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a b s t r a c t 

This paper proposes an extension of the Piecewise Rigid Displacement (PRD) method based on a new dual 

linear programming problem that minimises the complementary energy. Before, the PRD method had 

been applied to solve the kinematical problem for masonry-like structures composed of normal, rigid, 

no-tension (NRNT) material minimising the total potential energy. Specifically, the PRD method frames 

this minimum-energy search as a linear programming problem whose solutions are displacements and 

singular strain fields (cracks). 

Here, we show that the corresponding dual linear programming problem discretises the minimum of 

the complementary energy and returns, as solutions, admissible internal stress states compatible with 

the crack pattern obtained by solving the primal problem. Thus, these two minimum-energy criteria are 

dually connected, and their combined use allows coupling mechanisms and internal forces with settle- 

ments or homogeneous boundary displacements. This allows addressing different mechanical problems: 

equilibrium and stability of the reference configuration, effects of settlements, and mechanisms due to 

overloading (e.g. horizontal forces). Since the NRNT material represents the extension to continuum me- 

dia of Heyman’s material model, the PRD method offers an extremely fast, limit analysis-based, displace- 

ment approach that allows simultaneously finding mechanisms and compatible internal forces for any 

boundary condition, loads and geometry. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Stability of unreinforced masonry (URM) structures relies pri-

arily on their geometry rather than on material strength [1] . Be-

ause of the negligible capacity in tension of masonry, common

ophisticated structural analysis methods, successfully employed

or other construction and primarily based on the material failure,

annot be applied, mainly because of their inability to catch zero-

nergy modes [2 , 3] , which are very common in masonry struc-

ures [4] . Indeed, because of the constitutive unilateral behaviour

f masonry, whenever a construction is exposed to small changes

n the external environment (e.g. settlements), it cracks, decom-

oses into rigid macroblocks and accommodates those changes in

 new stable configuration [5] . A good model cannot ignore this

eculiar behaviour. Several works that model the material with

nilateral constitutive relations have been proposed [6–8] . In the

urrent paper, neglecting the elastic deformation in compression,
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e assume as constitutive relation the normal, rigid, no-tension

odel (NRNT) [9] , which frames the Heyman material relations

10] into continuum mechanics and, more importantly, allows for 

he application of Limit Analysis. The Heyman model, even though

s a crude idealisation of the masonry behaviour, is commonly con-

idered as one of the best approaches to look for the ultimate

tate of masonry structures exposed to overloads or foundation

isplacements. Despite that some robust numerical methods have

een proposed to computationally solve the equilibrium problem

11–15,37] , the solution of the kinematical problem is usually

eached making simplified assumptions on the shape of the mech-

nism. Moreover, while the former can give only in some cases a

ough idea of the potential crack pattern, the latter approaches are

estricted to very simple geometries for which the mechanism is

ualitatively known in advance. In any case, there still is the need

or a general, displacement-based approach. For this purpose, the

iecewise rigid displacement (PRD) method was conceived, solv-

ng the kinematical problem through the minimisation of the po-

ential energy [16–18] . In the present paper, we show how the

riginal minimum energy search gives rise to a new, dual linear
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programming problem, which represents the minimum of the

complementary energy for NRNT materials [19] . We show that,

by solving them simultaneously, the PRD method allows coupling

mechanisms/cracks with internal stress states. The PRD method

can be applied to any geometry and can address several me-

chanical scenarios: stability of the initial configuration, effects of

overloading and, most importantly, modelling foundation settle-

ments. In particular, the latter represents the main challenge of

this research field since the settlements are the main cause of the

common crack patterns that can be seen in masonry structures

[1 , 4 , 5 , 20,34] . 

2. The Heyman model framed into continuum mechanics 

In what follows, a 2D masonry structure is modelled as a con-

tinuum occupying the region �. Let T be the stress in �, u the dis-

placement field and E the corresponding infinitesimal strain field.

Let the boundary ∂�, having n as unit outward normal, be parti-

tioned into the constrained part ∂�D , where the displacement field

assumes the value ū , and the loaded part ∂�N where the applied

load is s̄ . 

2.1. NRNT material 

The Heyman material model can be framed into continuum me-

chanics as a material characterised by these relations: 

T ∈ Sy m 

−, E ∈ Sy m 

+ , T · E = 0 , (1)

where Sym 

−and Sym 

+ are the mutual polar cones of semidefinite

negative and positive symmetric tensors, respectively. Relations

(1) define the normal, rigid, no-tension (NRNT) material [9] and,

are the necessary ingredients to apply limit analysis since they are

equivalent to the normality and dual-normality conditions [9] . 

2.2. Boundary value problem 

The Boundary Value Problem (BVP) for a continuum composed

of NRNT material can be summarised as: 

E = Sym ∇u , E ∈ Sy m 

+ , u = ū on ∂ �D , (2)

div T + b = 0 , T ∈ Sy m 

−, Tn = s on ∂�N , (3)

T · E = 0 . (4)

where Sym ∇ u : = ( ∇ u + ∇ u 

T )/2. A solution of the BVP is a triplet

( u 

∗, E 

∗, T ∗) satisfying Eqs. (2 –4 ) simultaneously. In what follows,

we extensively use the sets of admissible displacement K and

stress H fields: 

K = 

{
u ∈ SBV / Sym ∇u ∈ Sy m 

+ & u = ū on ∂ �D 

}
, (5)

H = 

{
T ∈ SBM / div T + b = 0 , T ∈ Sy m 

−, Tn = s on ∂�N 

}
, (6)

in which SBV and SBM are the set of special bounded variation

functions and the set of special bounded measures [21] , respec-

tively. Thus, a triplet ( u 

∗, E 

∗, T ∗) is a solution of the BVP if and only

if u 

∗ ∈ K, T ∗ ∈ H, and T ∗ • E 

∗ = 0. 

Remark 1. Note that for this formulation the domain � has to be

closed on ∂�D [17] , while the emerging stress tensor s ( T ) on the

boundary (i.e. the trace of T ) can be written in the Cauchy form

Tn only if the stress T is regular, otherwise, if the stress T cross-

ing the boundary in X ∈ ∂� is singular (i.e. a uniaxial stress in the

form of a line Dirac delta distribution), the trace has to be written

as s ( T ) = P δ( X ) t where the scalar P is the magnitude of the sin-

gular stress and t is a unit vector directed as the uniaxial stress T
[14 , 17] . � T
.3. The kinematical and the equilibrium problems 

Following the approach used in [9,19] , every time we are look-

ng for an element of K solving the BVP, we are solving the

inematical problem (KP); conversely, searching for an element of

solving the BVP means solving the equilibrium problem (EP)

30,35,36] . KP and EP are defined as compatible if K and H are

ot void, respectively. Two approaches can be adopted to solve KP

nd EP: 

- a displacement approach , that is, by looking for a displacement

field u ∈ K for which there exists a stress field T ∈ H such that

T • E ( u ) = 0; 

- an equilibrium approach , that is, by looking for a stress field T ∈
H for which there exists a displacement field u ∈ K such that T
• E ( u ) = 0. 

We will show that the PRD method gives rise to two dual linear

rogramming (LP) problems: the primal solves the KP using a dis-

lacement approach, while its dual LP problem solves the EP with

n equilibrium approach. 

.4. Singular stress and strain fields 

To account for singularities involving both displacements u and

tresses T [22 , 23] , the strain E and the stress T can be additively

ecomposed into regular ( •) r and singular ( •) s parts: 

 = E 

r + E 

s , T = T 

r + T 

s . (7)

From here on, we neglect the regular part E 

r of the latent

train E . Even though it is possible to account for the regular

art E 

r [16 , 20] , the reason behind the use of only singular strains

rises directly from the observation of the peculiar behaviour

f URM structures that when severely shaken by an earthquake

r subjected to settlements, decompose into rigid macro-blocks

1 , 5 , 10 , 24] identified by a finite number of cracks. Mathematically,

hese cracks can be modelled as lines where displacement jumps

 u ] occur [17] . The best approach to model these jumps is to use

irac delta functions. Therefore, let the curve � be the support of

 discontinuity (crack) and n and t the normal and tangential unit

ectors to �, respectively. The strain is singular and can be written

s 

 = v δ( �) n ⊗ n + 

1 

2 

w δ( �) ( t ⊗ n + n ⊗ t ) , (8)

n which δ( �) is the Dirac delta function having � as support and

 and w are: 

 = [ u ] · n , w = [ u ] · t . (9)

Moreover, the material assumption E ∈ Sym 

+ restricts Eqns.

9) to be such that [16] 

 = [ u ] · n ≥ 0 , w = [ u ] · t = 0 . (10)

Therefore, for NRNT materials, allowing singular strain fields

nly, it results that 

 = v δ( �) n ⊗ n . (11)

Similarly, the singular part of the stress field, having a curve �

s support, can be written as 

 

s = P δ( �) t ⊗ t , (12)

here t is the unit tangent vector to the curve � and the scalar P is

he magnitude of the concentrated stress. The material restriction

 ∈ Sym 

− implies P ≤ 0 [22] . 
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. The search for a solution through two energy criteria 

In this section, we recall the two energy criteria that can be

sed to solve the BVP for NRNT materials even in the presence of

ingular fields . The first one concerns the minimisation of the total

otential energy ℘( u ) while the second one regards the minimisa-

ion of the complementary energy ℘ c ( T ). 

With the first criterion, following a displacement approach, we

ook for a minimiser of ℘( u ) in the set of kinematically admis-

ible displacements K; conversely, the second criterion, following

n equilibrium approach, consists in the search for a minimum of

 c ( T ) in the space H of admissible stress states. 

.1. Minimum of the total potential energy 

Since the NRNT model takes into account neither the elastic nor

he interface energy, the total potential energy ℘( u ) reduces to its

inear part 

 ( u ) = −
∫ 
∂ �N 

s̄ · u ds −
∫ 
�

b · u da . (13)

As proved in [17] , the solution of the BVP is the minimiser u 

∗
f ℘( u ), that is, the displacement field u 

∗ such that: 

 ( u 

∗) = min 

u ∈K 
℘ ( u ) . (14) 

.2. Minimum of the complementary energy 

For NRNT materials also the complementary energy loses the

onlinear part and reduces to 

 c ( T ) = −
∫ 
∂ �D 

s ( T ) · ū ds , (15) 

n which s ( T ) is the trace of the stress tensor on the constrained

oundary ∂�D . As shown in [19] , when using an equilibrium ap-

roach, the search for a solution of the BVP can be carried out find-

ng a minimiser T ∗ of the complementary energy: 

 c ( T 

∗ ) = min 

T ∈H 

℘ c ( T ) . (16) 

emark 2. It is worth to recall the result on the minimum princi-

le (13) shown in [17] : if the EP is compatible ( H � = ∅ ) and the KP

s homogeneous, u 

∗ = 0 is a minimum solution. Furthermore, any

 ∈ H constitutes an admissible stress solution since T • E ( u 

∗) = 0,

 T ∈ H. The physical meaning of this results is the following:

hen a structure is not subjected to foundation displacements (i.e.

omogeneous boundary condition), and an admissible stress state

xists ( H � = ∅ ), the structure is stable in its configuration, no cracks

ccur (i.e. u 

∗ = 0 is a solution) and any element of H is an ad-

issible stress solution. This result perfectly fits the spirit of Limit

nalysis [10] , since if there are no settlements, and the load is

ompatible, there are infinite possible admissible stress states un-

ess H is a singleton (i.e. the structure is in a limit state). �

. PRD method: two dual energy-based LP problems 

In this section, after recalling how the PRD method reduces

he minimum problem (14) to a linear programming (LP) problem,

e show how its dual LP problem represents the discretization of

he minimum problem (16) . The combined use of these two dual

nergy-criteria allow coupling mechanisms, that are solutions of

he primal problem, with internal and external forces, solving the

orresponding dual problem. 
.1. The primal problem: minimum of the total potential energy 

For each polygonal, M-element partition of �

( �i ) i ∈ { 1 , .., M } , (17) 

he PRD method, as shown in [17 , 18] , allows to dicretise and trans-

orm the minimum-energy problem (14) into the following LP

roblem 

inimise − c · U (18) 

ubject to A 

int 
ub U ≥ 0 , A 

int 
eq U = 0 , (19)

A 

ext 
ub U ≥ −δn , A 

ext 
eq U = −δt , (20)

here the internal material restrictions (10) are enforced by ma-

rix relations (19) and the non-homogeneous boundary conditions

hrough (20) , in which the vector δn [ δt ] collects the normal [tan-

ential] components of the prescribed boundary displacement. The

bjective function (18) is the total potential energy of the external

oads, that is, the opposite of the work done by the external forces

 (two forces and a torque per element) and the corresponding La-

rangian parameters U of the elements of the partition (17) . With

 i [ 𝓁 c ] the number of the internal [constrained (i.e. the ones lying 

n the constrained boundary)] interfaces (i.e. the ones common for

wo elements), both matrices in (19) [(20)] are composed of 3 M

olumns and 2 𝓁 i [ 2 𝓁 c ] rows. 

We will refer to the LP problem (18–20) as the PRD method’s

rimal problem (P). 

emark 3. Relations (19, 20) define the subset K PRD [17] of the

pace K of kinematically admissible displacements. K PRD repre-

ents the space of all possible mechanisms generated by the orig-

nal partition (17) , and, thus, the energy criterion (19) selects,

mongst all the ∞ 

3M mechanisms belonging to K PRD , the one/ones

olving the BVP. �

.2. The dual problem: minimum of the complementary energy 

The LP problem (P) can be written as the equivalent problem

P’): 

aximise c · U (21) 

ubject to A ub U ≥ −δn (22) 

A eq U = −δt , (23) 

here A ub [ A eq ] collects vertically the matrices A 

int 
ub 

[ A 

ext 
ub 

] and A 

ext 
ub 

 A 

ext 
eq ] and δn [ δt ] collects the zero vectors arising from the inequal-

ties [equalities] and the potential non-zero vector δn [ δt ] collecting

he normal [tangential] components of the displacements on the

onstrained boundary. Now, consider this new linear programming

roblem (D): 

inimise − f n · δn − f t · δt (24) 

ubject to A 

T 
ub f n + A 

T 
eq f t = c (25)

f n ≤ 0 , f t ∈ R 

2 ( 𝓁 i + 𝓁 c ) . (26)

The LP problem (D) is the linear program dual to the linear pro-

ram (P’). Furthermore, since (P) and (P’) are equivalent, the LP

roblem (D) is also the dual of the LP problem (P). From here on,

e call the problem (D) as the dual problem and the original prob-

em (P) the primal problem. 
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Fig. 1. The solution of the primal problem (P) is u ∗ = 0 , thus the structure is stable. 

In (a,b), two solutions of the dual problem (D): the structure is statically indeter- 

minate and the set H PRD is composed of infinite admissible stress states T . In (c,d), 

two admissible stress states obtained by constraining the flow of forces to cross a 

tighter support base, symmetrically reduced through a scale factor r . 
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In particular, f n and f t are both 2( 𝓁 i + 𝓁 c ) dimensional vectors,

the former representing the normal forces dual to the unilateral

constraints (22) , while the latter the tangential forces dual to the

bilateral (equality) constraints (23) . The matrix expression (25) ex-

actly represents the equilibrium of the elements composing the

partition (17) . Indeed, it is governed by the transpose of the kine-

matic matrices of the problem (P). The objective function (24) is

the opposite of the product of dual forces f n and f t and the dis-

placements δn and δt . 

Particularly, since the displacement field can be non-zero only

on the constrained boundary, the objective function (24) reduces

to the opposite of the product of the reaction forces and the (po-

tential) non-zero boundary displacements. Therefore, it represents

the complementary energy for an NRNT material. 

Defining f = [ f n , f t ], δ = [ δn , δt ] and A 

T = [ A 

T 
ub 

, A 

T 
eq ] , the dual

problem (D) which discretises the minimum of the complemen-

tary energy (16) reads: “Find a minimiser f ∗ of the complementary

energy ℘ c ( f ) in the set H PRD , that is: 

 c ( f 
∗ ) = min 

f ∈ H PRD 

(
− f · δ

)′′ 
, (27)

where: 

H PRD = 

{
f ∈ R 

4 ( 𝓁 i + 𝓁 c ) / A 

T f = c , f n ≤ 0 , f t ∈ R 

2 ( 𝓁 i + 𝓁 c ) }. (28)

The set H PRD represents the space of the emerging stresses (i.e.

point Dirac delta distributions) at the boundary of each element

of the partition (17) . In this sense, the minimum problem (D) pro-

vides a set of forces on the boundaries defined by (17) , thus, both

internal and external forces pattern (i.e. the trace of the emerg-

ing stress on the boundary of each element). We use the acronym

PRD for the set H PRD to emphasise that the dual LP problem (D)

provides a discretisation of the minimum problem (16) using the

same partition adopted for the minimum problem (14) . Moreover,

note that the forces solving the dual problem (D) are compati-

ble with the mechanisms/cracks solving the primal problem (P).

Indeed, we will show that if there is a crack along an interface,

e.g. two blocks hinged at a point, by solving the dual problem (D),

the resultant force on that interface is a compressive force passing

precisely through the relative centre of rotation (i.e. the contact

point). 

Remark 4. The solutions to the dual problems allow not only eval-

uating internal and external forces for a structure undergoing foun-

dation displacements; it provides something more. As shown in

Remark 2 , if the EP is compatible and the KP is homogeneous,

u 

∗ = 0 is a minimum solution and, thus, any element T ∈ H rep-

resents a solution of the equilibrium problem. This can be easily

seen by looking at the dual problem (D). In the case of homoge-

neous boundary displacements, the objective function is constant

and zero, and if the linear constraints defining the set H PRD are

such that the set H PRD is not void and not a singleton, infinite ad-

missible solutions are possible. These solutions represent safe in-

ternal stress states in the sense of Limit Analysis. �

Remark 5. If the energy criterion (14) , selecting the mechanism

solving the BVP, represents an application of the Kinematic Theo-

rem of Limit Analysis, the energy criterion (16) (and its discretised

form (24–26)) represents a selector of an equilibrated stress state

and, thus, gives a way to apply the Safe Theorem . As observed in

Remark 4 , when the structure is not subjected to foundation set-

tlements, infinite solutions are possible. Conversely, if the structure

is subjected to foundation displacements, the solution of the pri-

mal problem (P) returns a rigid macro-block partition and match-

ing cracks. Thus, by solving the dual problem (D), one can find an

equilibrated, internal stress state compatible with that crack. This
olution could be either globally or locally unique; that is, the so-

ution is unique for the moving part of the structure activated by

he foundation displacements since the moving part becomes stat-

cally determinate. Of course, the remaining part of the structure

ould still be statically indeterminate, and for that part, the solu-

ion is not unique. �

emark 6. A masonry structure accommodates small foundation

isplacements through a rigid macro-block partition defined by

pecific cracks. These fractures allow understanding how the struc-

ure behaves mechanically and, thus, defining (at least locally, see

emark 5 ) a unique, compatible and equilibrated internal stress

tate. In this sense, the foundation displacements select an admis-

ible stress state. �

. Numerical applications: a buttressed arch 

In this section, looking at the buttressed arch, we perform some

RD analyses, taking into account different mechanical scenarios,

o show how the PRD method represents an efficient numerical

pproach for computationally applying Limit Analysis à la Hey-

an to continuous media. The PRD analysis has been conducted

sing compas_prd , a Python-based computational tool, which, in

ts current implementation, is designed for planar, 2.5D analy-

is, that is, the analysis is planar but non-uniform, symmetri-

al orthogonal depths can be considered. The PRD method can

e used to assess any complex geometry, but we chose a sim-

le buttressed arch to demonstrate the method’s potential clearly,

ddressing different mechanical problems. Studies on buttressed
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Fig. 2. Buttressed arch subjected to a foundation displacement. In (a), the solution 

of the primal problem (P) shows a three-hinge mechanism. In (b), the internal and 

external forces solving the corresponding dual problem (D) are represented by their 

resultants, labelled in green; the force resultants are perfectly compatible with the 

crack pattern (marked in red). 
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P  
rches can be found in [31–33] . The geometry and its discretisa-

ion are depicted in Fig. 1 . The semicircular arch has an internal

adius of 1.00 m, a thickness of 0.30 m, a depth of 0.50 m and

s discretised into 15 voussoirs. The two buttresses have a height

f 2.5 m, a base of 0.70 m, a depth of 1.00 m and are parti-

ioned into 12 elements having the same height. As load, the self-

eight for a uniform distribution of mass density ( ρ = 1800kg/m 

3 )

s considered. It is worth to point out that we will represent,

n what follows, the solution of the dual problem (D) through

he resultant forces acting on each interface. Each analysis pre-

ented has been conducted solving both LP problems with CVXPY

25] choosing MOSEK [26] as a solver, and the computational time

equired to solve both LP problems is about 0.04 s with an Intel R ©
ore TM i7–8850H. 

emark 7. Note that the solution of the primal problem (P) is a

mall displacement field (i.e. small compared to the overall size of

he structure, see [17] ). Therefore, in the following numerical ap-

lications, no information about the value of the prescribed dis-

lacement is provided. Indeed, if the prescribed displacements are

ot small, the structure can exhibit an evolution of the crack pat-

ern, and, the unique way to account for this behaviour is to solve

 sequence of LP problems on the updated geometry [27] . �

.1. Initial perfect configuration 

The first analysis looks at the stability of the structure in

he reference configuration, assuming homogeneous boundary dis-

lacements ( u = 0 ). Solving the primal problem (P), we find that

he structure is stable in its initial configuration since u 

∗ = 0 is

he minimiser of the total potential energy. The objective func-

ion (24) of the corresponding dual problem is zero. As shown in

emark 4 , if H PRD � = ∅ , any element of H PRD is a solution of the

quilibrium problem. Particularly, the constraints of the dual prob-

em (D), represented by Eqns. (25 , 26 ), are such that H PRD is not

oid. Indeed, when solving the corresponding dual problem (D)

or homogeneous boundary displacements, infinite possible equi-

ibrated solutions can be found. In Fig. 1 a and b , two of them are

epresented. One of the possible approaches to explore other ad-

issible stress solutions is to add more constraints, that is, e.g.

nforcing the flow of forces to go through a reduced width at the

ase. In Fig. 1 c and d , two admissible stress states obtained by

educing the actual base symmetrically with a scale factor r are

epicted. Specifically, r = 0.12 corresponds to the ultimate allow-

ble value for which a compressive stress state lying within the

tructure can be still found. Finally, the PRD stability analysis in

he reference configuration shows that no cracks form, the struc-
ure is stable but statically indeterminate since H PRD is composed

f infinite admissible stress solutions. 

.2. Foundation displacements 

In this section, we perform a PRD analysis of the same struc-

ure subjected to a settlement of the base on the right. This foun-

ation displacement, assumed to be uniformly distributed, is such

hat the ratio amongst its vertical and horizontal component is

 ( Fig. 2 ). The solution of the primal problem (P) returns a non-

ero displacement field that minimises the total potential energy

 Fig. 2 a ). The structure accommodates the new boundary condi-

ion decomposing into four rigid macro-blocks defined by three

racks. The interfaces affected by the crack pattern are labelled in

ed: they represent the locations of non-zero singular strain fields

i.e. displacement jumps). In Fig. 2 b , the resultant of the internal

nd external forces, solving the corresponding dual problem (D),

re depicted. They are compatible with the cracks obtained after

olving the primal problem: when a hinge occurs, the correspond-

ng force goes through the relative centre of rotation. Furthermore,

he force resultants at all interfaces are everywhere within the

tructural geometry. Thus, the buttressed arch is safe according to

he Safe Theorem . This is a consequence of the fact that the con-

traints of the dual problem (D) enforce these admissibility con-

itions directly: if the problem is feasible, only equilibrated com-

ressive forces acting within the geometry are allowed. 

.3. Horizontal forces 

The usual way to account for seismic actions is to simulate

hem with horizontal forces proportional to the self-weight using a

cale factor λ. Once the scale factor λ reaches a specific value, the

tructure becomes a mechanism [28] . Here, we show how the PRD

ethod can be applied to also solve this problem. In Fig. 3 , solu-

ions of both the primal (P) and dual (D) problems for increasing

alues of λ are reported. Notably, for a low value ( Fig. 3 a ), the axis

f symmetry of the flow of forces is almost vertical and the flow

f forces does not touch the boundary. By increasing λ, the axis

ecomes more inclined ( Fig. 3 b ). When λ reaches the value of 0.22

 Fig. 3 c ), the buttressed arch becomes a four-hinge mechanism and

he flow of forces touches the structural boundary in four points.

ote that the base on the right ( Fig. 3 c and d ) is labelled in red

ince it is affected by a displacement jump (the domain is close

n the constrained boundary, see Remark 1 ). In this situation, the

otal potential energy is not bounded from below anymore and the

tructure becomes unstable [29] and starts oscillating ( Remark 7 ).

rom this point on, the structure has to be analysed applying the

aws of dynamics, e.g. applying the rocking model to the partition

efined in Fig. 3 d . 

. Conclusions 

In this paper, we have shown how the original formulation of

he PRD method, based on the minimum of the total potential en-

rgy [16–18] , gives rise to a new dual linear programming prob-

em based on the minimum of the complementary energy (the

rst proof and an application of this minimum energy criterion can

e traced back to [19] ). In this sense, these two minimum-energy

riteria are dually connected. In particular, the dual problem al-

ows the search for equilibrated singular internal stress states com-

atible with the displacement and crack patterns that are a solu-

ion of the original primal LP problem. Some typical mechanical

nalyses applied to a simple buttressed arch have been presented

o show the main features and clear potential of the extended

RD method. Specifically, the new dual-energy criterion solves the
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Fig. 3. The buttressed arch under horizontal forces (a-d). Until the horizontal static multiplier is less than 0.22, the structure is stable (a,b). When λ reaches the value 0.22, 

the buttressed arch becomes a four-hinge mechanism (c, d) and the corresponding resultants go through the relative centres of rotation defining the four hinges (c). 
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boundary value problem for either prescribed or homogeneous dis-

placements. In the former case, the minimum of the complemen-

tary energy provides forces compatible with the mechanism, that

is, with a solution of the primal problem; in the latter, if the struc-

ture is stable, it offers infinite admissible stress states unless the

structure is in a limit-state condition ( Section 5.3 ). 

Since the constitutive relations defining the NRNT material are

equivalent to the normality conditions, the PRD method represents

an approach to (computationally) apply limit analysis à la Hey-

man to any planar masonry structure with no constraints on loads

and geometry. Indeed, in Fig. 4 , looking at a complex 2.5D model

of an approximate cross-section of Amiens cathedral, the results,

in terms of displacements and cracks ( Fig. 4 a ), rigid macro-block

partition ( Fig. 4 b ) and internal forces ( Fig. 4 c ), for a prescribed

small foundation displacement are depicted. The total computa-

tional time required in this case to solve both dual linear pro-

gramming problems is only 0.1 s. For further details, the reader

is referred to [27] , in which referring to this geometry, a displace-

ment capacity analysis, showing the evolution of both mechanism
nd internal stress state, is performed. Finally, some further fea-

ures of the PRD method need to be outlined. The analysis involves

he whole structure, allowing the understanding in terms of mech-

nisms and forces of the global mechanical behaviour either un-

er settlements or under general load conditions. For statically in-

eterminate structures, it provides infinite admissible stress solu-

ions, which can be selected by a suitable criterion ( Section 5.1 );

 prescribed settlement can be thought of as one of these criteria

 Section 5.2 ). This is a peculiarity of masonry structures as pointed

ut by Heyman in several of his works. Finally, we have to point

ut that the PRD method is a displacement-based approach and,

n this sense, it offers a direct technique to solve problems stem-

ing from the real world where the displacements-like boundary

onditions play a crucial role. This approach reverses the common

pproach followed by other methods, based on an equilibrium ap-

roach, which provide displacements because of internal equilib-

ium states (which can be infinite in a perfect original condition).

ndeed, a hinge can form if and only if the corresponding displace-

ent is compatible: the requirement for which the resultant goes
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Fig. 4. PRD analysis of a more complex 2.5D model of an approximate cross-section of Amiens cathedral [27] subjected to settlements whose vertical inclination is 45 °: (a) 

effects in terms of crack pattern (marked in red), (b) rigid macro-block partition of the domain and (c) internal forces (labelled in green) in equilibrium with the external 

loads and compatible with the crack pattern. 
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hrough the hinge is a necessary but not a sufficient condition for

ausing a crack [27] . 

unding 

This work was supported by the SNSF - Swiss National Science

oundation [grant number 178953 ]. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper. 

eferences 

[1] J. Heyman , The structural engineer’s view of ancient buildings, J. Mech. Mater.
Struct. 13 (5) (2019) 609–615 . 

[2] P. Block , T. Ciblac , J.A. Ochsendorf , Real-time limit analysis of vaulted masonry

buildings, Comput. Struct. 84 (29–30) (2006) 1841–1852 . 
[3] H.V. Shin , C.F. Porst , E. Vouga , J.A. Ochsendorf , F. Durand , Reconciling elastic

and equilibrium methods for static analysis, ACM Transactions on Graphics
(TOG) 35 (2) (2016) 1–16 . 

[4] J.A. Ochsendorf , Collapse of masonry structures, University of Cambridge, 2002 .
[5] M. Como , Statics of Historic Masonry Constructions, Springer, Berlin, 2013 . 

[6] G. Romano , M. Romano , Sulla soluzione di problemi strutturali in presenza di

legami costitutivi unilaterali, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis.
Mat. Nat. 67 (1–2) (1979) 104–113 . 

[7] M. Giaquinta , E. Giusti , Researches on the equilibrium of masonry structures,
Arch. Ration. Mech. An. 88 (4) (1985) 359–392 . 

[8] G. Del Piero , Constitutive equation and compatibility of the external loads for
linear elastic masonry-like materials, Meccanica 24 (3) (1989) 150–162 . 

[9] M. Angelillo , Practical applications of unilateral models to Masonry Equilib-

rium, in: M. Angelillo (Ed.), Mechanics of Masonry Structures, Springer, Vienna,
2014, pp. 109–210 . 

[10] J. Heyman , The stone skeleton, Int. J. Solids Struct. 2 (2) (1966) 249–279 . 
[11] F. Fraternali , M. Angelillo , A. Fortunato , A lumped stress method for plane elas-

tic problems and the discrete-continuum approximation, Int. J. Solids Struct. 39
(25) (2002) 6211–6240 . 

[12] P. Block , J. Ochsendorf , Thrust network analysis: a new methodology for three-
-dimensional equilibrium, J. IASS 48 (3) (2007) 167–173 . 

[13] F. Fraternali , A thrust network approach to the equilibrium problem of unrein-

forced masonry vaults via polyhedral stress functions, Mech. Res. Commun. 37
(2) (2010) 198–204 . 

[14] M. Angelillo , E. Babilio , A. Fortunato , Singular stress fields for masonry-like
vaults, Continuum Mech. Therm. 25 (2–4) (2013) 423–441 . 

[15] P. Block , L. Lachauer , Three-dimensional funicular analysis of masonry vaults,
Mech. Res. Commun. 56 (2014) 53–60 . 

[16] A. Iannuzzo , A new rigid block model for masonry structures, Università degli

Studi di Napoli Federico II, 2017 . 
[17] A. Iannuzzo , M. Angelillo , E. De Chiara , F. De Guglielmo , F. De Serio , F. Ribera ,

A. Gesualdo , Modelling the cracks produced by settlements in masonry struc-

tures, Meccanica 53 (7) (2018) 1857–1873 . 
[18] A. Iannuzzo , Energy based fracture identification in masonry structures: the

case study of the church of “Pietà dei Turchini”, J, Mech. Mater. Struct. 14 (5)
(2019) 683–702 . 

[19] M. Angelillo , A. Fortunato , A. Gesualdo , A. Iannuzzo , G. Zuccaro , Rigid block
models for masonry structures, IJMRI 3 (4) (2018) 34 9–36 8 . 

20] A. Iannuzzo , F. De Serio , A. Gesualdo , G. Zuccaro , A. Fortunato , M. Angelillo ,

Crack patterns identification in masonry structures with a C ° displacement en-
ergy method, IJMRI 3 (3) (2018) 295–323 . 

[21] L. Ambrosio , M. Miranda Jr , D. Pallara , Special functions of bounded variation
in doubling metric measure spaces, Calc. Var.: Top. Math. Herit. E. De Giorgi

14 (2004) 1–45 . 
22] M. Angelillo , A. Fortunato , A. Montanino , M. Lippiello , Singular stress fields in

masonry structures: derand was right, Meccanica 49 (5) (2014) 1243–1262 . 

23] M. Lucchesi , M. Šilhavý, N. Zani , A new class of equilibrated stress fields for
no-tension bodies, J. Mech. Mater. Struct. 1 (3) (2006) 503–539 . 

24] S. Huerta Fernández , Geometry and equilibrium: the gothic theory of structural
design, Struct. Eng. 84 (2) (2006) 23–28 . 

25] S. Diamond , S. Boyd , CVXPY: a Python-embedded modeling language for con-
vex optimization, J. Mach. Learn. Res. 17 (1) (2016) 2909–2913 . 

26] A.P.S. Mosek , The MOSEK Optimization Software, Online
Athttp://Www.mosek.com 54 (2–1) (2010) . 

[27] A . Iannuzzo , A . Dell’Endice , T. Van Mele , P. Block , Numerical Limit Analy-

sis-based modelling of masonry structures subjected to large displacements,
Comput. Struct. (2020) Submitted for publication . 

28] A . Iannuzzo , A . De Luca , A . Fortunato , A . Gesualdo , M. Angelillo , Fractures de-
tection in masonry constructions under horizontal seismic forces, Ing. Sismica

35 (3) (2018) 87–103 . 
29] A. Iannuzzo , C. Olivieri , A. Fortunato , Displacement capacity of masonry struc-

tures under horizontal actions via PRD method, J. Mech. Mater. Struct. 14 (5)

(2019) 703–718 . 
30] C. Cennamo , C. Cusano , M. Angelillo , On the statics of large domes: a static

and kinematic approach for San Francesco di Paola in Naples, Proceedings of
the International Masonry Society Conferences (2018) 504–517 . 

[31] G. Brandonisio , M. Angelillo , A. De Luca , Seismic capacity of buttressed ma-
sonry arches, Eng. Struct. 215 (2020) . 

32] H. Alexakis , N. Makris , Hinging mechanisms of masonry single-nave barrel

vaults subjected to lateral and gravity loads, J. Struct. Eng. 143 (6) (2017) . 
33] P. Zampieri , M. Amoroso , C. Pellegrino , The masonry buttressed arch on

spreading support, Structures 20 (2019) 226–236 . 
34] K.E. Kurrer , The history of the theory of structures: searching for equilibrium ,

John Wiley & Sons, 2018 . 
35] M. Monaco , I. Bergamasco , M. Betti , A no-tension analysis for a brick masonry

vault with lunette, J. Mech. Mater. Struct. 13 (5) (2019) 703–714 . 

36] A. Gesualdo , G. Brandonisio , A. De Luca , A. Iannuzzo , A. Montanino , C. Olivieri ,
Limit analysis of cloister vaults: the case study of Palazzo Caracciolo di Avel-

lino, Journal of Mechanics of Materials and Structures 14 (5) (2019) 739–750 . 
[37] E. De Chiara , C. Cennamo , A. Gesualdo , A. Montanino , C. Olivieri , A. Fortunato ,

Automatic generation of statically admissible stress fields in masonry vaults,
Journal of Mechanics of Materials and Structures 14 (5) (2019) 719–737 . 

https://doi.org/10.13039/501100001711
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0001
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0001
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0002
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0002
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0002
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0002
http://refhub.elsevier.com/S0093-6413(20)30085-9/othref0001
http://refhub.elsevier.com/S0093-6413(20)30085-9/othref0001
http://refhub.elsevier.com/S0093-6413(20)30085-9/othref0001
http://refhub.elsevier.com/S0093-6413(20)30085-9/othref0001
http://refhub.elsevier.com/S0093-6413(20)30085-9/othref0001
http://refhub.elsevier.com/S0093-6413(20)30085-9/othref0001
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0003
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0003
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0004
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0004
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0005
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0005
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0005
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0006
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0006
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0006
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0007
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0007
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0008
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0008
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0009
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0009
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0010
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0010
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0010
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0010
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0011
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0011
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0011
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0012
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0012
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0013
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0013
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0013
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0013
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0014
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0014
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0014
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0015
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0015
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0016
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0016
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0016
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0016
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0016
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0016
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0016
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0016
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0017
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0017
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0018
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0018
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0018
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0018
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0018
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0018
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0019
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0019
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0019
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0019
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0019
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0019
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0019
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0020
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0020
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0020
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0020
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0022
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0022
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0022
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0022
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0022
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0023
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0023
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0023
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0023
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0024
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0024
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0025
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0025
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0025
http://refhub.elsevier.com/S0093-6413(20)30085-9/othref0002
http://refhub.elsevier.com/S0093-6413(20)30085-9/othref0002
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0026
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0026
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0026
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0026
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0026
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0027
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0027
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0027
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0027
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0027
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0027
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0028
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0028
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0028
http://refhub.elsevier.com/S0093-6413(20)30085-9/sbref0028
http://refhub.elsevier.com/S0093-6413(20)30085-9/optfOj8658kwZ
http://refhub.elsevier.com/S0093-6413(20)30085-9/optfOj8658kwZ
http://refhub.elsevier.com/S0093-6413(20)30085-9/optfOj8658kwZ
http://refhub.elsevier.com/S0093-6413(20)30085-9/optfOj8658kwZ
http://refhub.elsevier.com/S0093-6413(20)30085-9/opti08eklfQeL
http://refhub.elsevier.com/S0093-6413(20)30085-9/opti08eklfQeL
http://refhub.elsevier.com/S0093-6413(20)30085-9/opti08eklfQeL
http://refhub.elsevier.com/S0093-6413(20)30085-9/opti08eklfQeL
http://refhub.elsevier.com/S0093-6413(20)30085-9/optVWmAZBJGWa
http://refhub.elsevier.com/S0093-6413(20)30085-9/optVWmAZBJGWa
http://refhub.elsevier.com/S0093-6413(20)30085-9/optVWmAZBJGWa
http://refhub.elsevier.com/S0093-6413(20)30085-9/optCSvHQ7rQYG
http://refhub.elsevier.com/S0093-6413(20)30085-9/optCSvHQ7rQYG
http://refhub.elsevier.com/S0093-6413(20)30085-9/optCSvHQ7rQYG
http://refhub.elsevier.com/S0093-6413(20)30085-9/optCSvHQ7rQYG
http://refhub.elsevier.com/S0093-6413(20)30085-9/optPOLO48tny8
http://refhub.elsevier.com/S0093-6413(20)30085-9/optPOLO48tny8
http://refhub.elsevier.com/S0093-6413(20)30085-9/optKNERekBzcE
http://refhub.elsevier.com/S0093-6413(20)30085-9/optKNERekBzcE
http://refhub.elsevier.com/S0093-6413(20)30085-9/optKNERekBzcE
http://refhub.elsevier.com/S0093-6413(20)30085-9/optKNERekBzcE
http://refhub.elsevier.com/S0093-6413(20)30085-9/opt7zin5kjoo8
http://refhub.elsevier.com/S0093-6413(20)30085-9/opt7zin5kjoo8
http://refhub.elsevier.com/S0093-6413(20)30085-9/opt7zin5kjoo8
http://refhub.elsevier.com/S0093-6413(20)30085-9/opt7zin5kjoo8
http://refhub.elsevier.com/S0093-6413(20)30085-9/opt7zin5kjoo8
http://refhub.elsevier.com/S0093-6413(20)30085-9/opt7zin5kjoo8
http://refhub.elsevier.com/S0093-6413(20)30085-9/opt7zin5kjoo8
http://refhub.elsevier.com/S0093-6413(20)30085-9/optwAhZKWVGTA
http://refhub.elsevier.com/S0093-6413(20)30085-9/optwAhZKWVGTA
http://refhub.elsevier.com/S0093-6413(20)30085-9/optwAhZKWVGTA
http://refhub.elsevier.com/S0093-6413(20)30085-9/optwAhZKWVGTA
http://refhub.elsevier.com/S0093-6413(20)30085-9/optwAhZKWVGTA
http://refhub.elsevier.com/S0093-6413(20)30085-9/optwAhZKWVGTA
http://refhub.elsevier.com/S0093-6413(20)30085-9/optwAhZKWVGTA

	Piecewise rigid displacement (PRD) method: a limit analysis-based approach to detect mechanisms and internal forces through two dual energy criteria
	1 Introduction
	2 The Heyman model framed into continuum mechanics
	2.1 NRNT material
	2.2 Boundary value problem
	2.3 The kinematical and the equilibrium problems
	2.4 Singular stress and strain fields

	3 The search for a solution through two energy criteria
	3.1 Minimum of the total potential energy
	3.2 Minimum of the complementary energy

	4 PRD method: two dual energy-based LP problems
	4.1 The primal problem: minimum of the total potential energy
	4.2 The dual problem: minimum of the complementary energy

	5 Numerical applications: a buttressed arch
	5.1 Initial perfect configuration
	5.2 Foundation displacements
	5.3 Horizontal forces

	6 Conclusions
	Funding
	Declaration of Competing Interest
	References


