load 
cases and combinations. The load cases are: the structural 
self-weight G; a downwards dead load G′ = 0.6 kN/m2 for a 
24 mm thick glazing; a downwards projected live load 
Q = 0.5 kN/m2 for snow loads, without taking into account 
geometry factors. The load combinations are: the 
Serviceability Limit State (SLS): 1.0(G+G′)+1.0Q; the 
Ultimate Limit State (ULS): 1.35(G+G′)+1.5Q. The 
structural requirements are: a maximal SLS deflection of 
140 mm, corresponding to the maximal span over 200, 
though a pre-deformation compensates the deflection of 
the actual structure; a maximal ULS stress utilisation of 
100%; a minimal ULS first load buckling factor of 4, as for 
the actual structure. The pre-deformation, as well as the 
imperfections, based on the first buckling mode with a 
maximal value of 140 mm, are not taken into account.

After topological exploration, geometrical processing, 
and cross-section minimisation, the following performance 
objectives are evaluated, additionally to structural mass, 
aiming to be minimised for the design of this steel and glass 
gridshell:

•• structural objectives using second-order analysis 
with the Finite Element Analysis software 
Karamba3D47: stiffness as the maximum SLS 
deflection F; strength as the maximum ULS stress 
utilisation U ; stability as the inverse of the ULS first 
load buckling factor B;

•• fabrication objectives: general panel curvature as 
average curvature of quadrilateral panels C ; general 
panel skewness as average skewness of quadrilateral 
panels S; beam length disparity as edge length stand-
ard deviation L.

Figure 24 depicts the evaluation of these six perfor-
mance metrics to minimise for the eight designs. The 
metrics X are normalised as X* by the maximum value, 
to be bounded by 1.00. The minimum value is marked 
by the dark shade area and the relative performance of 
the design for each metric is highlighted by a different 
gradient from red to green, from the worst to the best 
value among this set of designs, respectively. These 
numerical results highlight the trade-offs between the 
multiple objectives. Indeed, no design outperforms the 
other ones for each metric. For instance, design 1 per-
forms among the best regarding buckling, panel skew-
ness and beam length, while design 6 performs among 
the best regarding deflection, stress utilisation and panel 
curvature. It belongs to the designers to explore the 
Pareto front of trade-offs to decide on the most suitable 
design. Numerical results can also inform further explo-
ration of design options and the generation of more 
topological designs using the presented L-system 
encoding. The designer could produce hybrids of the 
strings encoding designs 1 and 6, for instance. Or auto-
matically produce variations of the description strings 
and their resulting designs thanks to state-of-the-art 
search algorithms.

(a) (b) (c)

Figure 22. Other types of patterns resulting from the application of Conway operators with equivalent vertex or face singularities: 
(a) dual pattern, (b) join pattern, and (c) ambo pattern.

Figure 23. Shape, pattern and support conditions of the steel 
and glass gridshell of the British Museum.44
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Conclusion

Our community of designers and builders is becoming versed 
in parametric design and the related algorithms for explora-
tion and optimisation regarding geometry. However, strate-
gies of the same quality are missing regarding topological 
exploration, which operates beyond parametric design. This 
paper presented such a generative-design approach for quad-
mesh patterns. A mesh grammar was defined to modify their 
strip structure thanks to two low-level rules to add and delete 
these strips. The application of these two rules was extended 
into a four-rule formal grammar to encode topological 

operations in a string and decode them to generate designs 
using an L-system approach. This L-system approach was 
applied to the topological exploration of quad-based patterns 
for various systems for surface structures, a cable-net and a 
gridshell, further showing the influence of pattern topology 
on the geometry and the performance of the design. This 
work opens the door for the next generation of topology opti-
misation algorithms to design structured surface patterns 
with full flexibility regarding density selection, shape design, 
performance objectives, and search and optimisation solvers 
like integer programming, genetic algorithms or machine 
learning.

0.73 0.71 0.24 0.871.00 0.70
U* C* S* L*F* B*

0.85 0.82 0.71 0.88 0.19 0.70
U* C* S* L*F* B*
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U* C* S* L*F* B*
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0 1 2 3
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0.84 0.64 0.911.00 1.001.00
U* C* S* L*F* B*
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U* C* S* L*F* B*

0.78 0.83 0.72 0.64 0.38 0.88
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Figure 24. Topological exploration using the presented L-system and multi-objective performance comparison of quad-mesh 
patterns for the gridshell of the British Museum. The range of performance is represented by a colour gradient per objective, with 
the best designs in green and the worst ones in red. The minimum per metric is marked with a darker shade.
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