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This paper discusses and extends some main features of the rigid-block equilibrium (RBE) method. RBE is a numerical
approach that frames the equilibrium problem of rigid-block assemblies as an optimisation problem to compute
possible internal and equilibrated singular stress states. The contact between blocks is considered having a finite
friction capacity and the unilateral behaviour is modelled through a penalty formulation. In particular, the penalty
formulation widens the standard admissible solution space of compressive-only forces by allowing for tensile forces
appearing on potentially unstable regions. The RBE objective function minimises the interface forces whereas the
constraints are linear functions enforcing the static equilibrium of the whole assembly. In this paper, along with the
original quadratic objective function, the authors propose a linear function to illustrate and explore the role played
by both the nodal forces and the interface resultants. Moreover, the authors show how RBE can be used to explore
different admissible internal stress states – for example, due to increasing, static, horizontal actions.

Notation
A zero-order area moment
Aeq equilibrium matrix
Afr matrix enforcing the linearised Mohr–Coulomb

yield criterion
c vector collecting the weighting factors attributed

to the compressive, tensile and friction forces
E edges of the graph G V ;Eð Þ
f vector collecting the nodal forces
f ik i-th nodal force of the kth interface
f ikn; f

i
ku; f

i
kv

� �
components of the nodal forces in the interface
local reference system

f iþkn positive part of the normal component f ikn
f i�kn negative part of the normal component f ikn
f �LP solution of the linear optimisation problem
f �QP solution of the quadratic optimisation problem
G V ;Eð Þ graph representing the assembly data structures
H diagonal matrix: diag cð Þ
J0 second-order area moment
ni unit outward normal

n̂k; ûk; v̂kð Þ standard basis defining the local reference
system of the kth interface

p vector collecting the external forces
R second-order, skew-symmetric tensor that

rotates in the positive direction of any vector
by π/2

ri position vector of the ith vertex
S0 first-order area moment
V vector storing the vertices of the graph G V ;Eð Þ
vik ith vertex of the kth interface
μ friction coefficient
Ω planar, polygonal interface between two blocks

1. A brief introduction to rigid-block
equilibrium method

The use of safe theorem of limit analysis, as proved by
Heyman (1966), is a wide-spread approach to assess masonry
structures. It states that a structure is safe if an admissible
stress state can be found in equilibrium with the external loads
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and lying within the structural domain (Como, 2013; Heyman,
1969; Huerta, 2006a, 2006b; Ochsendorf, 2002). Moreover,
limit analysis is also a powerful method when the aim is to
assess statically indeterminate structures and, thus, to explore
the infinite set of admissible, internal stress states (Como,
2013). Many strategies apply such a theorem computationally
to explore different equilibrium solutions. In particular,
Fraternali et al. (2002), Angelillo and Fortunato (2004),
Block et al. (2006a), Block and Ochsendorf (2007), Fraternali
(2010); Block and Lachauer (2014); De Chiara et al. (2019);
Gesualdo et al. (2019) D’Ayala and Casapulla (2001) and
Mousavian and Casapulla (2020) modelled the structures as a
continuum, whereas Livesley (1978, 1992), Gilbert et al.
(2006), Orduña and Lourenço (2005), Portioli et al. (2014,
2015) and Gilbert and Melbourne (1994) modelled the struc-
ture as an assembly of rigid blocks having a finite friction
capacity.

This paper focuses on the rigid-block equilibrium (RBE)
method, which frames the equilibrium problem (EP) (Angelillo
et al., 2018) as an optimisation problem that minimises the
total amount of contact forces, having equilibrium relations
and friction conditions as constraints. It is based on a formu-
lation that was first proposed by Livesley (1978, 1992) and
later extended by Whiting (2012) and Whiting et al. (2009) and
Frick et al. (2015, 2016). Livesley proposed a mathematical
model that adapts the analysis of rigid-plastic structural frames
for finding the limit load of masonry structures formed by
rigid blocks. In particular, the solution is obtained as the result
of an optimisation problem, in which the load factor is maxi-
mised subject to the equilibrium linear constraints (Livesley,
1978). Later on, Livesley extended his previous study to three-
dimensional (3D) masonry structures and uses an lower-bound
approach to handle collapse mechanisms that involve sliding,
hinging and twisting (Livesley, 1992). In his study, masonry
structures are modelled as discrete elements that connect with
rectangle planar interfaces and have a finite friction capacity –

that is, assuming that the two surfaces in contact are slightly
concave, and thus they interact through forces only at the
corners. Whiting (2012) and Whiting et al. (2009) extended the
method by including penalty forces to enlarge the solution
space by allowing infeasible solutions to taking into account
tension capacity on an interface as imaginary glue. Frick et al.
(2015) reviewed the study of Whiting (2012) and proposed
some visualisation methods to design discrete-element assem-
blies more intuitively. Frick et al. (2016) proposed a compu-
tational method that enables the possibility to calculate
arbitrarily placed assembly with polygonal planar interfaces
using a combined graph and mesh data structure.

This paper aims to review and develop the RBE method, and
interpret its results by way of mathematical programming. The
results of the virtual nodal forces were post-processed and

reduced to their resultants on the contact interfaces to give
them a structural meaning. Moreover, it was shown how
RBE can be used to explore different internal stress states,
allowing direct and easy control of the mechanical model.
Compared with other commonly used tools, such as discrete-
element modelling (DEM) – for example, using the 3DEC
code (Cundall, 1971), RBE is open-source, fast, explicit
and straightforward. It only needs one mechanical parameter
(i.e. the friction angle, see also Iannuzzo et al., 2021). On the
contrary, compared with real-time interactive environments
such as physics-based game engine PhysX (Nvidia Physx
Library, 2013) and Bullet (Bullet-Physics-Library, 2012), RBE
provides more transparent and accurate results beyond a
Yes/No answer – that is, stable or collapsing. RBE combines
the rigour of both DEM and the interactivity speed of a game
engine in order for it to be used for design purposes.

This research study explores and contributes to various aspects
of the existing RBE formulation. First, the primal use of the
kern is introduced, which for a unilateral material (i.e. rigid
blocks in a unilateral contact) is the interface area in which a
compressive point load may be applied without producing any
tensile stress. Second, the mathematical formulation is revisited
and the physical meaning of RBE results is discussed. Two
different objective functions are compared, quadratic and
linear, considering both nodal forces and interface resultants
placed at the centres of pressure. Third, it is demonstrated that
RBE can be used to explore various admissible stress solutions.
Finally, RBE is related to practical masonry problems. First,
two basic benchmarks are considered to show the main fea-
tures of simple examples that can be checked manually. After
that, examples, such as a semi-circular arch on buttresses and
a hemispherical dome, are considered to demonstrate the
potential of RBE.

2. Methodology: computational framework
In this section, the main features of RBE and how it is
implemented computationally using the COMPAS framework
are introduced (Van Mele et al., 2017). In particular, in
Section 2.1, the main characteristics of the assembly data
structure, which are used to handle complex geometrical
data, are briefly recalled. In Section 2.2, the computational
procedure adopted to define the kern of a polygonal section
is introduced. In Section 2.3, the RBE method and its
optimisation procedure, including the original quadratic for-
mulation and the linear one used in the current paper, is
introduced.

2.1 Rigid-block assembly data structure
Frick et al. (2016) presented a data management system
to numerically model an arbitrarily placed assembly
(Figure 1(a)) using a graph G V ;Eð Þ, where vertices V store

2

Engineering and Computational Mechanics Understanding the rigid-block
equilibrium method by way of
mathematical programming
Kao, Iannuzzo, Coros, Van Mele and Block

Downloaded by [ ETH Zurich] on [14/10/21]. Copyright © ICE Publishing, all rights reserved.



geometrical data of blocks and edges E store interface
data that include geometrical and mechanical features
(Figure 1(b)). Several interface typologies are available to
model non-perfect contacts such as face–face, face–edge and
face–vertex contacts.

For a complete description of the computational algorithm
used to detect the interfaces and for a more detailed discussion
of the assembly data structures, the reader is referred to Frick
et al. (2016).

2.2 Kern of a generic polygonal interface
In this section, the numerical procedure adopted to define the
kern of a generic and planar polygonal interface is illustrated,
which can be either a convex or a concave interface (in the
latter, the convex hull of the interface is used to define the
kern). For more details, the reader is referred to Hally (1987)
and Romano (2002). For unilateral materials, the kern of an
interface is the area in which a compressive point load may be
applied without producing any tensile stress. Looking at the n-
vertex polygonal interface Ω (Figure 2(a)) defining a planar
contact between two adjacent blocks, let ri be the position
vector of the ith vertex and R be the second-order, skew-sym-
metric tensor that rotates in the positive direction (right-hand
rule) of any vector by π=2.

The unit outward normal ni to the edge having length li and
whose vertices are i and i þ 1 can be expressed as

1: ni ¼ 1
li
R riþ1 � rið Þ

The following three linear equations express the zero-, first-
and second-order area moments, namely

2: A ¼ 1
2

ð
@Ω

r � n ds ¼ 1
2

Xn
i¼1

riþ1 � ri

3: S0 ¼ 1
3

ð
@Ω

r� rð Þn ds ¼ 1
6

Xn
i¼1

r?iþ1 � ri
� �

riþ1 þ rið Þ

4:
J0 ¼ 1

3

ð
@Ω

r � nð Þr� r ds ¼ 1
12

Xn
i¼1

r?iþ1 � ri
� �

� ri � ri þ 1
2

ri � riþ1 þ riþ1 � rið Þ þ riþ1 � riþ1

� �

in which

5: r?iþ1 ¼
1
li
R riþ1 � rið Þ

Particularly, Equations 2–4 can be thought of as a scalar, a
two-dimensional (2D) vector and a matrix, respectively. The
position of the centroid of the interface rG can be evaluated
using Equations 2 and 3 as

6: rG ¼ S0=A

(a) (b)

e1,2

e0,1

v0

v2

v1

Figure 1. Arbitrarily placed rigid-block assembly (a) can be
represented an assembly data structure through a graph G V ; Eð Þ
(b), where the nodes store block data and edges store contact
data. The lower block, coloured in grey and denoted with v0, is
assumed as support (b)

y

x0

i + 1

i – 1

(a) (b)

i

ni

na

a

0
rG

Pa

PA

da

Ω ri
A

G

Figure 2. In (a), a convex, polygonal region Ω, whose generic
vertex i is denoted through the vector r i with respect to a generic
reference system O; x; yð Þ. In (b), the kern of the polygonal
interface, and the correspondence among the tangent line a and
its pole A
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and vertex A of the kern corresponding to line a (Figure 2(b)), as

7: pA ¼ �JGna=Apa � na

By applying Equation 7 for each edge of the convex hull, it is
possible to explicitly define the kern of a polygonal interface
(Romano, 2002). In the next sections, how the kern of an inter-
face can be introduced directly into RBE is shown.
Furthermore, it is illustrated how, for statically indeterminate
structures, it can be used to seek one of the infinite, admissible,
internal stress fields that fully activate a set of interfaces.

Remark 1. Instead of adopting a geometric safety factor using
the concept of ‘kern’ by shrinking the boundaries of the
contact polygon (Whiting et al., 2009), the explicit kern formu-
lation is implemented. The reason behind the use of the ‘kern’
in Whiting et al. (2009) was to prevent potential high concen-
trations of compressive stresses/forces just taking into account
reduced interfaces. For a real material having a finite capacity
in compression, high-level, localised compressive stresses can
lead to material crushing. The main consequence of local
material crushing is the redistribution of the compressive stres-
ses over an augmented area, and the corresponding kinematic
effects may be modelled in terms of relative displacements as a
penetration between the original rigid blocks. Nonetheless,
in common unreinforced, historic masonry structures, the
effects of crushing on the stability are usually two orders of
magnitude smaller than the common effects due to the typical
crack pattern – for example, the ones caused by settlements.
Therefore, it is very conservative to consider an assembly with
reduced interfaces. It is more reasonable to take into account
these secondary effects in the post-processing phase unless
the adopted model allows accounting for plastic compressive
deformations directly. For a rigid-block model with a finite
compressive capacity, the reader is referred to Portioli et al.
(2015).

2.3 Rigid-block equilibrium (RBE) method
In this section, it is briefly illustrated how RBE frames and
solves the EP as an optimisation problem. After introducing
the original quadratic formulation (Whiting, 2012; Whiting
et al., 2009), a linear formulation is presented, which will be
used in the following applications to explain some key features
of the RBE approach.

An assembly composed of convex blocks, arbitrarily placed
and with a potential of imperfections is considered. Figure 3
illustrates the main characteristics of the assembly data struc-
ture once the graph is constructed and all the corresponding
interfaces, along with their geometrical characteristics, are
identified.

The blocks of an assembly can be distinguished as supports
(Blockj−1 in Figure 3) or free blocks (the remaining ones).
Since RBE is based on a concave contact formulation
(Livesley, 1992), the interaction between two adjacent blocks is
modelled through forces acting on the vertices of an interface.
The Interfacek is an lk-sided polygon (lk being the number of
its vertices) and its local reference system is denoted with
n̂k; ûk; v̂kð Þ, in which n̂k is the normal unit vector and ûk and
v̂k are two arbitrary, mutually orthogonal and in-plane unit
vectors. A generic vertex of Interfacek is vik [ R3 with i [
1; . . . ; lkf g, whereas the corresponding contact force f ik [ R3

is a 3D vector having one normal and two tangential
components.

2.3.1 Equilibrium
The static equilibrium of the entire assembly can be general-
ised and formulated in the matrix form

8: Aeqf ¼ �p

Interfacek + 1

Blockk + 1

Blockj

Blockj – 1

fkv
i

fk + 1

fkv
i

fk
i

vk
i

r̂j
i

wj

wj – 1 

wj +1 

mj

fkn
i+

fkn
i– fk

i + 1

vk
i + 1

v̂k

v̂k +1 

n̂k

n̂k +1 

ûk

ûk +1 

ŷ

ẑ

x̂

Interfacek

i

vk + 1
i

Figure 3. 3D view of an assembly of randomly placed blocks.
Block j�1 is support, whereas the remaining are free blocks.
n̂k; ûk; v̂kð Þ is the local reference system of each lk-sided
polygonal interface. The external forces are reduced to their
resultants and torques acting on the centroid of each block. The
nodal forces are represented as vectors in the n̂k; ûk; v̂kð Þ
reference system: f iku ¼ f iku ûk, f

i
kv ¼ f ikv v̂k, f

iþ
kn ¼ f iþkn n̂k, and

f i�kn ¼ �f i�kn n̂k, with f iku ; f ikv [ R and f iþkn ; f i�kn [ Rþ
0
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where Aeq is the equilibrium matrix, f consists of all internal
forces and p is the vector collecting the external forces – that
is, the net forces w and torques m acting on the centroids of
the blocks.

Let g be the number of blocks and h the number of the inter-
faces, relation (8) can be expressed as

9:

A0;0 � � � A0;h

..

. . .
. ..

.

Ag;0 � � � Ag;h

2
64

3
75

f 0
..
.

f h

2
64

3
75 ¼ �

p0
..
.

pg

2
64

3
75

where A j;k represents the equilibrium matrix for the Blockj
with respect to the Interfacek; fk is the vector collecting all
nodal forces on the lk-sided polygonal Interfacek; pj [ R6 are
the external forces acting on Blockj and, pj consists of trans-
lation self-weight wj [ R3 and rotational torque mj [ R3

parts. In particular, the jth row of Equation 9 represents the
equilibrium of Blockj. Specifically, it is written as taking into
account all interface forces concerning all blocks of the assem-
bly connected with Blockj.

The forces on the Interfacek acting on Blockj can be rep-
resented in a matrix form as

10: A j;k � f k ¼

akx akx � � � akx
aky aky � � � aky
akz akz � � � akz
bij;kx biþ1

j;kx � � � biþl
j;kx

bij;ky biþ1
j;ky � � � biþl

j;ky

bij;kz biþ1
j;kz � � � biþl

j;kz

2
66666666664

3
77777777775

f ik
f iþ1
k

..

.

f iþl
k

2
6664

3
7775

where akx ¼ n̂kx ûkx v̂kx½ �, bij;kx ¼ rij � n̂k
� �

x
rij � ûk

� �
x

h

rij � v̂k
� �

x
� and f ik ¼ f ikn f iku f ikv

� 	T
, where the torque arm

rij can be expressed as rij



 


 r̂ij, with r̂ij being the related unit

vector (Figure 3). It is worth noting that f ik collects the three
scalar components of the nodal forces with respect to the local
axes of the interface.

2.3.2 Penalty formulation and lower-bound values
Whiting et al. (2009) and Whiting (2012) introduced a penalty
formulation that decoupled the normal components f ikn of the
nodal forces f ik as

11: f ikn ¼ f iþkn � f i�kn

with f iþkn ; f
i�
kn [ Rþ

0 the positive and the negative parts of f ikn,
respectively.

2.3.3 Friction constraints
For a rigid-block assembly, the Mohr–Coulomb yield criterion
is commonly adopted to simulate the unilateral interaction
among the blocks to take into account the sliding phenomena.
It is represented by a conic yield surface. RBE takes into
account this aspect through an eight-sided cone constraint
to linearly approximate the conic surface. Specifically, the
friction constraint is enforced in the matrix form in terms
of f ik as

12: Afrf � 0

For more details, the reader is referred to Livesley (1992),
Whiting et al. (2009) and Frick et al. (2015). Since RBE is
based on a penalty formulation, two strategies can be adopted
to model the friction constraint through Equation 12. The first
relates the tangential forces with the net normal forces
(Whiting, 2012; Whiting et al., 2009), namely

13: f ikt


 

 � μ f iþkn � f i�kn

� �

the second relates the tangential forces only with the positive
part of the normal forces (Frick et al., 2015) – that is

14: f ikt


 

 � μf iþkn

where μ is the static friction coefficient. The first strategy
is called friction-net approach, whereas the second friction+
approach. With the friction-net approach, the optimisation
problem can get infeasible if the friction capacity is overcome.
Indeed, if the net force of Equation 13 is zero, the corres-
ponding tangential force is constrained to be zero. With
the friction+ approach, the problem is always feasible since
the solution in terms of tangential forces affects the normal
nodal forces due to the penalty formulation. In Section 3.1.2,
this aspect is illustrated through a simple benchmark.

It is pointed out that the friction constraint Equation 12
is defined on the interface nodes. In this sense, the friction
value used is a local friction coefficient. In what follows,
the friction capacity of an interface is post-processed as a
global friction capacity – that is, in terms of normal and
tangential interface resultants, to better understand the
physical behaviour. This does not affect the results, as if the
friction constraint is fulfilled locally (i.e. on interface corners),
namely

15: f ikt


 

 � μ f iþkn

� �
; 8i [ 1; . . . ; lkf g
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then, it is even globally satisfied (whole interface) – that is,

16:
Xk
i

f ikt


 

 � μ

Xk
i

f iþkn

To also overcome potential infeasibility states due to the fric-
tion-net approach, one can adopt a local friction value to be
used in the optimisation and define a threshold to detect if the
global friction capacity of an interface is overcome or not. In
the opinion of the authors, this last approach is consistent with
the RBE objective function since by also penalising the friction
forces, the method provides an equilibrium solution with the
smallest amount of tangential forces. In Section 3.1.2, the
main differences between these two strategies are illustrated,
but the friction-net approach is used in all remaining
applications.

2.3.4 Equilibrium as an optimisation problem
Once the equilibrium and friction constraints are introduced,
the equilibrium is solved as an energy-minimisation problem,
namely

f �QP ¼ argmin
f

1
2
f THf

s:t: Aeqf ¼ �p

Afr f � 0

17: Ilbf 	 0

where H ¼ diag cð Þ is a diagonal matrix and the entries of the
vector c are the weights attributed to the compressive, tensile
and friction forces (Whiting, 2012). To show the main features
of RBE and to illustrate some key points of a limit analysis-
based approach, the results of the optimisation problem 17 are
used and compared with the ones obtained using the same
constraints, but assuming a linear objective function – that is,

18: f �LP ¼ argmin
f

cTf

Problem 17 is a quadratic optimisation problem (QP) so it will
be referred to as the QP, whereas problem 18 is a linear-pro-
gramming problem indicated with linear optimisation problem
(LP). The solution of both the optimisation problems returns
nodal forces needed for the static equilibrium of the assembly
with the smallest amount of compressive, tensile (highly pena-
lised) and friction forces.

In the next analysis, to verify the results, all nodal forces acting
on an interface will be reduced to their resultants (forces and
torques if present) applied at the centre of the pressure of the
interface. Moreover, compressive nodal forces are plotted in
blue, tensile forces in red, interface resultants in dark green
and interface torques in black. However, in all of the examples
in the paper, torques are negligible and, thus, too small to be
recognised.

It is worth noting that the penalty formulation only regards
the normal contact forces. Thus, infeasible-equilibrated sol-
utions can be explored, even when the actual friction value is
overcome by adopting a high-friction coefficient and defining
a friction threshold in the post-processing phase to check if the
friction capacity of an interface is overcome (red interfaces) or
not (yellow interfaces). This approach is consistent with the
definition of the objective function of the optimisation pro-
blems since it allows finding equilibrated solutions with the
smallest amount of friction forces also. From the compu-
tational point of view, both QP and LP optimisation problems
will be solved with CVXPY (Diamond and Boyd, 2016) using
IBM CPLEX (CPLEX II, 2009) as a solver.

3. Applications
In this section, to illustrate, compare and interpret the RBE
results, three main examples are considered that have an
increasing complexity, thus an increasing static indeterminacy:
an assembly of two stacked blocks, a buttressed arch and a
dome. In all cases, both optimisation problems are adopted to
clarify the main differences between two approaches: QP and
LP. Additionally, it will be shown how to explore/select differ-
ent internal stress states on the reference configuration and
how to define the limit state for increasing horizontal loads.

3.1 Two stacked blocks
In this section, simple assemblies composed of two stacked
blocks are considered, to illustrate some features of RBE. For
all examples, only the self-weight is considered as an external
force. The first analysis (Section 3.1.1) illustrates the rule of
the normal contact forces by considering two blocks having a
horizontal interface in different scenarios obtained by horizon-
tally translating the upper block. With the second analysis
(Section 3.2), the role of the tangential contact forces is shown,
illustrating how the friction capacity can be taken into account
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using both friction strategies. In all cases, the analyses are
solved and compared using both the original quadratic formu-
lation (QP) and the linear one (LP).

3.1.1 Horizontal interface
In this section, an assembly composed of two vertically stacked
blocks with a horizontal contact interface is considered. The
upper block, whose centroid is denoted with a blue dot, is a
free block, whereas the bottom block, denoted with a red dot,
is assumed to be a support. Figure 4 shows the first RBE
analysis considering a fully connected interface. The solution
of both QP (Figure 4(a)) and LP (Figure 4(b)) returns nodal
forces that are vertical only. As one can notice, the distribution

of the nodal forces obtained through the QP is different from
the one obtained through the LP. In this case, the different
nodal force distributions over an interface are highlighted by
using a colour gradient.

Nonetheless, if the nodal forces are reduced to their resultants
(in green), one can observe that the same solutions are obtained.
These solutions are trivially in equilibrium being the resultants
going through the centre of mass of the upper blocks.

If the upper block is horizontally translated, as shown in
Figure 5, a different distribution of the normal contact forces
is always obtained from QP and LP. However, the resultants
are still the same.

This observation can also be noted in the last analyses (Figures
5(c) and 5(f)) where the vertical projection of the centre of mass
of the upper block is lying outside the interface; the tensile
nodal forces appear due to the penalty formulation expressed by
Equation 11. This last result represents a key feature of the
RBE approach. Despite other equilibrium approaches adopted
in the limit analysis framework, RBE goes beyond the Yes/No
answer coming from the feasibility/infeasibility of an optimis-
ation problem. Indeed, RBE allows non-stable solutions to
be described and, thus interfaces subjected to tensile forces to
be localised. In this sense, the penalty formulation enlarges the
space of admissible stress fields.

3.1.2 Inclined interface
In this section, to clarify the main features of both friction-net
and friction+, an assembly composed of two vertically stacked

QP

(a) (b)

LP

Figure 4. Two blocks stacked vertically with a horizontal contact
interface: nodal forces and resultants from QP (a) and LP
(b) formulations. The interfaces are depicted using a blue colour
gradient to differentiate different nodal-force distributions.
Resultants (in green) from both QP (a) and LP (b) formulation are
the same

QP

QP

(a) (b) (c)

(d) (e) (f)

Figure 5. Equilibrium results from the RBE when the upper free block is horizontally translated, both QP (a, b, c) and LP (d, e, f).
The problem is still feasible even when the upper block is in a non-stable condition (c, f)
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blocks having an inclined interface is considered. The inclination
of the interface is 23.6°, so the minimum friction value needed
to guarantee the static equilibrium of the assembly is 0.44. The
results are visualised in terms of nodal contact forces, normal
and tangential resultant forces and global resultants (in green).

Figure 6 exhibits the RBE results using the friction-net
approach. Specifically, a friction value equal to 0.8 and 0.6 is
assumed as a threshold for evaluating the friction capacity. In
this case, the interfaces are depicted in yellow since the global
friction capacity is not overcome. If a smaller threshold is
chosen (say 0.2) such that the friction capacity is overcome, the
solution (in terms of both nodal forces and resultants) is trivi-
ally the same, but the interface would appear in red. The use
of the friction+ approach does not change the results if prop-
erly coupled with a threshold value. Conversely, if the local
friction value is set as 0.2, with the friction-net approach, the
problem becomes infeasible as the friction constraints
(Equation 13) are not satisfied anymore. On the contrary,
using the friction+ approach, the problem is still feasible since,
as shown in Figure 7, the tangential forces affect the solution
of normal forces due to the penalty formulation.

Indeed, Figure 7 shows the RBE results using the friction+
approach and a local friction coefficient equal to 0.2. As one
can observe, with both QP and LP approaches (more evident
in the second case), RBE finds a tensile tangential force in a
corner (orange circle in Figure 7). In particular, referring to
(Equation 14), at that corner, RBE finds both a non-zero posi-
tive (f iþkn ) and negative (f i�kn ) part, which results in a negative
normal component f ikn (tensile force) being f iþkn , f i�kn . In this
sense, the friction constraint, written as a function of the posi-
tive part, is still satisfied.

Remark 2. It is worth to mention that when no tensile force
appears (i.e. f i�kn is zero), Equations 13 and 14 become identical;
hence, friction+ and friction-net provide the same solution.

3.1.3 Discussion
By looking at the nodal force distributions, in all cases, the LP
solution is different from the QP. In particular, the QP
approach tends to activate all nodes selecting solutions whose
nodal forces have to be distributed as smooth as possible.
Moreover, although every solution obtained with the QP
approach can be a solution to the LP, the contrary may not
happen. Indeed, the value of the QP objective function in the
case of Figure 4(b) is greater than the one assumed for the sol-
ution depicted in Figure 4(a), while the LP objective function
provides the same value for both solutions. For this reason, it
is easy to observe that the solution space of LP is larger com-
pared with that of QP.

The QP approach selects a nodal force distribution that comes
from an elastic interpretation of the EP (Angelillo et al., 2010).
The LP formulation considers the interface as rigid and then
infinite admissible stress states are possible (Iannuzzo et al.,
2020). From a limit analysis point of view, there is no reason
to prefer one over another, since both represent admissible sol-
utions. Furthermore, in terms of interface resultants, both are
the same since the problem is statically determined.

In the second benchmark, two blocks with an inclined inter-
face are analysed to illustrate the main differences between fric-
tion-net (Equation 13) and friction+ (Equation 14) approaches
that are solved using QP and LP (Figure 7). Both are valid
strategies, particularly when coupled with a threshold to evalu-
ate global friction capacity. The main difference is that, when

QP LP

(a) (b)

Figure 6. Solution of the QP (a) and LP (b) optimisation
problems with the Friction-net approach. Two blocks stacked
vertically with an inclined interface (25°). The friction coefficient
is equal to 0:8 and the threshold is set to 0:6: the interfaces are
depicted in yellow, meaning that the friction capacity is not
overcome

QP LP

(a) (b)

Figure 7. Solution of the QP (a) and LP (b) optimisation problems
with the Friction+ approach. Two blocks stacked vertically but
with an inclined interface (23:6°). The friction coefficient here is
assumed equals to 0:2. The interfaces are depicted in red,
meaning that the friction capacity is overcome
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the local friction value is overcome, the problem is infeasible
with the friction-net approach, whereas with the friction+
approach it is still feasible but the normal force distribution is
affected by the tangential behaviour due to the penalty formu-
lation. In this sense, the friction+ approach seems more in-line
with the aim of RBE. Physically, it can be imagined that the
friction+ approach activates a tensile capacity (as a glue) that
also provides a shear strength. Nonetheless, for many masonry
problems, the friction-net approach is more useful when the
aim is to explore the feasibility of the problem to catch ulti-
mate equilibrium states. For this reason, in what follows, the
friction-net strategy is adopted, assuming the friction coeffi-
cient to be 0.8 and the friction threshold to be 0.6.

3.2 Semi-circular arch on buttresses
In this section, a semi-circular arch on buttresses is considered to
illustrate how RBE can be applied to assess unreinforced
masonry structures. The geometry of the buttressed arch is the
same used in Iannuzzo et al. (2020) where it was analysed to
show the peculiarities of the piecewise rigid displacement (PRD)
method, an energy-based limit analysis approach (Iannuzzo,
2019; Iannuzzo et al., 2018). The semi-circular arch has an
internal radius of 1.00 m, a thickness of 0.30 m, an orthogonal
depth of 0.50 m and is discretised into 15 voussoirs. The two
buttresses have a height of 2.5 m, a base of 0.70 m and a depth
of 1.00 m and are partitioned into 12 elements. The two bottom
blocks of the buttresses are considered as supports. The structure
has a uniformly distributed mass density ρ ¼ 1800kg=m3, and
0.6 is assumed as the friction threshold. In Section 3.2.1, the
initial geometry is analysed. In Section 3.2.2, how to explore
different equilibrated solutions is shown, whereas in Section
3.2.3, a tilting test of the structure is performed.

3.2.1 Initial configuration: LP against QP solutions
The first analysis considers the buttressed arch in its initial con-
figuration. Figure 8 shows the solutions obtained by solving
the QP and LP, respectively. As in the previous examples, the
nodal force distributions, highlighted by the blue colour gradi-
ent, are different. However, although the two stacked blocks of
Section 3 can admit only one equilibrated solution in terms of
interface resultants, as the buttressed arch is statically indeter-
minate, the interface resultants are not the same, even if almost
identical. Indeed, both QP and LP return solutions close to
the minimum thrust. Moreover, as one can observe, thrusts in
the buttresses are everywhere within the kern, meaning that all
buttress interfaces are activated fully in compression.

3.2.2 Explore different admissible-equilibrated
stress states

In this section, a procedure is illustrated that can be used to
explore different admissible, singular, internal, stress states.
The idea is to consider new virtual interfaces, which can be

obtained by tightening the original interface and writing the
equilibrium Equation 8 on these new (reduced) interfaces.
Following this approach, a thrust line solving the EP is con-
sidered, that either crosses or is as close as possible to the new,
reduced interfaces. A similar procedure was adopted by
Iannuzzo et al. (2020) using the PRD method. Although, in
Iannuzzo et al. (2020) only a precise Yes/No answer could be
obtained, with the RBE approach and its penalty formulation
a solution can also be selected that does not fit the prescribed
requirement completely. In this case, tensile forces on the
nodes of the reduced interfaces can appear, meaning that the
thrust line cannot be contained within the reduced interfaces.

In Figures 9(a) and 9(c), the key-stone interface is tightened to
explore a maximum thrust condition for the semi-circular arch,
which leads the buttresses under the worst working conditions,
being the interface resultants outside the kern at the bases of
the buttresses. Figures 9(b) and 9(d) show the results obtained
by enforcing the thrust line to go through the kern of all inter-
faces of the arch (kern-fitting). Both the QP and LP return
almost identical interface resultants, thus only the resultant
forces are visualised.

Moreover, using the friction-net approach, it can be possible to
select an internal stress state that also fulfils particular require-
ments of the friction capacity. Indeed, if a low value for the
friction coefficient is chosen (thus, without adopting a
threshold strategy), the problem can become infeasible. The
lowest value of the friction angle for which the problem is still
feasible represents the minimum friction value required by the
assembly to be in static equilibrium. In this case, the minimum
value is found to be 0.31. In Figure 10(a), the solutions for the
corresponding EPs are depicted both in terms of nodal forces

QP LP

(a) (b)

Figure 8. A buttressed arch in its initial reference configuration:
both QP (a) and LP (b) solutions return a thrust line that is linked
to a minimum thrust condition of the semi-circular arch. The
interface resultants in the buttresses are everywhere within the
corresponding interface kern
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and resultants. It can be noted that the resultants are every-
where within the reduced friction cone.

3.2.3 Tilting test: horizontal external forces
A common way adopted for considering the stability of masonry
structures when subjected to horizontal static forces is to
perform a tilting test (Block et al., 2006b). This scenario is mod-
elled by rotating the gravity vector until tensile forces appear.
The maximum value of the tilting angle for which the thrust line
is everywhere within the structural domain is 12°, which corre-
sponds to a horizontal static multiplier of 0.21, which is very
close to the one found in Iannuzzo et al. (2020). In Figure 10(b),
the solutions are depicted: it touches the structural boundary in
four points, three on the arch and one at the base on the right.
These four points suggest a mechanism that is the same as that
found in Iannuzzo et al. (2020), as the PRD approach allows
also evaluating mechanisms due to seismic forces.

3.2.4 Discussion
In this section, considering a buttressed arch, some RBE ana-
lyses are performed using both QP and LP approaches: assessing

the initial configuration; exploring various internal equilibria;
finding the minimum friction and evaluating the maximum hori-
zontal static multiplier for which the assembly is still in equili-
brium. All analyses show that solving the QP and LP, different
nodal forces can be obtained, confirming the discussion in
Section 3.1. Despite the case of stacked blocks, which is globally
(in terms of interface resultants) statically determined, the but-
tressed arch is globally statically indeterminate, and, for this
reason, when the initial configuration is considered, the QP and
LP solutions, in terms of resultants, are slightly different.
Nonetheless, the QP and LP solutions are the same when
approaching a limit state (e.g. tilting test), since the solution is
unique and using the friction-net approach is dictated by the
feasibility of the problem. In the next section, how an increase in
the global indeterminacy of the system can increase the differ-
ences between QP and LP is shown. Nonetheless, it is pointed
out that in any case, solutions coming from both the optimis-
ations represent two statically admissible stress fields, and in this
sense, safe solutions matching the spirit of the safe theorem.

3.3 Hemispherical dome
In this section, a hemispherical dome is considered with an
oculus to illustrate how to apply RBE to assess 3D-unrein-
forced masonry structures. The centre-line radius R of the
dome is 5 m whereas the thickness t is assumed to linearly
vary from the bottom base (0.50 m) to the top part (0.25 m).
The radius r of the oculus is 1 m.

The dome is discretised using 14 meridian slices and 10 in par-
allels; therefore, the number of blocks is 140. The blocks of the
bottom ring are assumed as supports (Figure 11). The struc-
tural complexity of the dome is larger than the one of the

Maximum thrust QP/LP Arch kern-fitting QP/LP

(b)(a)

(d)(c)

Figure 9. In (a), the mid-span interface of the semi-circular arch is
reduced as highlighted in (c) to select an admissible internal stress
state for which the thrusts exerted on the buttresses are
maximised. The same solution can be obtained by reducing the
two base-interfaces of the arch (towards the extrados). In (b), the
interfaces of the semi-circular arch are virtually reduced to their
kerns as highlighted in (d) to seek if there is a thrust line that fully
activates the arch in compression. As one can observe, the thrust
is outside the mid-span interface. For both examples, the results
of the QP and LP are almost identical, so the resultant can only be
visualised in (a) and (b)

QP LP

(a) (b)

Figure 10. In (a), using the friction-net approach, RBE returns
0.31 as the lowest value of the friction coefficient for which the
assembly is still in equilibrium. The resultants are everywhere in
the friction cone. In (b), the buttressed arch subjected to a tilting
test: the maximum angle for which the resultants are everywhere
within the structural geometry is 12°
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buttressed arch since, in the present case, the graph G V ;Eð Þ
describing the data structure is 2D. In Section 3.3.1, the initial
geometry is analysed using both QP and LP. In Section 3.3.2,
different equilibrium solutions are explored, including kern-
fitting and inner/outer base-fitting analysis. In Section 3.3.3,
the dome subjected to horizontal action is assessed and the
maximum value of the horizontal multiplier is defined.

3.3.1 Initial configuration: LP against QP solutions
In this section, an RBE analysis of the reference configuration
is proposed, without considering any further constraint.
Figures 12(a) and 12(b) show results from QP and LP optimis-
ations. The interfaces are still coloured using a blue-gradient
colour map. However, the white interfaces denote the sections
without any nodal force, or with forces less than a threshold
value fixed at 10�2 of the maximum compressive force. Even
though RBE can provide stress solutions with tensile forces, it
returns a purely compressive internal stress state for which part
of the meridian interfaces are affected by zero hoop forces
(Heyman, 1997). Nonetheless, QP and LP solutions show
different nodal force distributions that illustrate how the differ-
ence in terms of interface resultants is more evident in the
present case than that in the previous ones. This aspect reflects
on the extension (from the base) of the non-zero hoop-forces
area (Figure 12). Moreover, the QP resultant is radial
symmetric whereas the one from LP is not.

3.3.2 Exploring different equilibrium states
In this section, different internal stress states are explored. The
first analysis is what is called a kern-fitting analysis – that is,
an internal admissible stress field is considered, that every-
where is within the kern of all interfaces. The kern-fitting

analysis coupled with the next inner/outer base-fitting analysis
can provide a measure of the stability of the dome under its
self-weight, and whose results can be related to the geometric
safety factor (Huerta, 2006b). In Figures 13(a) and 13(b), the
results of a kern-fitting RBE analysis are depicted: the inter-
faces are virtually reduced to their kern to seek if there is an
internal stress field that fully activates all contacts. Figures 13
(c)–13(f) show the results of two analyses aimed at exploring
admissible stress fields that are as much as possible close to the
outer and inner parts of the supports, respectively. These
results are obtained by virtually shrinking the bottom inter-
faces towards either the outer or the inner surface.

3.3.3 Tilting test: horizontal external forces
As for the buttressed arch, a tilting test is performed to explore
the maximum allowable capacity of the dome subjected to
horizontal actions. The maximum tilting angle found with
RBE and both LP and QP analyses is 32°. Figure 14 shows the
flow of the resultants within the structure. Despite the previous
case, this RBE analysis is stopped because, using the friction-
net approach, the problem becomes infeasible before tensile
stresses appear (0:6 is adopted as the local friction value, to be
consistent with the threshold value used in all analyses).

3.3.4 Discussion
In this section, looking at a dome with an oculus, different equili-
brium solutions on the reference configuration are explored
checking also its maximum capacity under increasing horizontal
static actions. First, looking at the RBE analyses proposed in
Sections 3.3.1 and 3.3.2, it is worth noting that even though RBE
is based on a penalty formulation, which allows tensile forces, it
always returns (when admissible) solutions having part of the
meridian interfaces affected by zero hoop forces. Second, the

r

t R

Figure 11. Cross-section and discretisation of the hemispherical
dome: main dimensions. The mean radius R is 5 m; the radius of
the oculus r is 1 m and the thickness t is assumed to linearly vary
from 0.5 m (base) to 0.25 m (oculus)

QP LP

(a) (b)

Figure 12. RBE analysis of the reference configuration: QP (a) and
LP (b) solutions. The interface colour-distribution shows that these
two solutions are locally different. Moreover, also the interface
resultants are different, being the QP solution radial-symmetric.
The white interfaces denote zero hoop-force regions
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structural complexity of a dome is higher than the one of a but-
tressed arch, being the network of the graph GðV ;EÞ bi-dimen-
sional. From this aspect, the hemispherical dome reflects into a
larger statically indeterminate problem, which also affects the
output of the QP and LP analyses, showing larger differences if
compared with the buttressed arch. It has been shown how RBE
can be used to explore different singular, internal stress states by
using virtual interfaces (Section 3.3.3). Despite other force-based
approaches (e.g. thrust network analysis by Block, 2009), the
RBE objective function does not allow handling the value of the
forces in particular points directly. This aspect can be addressed

by changing the objective function to one that takes only into
account the value of the force in certain points (e.g. on the sup-
ports) and/or directions (e.g. horizontal, vertical, tangential, etc.).
The capacity of the dome subjected to increasing, horizontal
static actions has been explored. In this case, the incremental
analysis ends because the problem becomes infeasible, and in this
case the objective function does not play any role anymore.

4. Discussion
In this section, the main outcome is summarised into two
main discussion points.

First, two different objective functions have been proposed and
compared, a LP and the original QP, to illustrate the RBE fea-
tures. The main outcome is that both QP and LP provide stati-
cally admissible solutions in the spirit of limit analysis,
meaning that there should not be any reason to prefer one to
the other. To illustrate this concept, one can observe Figure 4.
The two blocks are in contact in four points: it can be possible
to interpret the QP and LP results making parallelism with the
four-legged stool simply supported on the ground (an example
often used to explain the limit analysis approach; Heyman,
1997, 2019). The four-legged stool is a statically indeterminate
system and, thus, infinite solutions are possible depending on
the actual contact (unknowable) between the table and the
ground. The QP solution reported in Figure 4(a) represents an
ideal elastic solution, meaning that the contact is assumed to
happen in four points. All nodal forces are as much distributed
as possible since the objective function is quadratic, which can
be correlated with linear elastic interface energy. Conversely,
the LP solution presented in Figure 4(b) is just one of the infi-
nite admissible solutions. The equilibrium is guaranteed using
only two contact points. Furthermore, looking at the results of
Section 3.1, the solution provided by the LP objective function
cannot minimise the QP. On the contrary, QP solutions are
always solutions to the LP. In this sense, the LP objective

QP

Kern-fitting

Inner base-fitting

Outer base-fitting

LP

(a) (b)

(c) (d)

(e) (f)

Figure 13. In (a, b), the results of the kern-fitting RBE analysis: QP
(a) and LP (b) solutions. The interface resultants are enforced to go
through all interface kerns. In (c, d), the resultants are enforced to
go through the inner part of the support: QP (c) and LP (d)
solutions. In (e, f), the resultants are enforced to go through the
outer part of the support: QP (e) and LP (f) solutions. In all cases,
QP and LP return two solutions that are very similar, particularly if
one looks at the non-zero hoop-force areas

(a) (b)

Figure 14. Horizontal capacity analysis: the maximum tilting
angle is 32°, obtained with both QP and LP approaches: top view
(a) and side-view (b).
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function further widens the space of solutions provided by the
QP optimisation. Despite the force distribution is indetermi-
nate, the structure is statically determined if the two blocks
assembly globally are considered. The solution in terms of
resultants has to be the same regardless of the objective func-
tion. As the structural indeterminacy grows up, the solutions
of the QP and LP approaches start becoming different from
each other (Sections 3.2 and 3.3). The higher the indetermi-
nacy is, the greater the differences are. Indeed, in the dome
case, the LP and QP solutions show the highest differences,
even in terms of resultants. Finally, if the aim is to select a
‘smooth’ solution, the QP provides elastic solutions that are as
much as possible distributed, which also reflects into sym-
metric solutions for symmetric models. If the aim is to widen
the QP solution space, the LP can provide admissible solutions
that are consistent with a perfectly rigid model.

Second, it has been shown that the RBE method can be used to
explore different equilibrated states of an indeterminate structure.
The concept of new virtual interfaces is utilised, which can be
obtained by tightening the original interface andwriting the equi-
librium constraint on these virtual interfaces. Particularly, intro-
ducing the correct definition of the kern of a section, admissible
solutions are considered, that can fully activate a set of selected
interfaces. This aspect is crucial when the need is to assess the
stability of a structure, especially through the estimation of the
geometric safety factor. Finally, even if RBE is based on a
penalty formulation, it has been demonstrated that this does not
affect the search for a limit state. Specifically, when the structure
is under a limit condition, the space of solutions may include
only one element if the solution is unique (see Sections 3.2.3 and
3.3.3, where tilting test analyses were performed).

5. Conclusion
In this paper, the RBE method has been explored and further
developed, paying particular attention to typical masonry
assessment problems. RBE is a force-based method that solves
the EP through an optimisation process where the objective
function minimises the total amount of interface forces and
the constraints are represented by linear relations enforcing the
static equilibrium and the friction failure conditions. It is
worth pointing out that tensile forces are allowed even though
highly penalised: in this sense, RBE enlarges the space of
admissible stress states. Currently, RBE is implemented in
COMPAS (Van Mele et al., 2017) and it is an open-source,
Python-based package within the COMPAS Masonry frame-
work (Iannuzzo et al., 2021). First, the RBE analysis of two
simple benchmark cases has been performed to show the
meaning of the nodal contact forces and to illustrate how the
friction capacity is handled. Second, the same buttressed arch
proposed in Iannuzzo et al. (2020) has been analysed to bench-
mark and illustrate the potential of RBE clearly. Finally, a

dome with an oculus has been considered, to show how RBE
can be used to assess 3D structures also. The main insights of
the current research study are the following:

& the kern of a generic polygonal interface has been
introduced as a primal variable in the optimisation process.
Its use allows to assess and define the range of external
actions for which the structure or its part is fully working
in compression;

& how to use RBE to explore different internal admissible
stress states by virtually reducing the interface (e.g. to its
kern) is highlighted. This is a key aspect of RBE method,
since it leaves the problem feasible as the virtual reduction
does not affect the feasibility of the problem, and in this
sense, RBE returns as a solution the one that best matches
the prescribed requirement;

& furthermore, since RBE implicitly takes the thickness of
the assembly into account, it provides a larger range of
statically admissible solutions when compared with
methods that use compressive 2D or one-dimensional
elements;

& the main differences in using a friction-net and friction+
approach are highlighted and it is shown how the friction-
net approach can be more useful when the aim is to
evaluate ultimate states ruled by the friction capacity (e.g.
3D mechanisms, Section 3.3.3); and,

& to understand the rule of the nodal forces, all analyses are
performed and compared using the original quadratic
objective function and a linear one. They both provide
admissible stress states but the difference among them
increases as the dimension of the graph network, as thus
also indeterminacy of problem increases. The quadratic
formulation considers the distribution of the nodal forces
as much as possible and it comes from an elastic
interpretation of the contact among blocks, whereas the
linear one considers interface as a rigid element.

The main outcome of this paper is that both QP and LP
approaches provide statically admissible solutions in the sense
of limit analysis. Since in reality, it is hopeless to try to under-
stand the actual contact condition, there is no reason to prefer
one to another, being each solution a possible admissible stress
state. Unless one has to face very large problems, for which LP
solutions are more affordable (i.e. less time consuming). In this
light, RBE is a powerful tool that can be used to explore a
wide range of equilibrium states and corresponding stress
solutions and its use allows tackling typical masonry assess-
ment problems properly.
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