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ABSTRACT

In this paper, we introduce an extension of the piecewise rigid displacement (PRD) method for addressing
the stability of a generic two-dimensional masonry structure subjected to large displacements. So far, the
PRD method has been applied to simulate cracks in the reference configuration considering small dis-
placements. Here, we investigate both cracks and internal forces in the presence of large foundation dis-
placements, also providing an approach to estimate their maximum allowable value. The proposed
extension allows accounting for the evolution of both mechanism and corresponding internal stress state
due to the increasing prescribed displacements.

After benchmarking the PRD analysis of a pointed arch with a physical test and results obtained
through the Discrete Element Modelling software 3DEC, its strength/use is demonstrated on a complex
numerical application, based on the cross-section of a Gothic cathedral. Also in this case, the PRD results
are compared with a 3DEC analysis showing good agreement in terms of cracks evolution, internal stress
states and displacement capacity. This paper shows the ability of the PRD method in solving in a few sec-
onds a critical issue in the field of masonry structures that is, the effects of large foundation displace-
ments, both in terms of mechanisms and forces, simultaneously.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Masonry constructions represent a significant portion of the
global built inventory and, particularly in Europe, an essential
share of the monumental architectural heritage. Understanding
the stability of masonry structures under given settlements is a
critical issue in the current research field [1], especially because
cracks not always represent a risk but rather the natural way used
by masonry structures to stably accommodate the external
changes of the environment [1-3]. In this sense, fractures are the
real manifestation of the ductility of masonry constructions, mak-
ing them resilient to settlements [4].

Recent years have seen a continuous development of methods
and computational tools to assess the stability of masonry struc-
tures, in particular under given settlements. Despite this continu-
ous growth of demand for masonry safety assessments, as Como
noted in [1], “there is a lack of a widely accepted approach to
studying the statics of masonry structures”.

Finite elements (FE) approaches have been proposed, applied
and benchmarked for the assessment of masonry structures
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affected by large settlements: [5] applied the FE method to
masonry arch bridges, also concluding that the stability is not
dominated by material crushing; in [6], full 3D FE analyses were
performed to also simulate the foundation-settlement effects of a
pile, showing that masonry arch bridges are very ductile, meaning
that the structure is supposed to undergo very large settlements
before its collapse; in [7], the author proposes an interphase model
to simulate the damage propagation in masonry walls within a
mesoscopic approach. Beyond the use of FE or scale models [8],
other different computational approaches have also been used to
predict the effect of foundation displacements, such as discrete ele-
ment modelling (DEM) [9-13], numerical codes based on rigid
spring models [14,15] or rigid block models [16] arising from Lives-
ley’s formulation [17] and arranged as in [18] or for large displace-
ment as done in [19]. In [19], modelling the masonry as an
assembly of rigid blocks interacting with no-tension, frictional con-
tact interface, the authors propose an incremental force-based
approach standing on two linear programming (LP) problems,
which can also be linked with the two standard forms of upper
and lower bound formulations of limit analysis assuming an asso-
ciative flow-rule. In particular, the primal variables are forces, solv-
ing the static LP problem, while the displacements of the contact
points are derived as Lagrange multipliers associated with the first
solution.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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As proved by Heyman since 1966 [2], the stability of masonry
structures depends directly on their geometry rather than on their
strength. Indeed, Heyman gave the theoretical basis for the appli-
cation of limit analysis (LA) to masonry structures through three
clear, but crude, assumptions: (i) masonry has no tensile strength,
(ii) masonry has infinite compressive strength, (iii) sliding failure
does not occur. Thanks to his contribution, the work done in the
past centuries by many scholars found a robust mathematical
framework, e.g. [20,21]. While the first two assumptions are
derived from masonry mechanical behaviour, the third one, which
can also be considered as the most crucial, comes from noting that
masonry structures are not a chaotic collection of bricks, but rather
a smart and appropriate assemblage that by its nature prevents
sliding failures [22-24]. In his work, Heyman studied the arch in
detail [25] and extended his analyses to a wide range of masonry
structures, particularly Gothic cathedrals [26] and their peculiar
structural elements. Nowadays, his theory is accepted as one of
the most appropriate ways to assess the stability of masonry struc-
tures [1,27-30], capable of catching fractures and zero-energy
modes, which other methods, such as the finite element (FE)
method, cannot [31,32]. The reliability of the Heyman model in
catching stable mechanisms is also proved in [33], where the anal-
ysis of the stable mechanisms exhibited by circular arches sub-
jected to generic settlements of one support is proposed.

Large displacement analyses, based on an equilibrium
approach, can be found in [34,35], where the author identified
the domain of statically admissible movements and defined kine-
matic safety factors for voussoir arches, or in [4,32,36] for contin-
uous circular arches. Nevertheless, these strategies can be
applied only to simple structures or are restricted to cases when
the mechanism is qualitatively known in advance. Except for
[4,35], many works neglect that the crack pattern, and thus the
location of the hinges, can change to accommodate the increased
displacement, which is one of the key features of masonry struc-
tures undergoing large displacements. This phenomenon has rarely
been studied. The first scholars who addressed this study were
Ochsendorfin [4] and Smars [35], a recent application can be found
in [37] or with a new formulation of the equilibrium approach in
[38], but all of them are restricted to arch geometries.

Even though the equilibrium approach has been extensively
studied to assess the stability through the Safe Theorem, past
efforts to computationally frame the Heyman model for solving
the kinematic problem under given displacements have been
almost entirely restricted to simple structures for which the qual-
itative crack pattern is known in advance.

A way to overcome this problem has been shown in [39,40],
where an energy criterion has been proposed and applied to solve
the kinematical problem for masonry structures composed of nor-
mal, rigid no-tension (NRNT) material [41-43]. The constitutive
relations defining the NRNT material are equivalent to the ones
defining the normality rules [44] and provide a natural way to
frame Heyman’s model into continuum mechanics [42]. It also cap-
tures the peculiar aspect of a masonry structure subjected to set-
tlements, that is, the nucleation of the structure into a finite
number of rigid blocks (macroblocks) with cracks appearing as
jumps of the displacement fields along their boundaries. Assuming
the NRNT models, two variational formulations can be used to
solve the kinematic and equilibrium problem for masonry struc-
tures: the first one is based on the minimum of the total potential
energy (the reader is referred to [40,39] for the proof and to [39]
for applications and benchmarks) while the second one is based
on the minimum of the complementary energy (see [3] for the
proof and an application). The first minimum energy criterion leads
to displacement-based methods which can be used to select the
rigid macroblock partition. The second one allows defining internal
stress states in equilibrium with external loads and compatible
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with given external displacements. A recent contribution [45]
derives the two above mentioned variational formulations as a
special case of the Signorini contact problem between multiple
no-tension rigid bodies satisfying the NRNT materials assumptions.
In [39] two numerical strategies, namely the piecewise rigid dis-
placement (PRD) and CO method, were proposed to find a solution
of the boundary value problem (BVP) for NRNT materials, both
leading to linear programming (LP) formulations. The main idea
behind both numerical approaches is to catch the rigid macroblock
partition exhibited by a masonry structure when subjected to even
severe external actions, such as the settlements or seismic actions
[46]. The PRD approach constitutes a numerical way to discretise
and solve the BVP for NRNT materials in the space of piecewise-
rigid, small-displacement fields which intuitively are strictly con-
nected to a rigid macroblock partition of the structural domain.

Conversely, as proposed in [39,47,48], the same energy criterion
can be used to solve the BVP in the space of continuous displace-
ment fields but assuming a different numerical strategy, and in this
case, the fracture pattern appears as smeared (CO method).
Nonetheless, even though smeared, as shown in [39,47] it allows
to catch and select the rigid macroblock partition of the structural
domain and also to overcome some mesh-dependencies (see [48]
where the two approaches are applied and compared in a real case
study).

The PRD approach represents a method to computationally
apply Limit Analysis framing the search for a solution as a linear
programming (LP) problem where the objective function is the
total potential energy of the external loads, and the solution is rep-
resented by cracks defining a rigid macro-block partition of the
structure. This directly leads to the formulation of the dual linear
problem [49], which represents the discretisation of the minimum
of the complementary energy [3]. Its solution provides internal and
external forces in equilibrium with the external loads and compat-
ible with the crack pattern solving the primal problem [49]. There-
fore, the PRD approach does not require any a priori assumption on
mechanisms since fractures and forces are the result of the optimi-
sation problems and depend only on the chosen discretisation [39].
The PRD method has already been used to solve the primal prob-
lem in order to find mechanisms in the reference configuration
for a wide range of applications: effects of settlement [40,48],
cracks due to overloading, such as seismic actions [46], equilibrium
of 3D spiral stairs [50], evaluation of the mechanism for the dis-
placement capacity under seismic actions [51], or within an
inverse analysis procedure to identify the cause producing a given
crack pattern [40,48].

Nonetheless, so far the PRD method has been used only to eval-
uate the effects of small-displacement fields: this is a necessary but
not sufficient step for the assessment of the stability in the
deformed configuration or the closeness to the collapse, which
can be performed through displacement capacity analyses
[30,4,34,35]. To this end, a procedure that takes into account large
displacement fields and prevents misleading errors due to the
assumption of small-displacement fields is necessary.

The present paper introduces an extension of the PRD method
proposing a robust, numerical, displacement-based approach for
the application of Limit Analysis to a generic masonry structure
undergoing large displacements. The proposed extension allows
investigating the effects of large foundation displacements in
terms of both cracks/mechanisms and corresponding internal
stress states. It is based on the definition of the contact problem
assuming gap functions simulating the openings between ele-
ments of the discretisation, which, at the same time, preserves
the NRNT material assumptions and frames the displacement
capacity analysis as a superimposition process of small-
displacement fields which results in a sequence of LP problems
for NRNT material. For this reason, the internal forces are evaluated
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at each step as the dual quantities of the relative displacements,
being in this sense compatible with the crack pattern solving the
primal problem. With the proposed formulation, new hinges can
open during the motion while others can close, also allowing to
account for the evolution of both mechanisms and internal forces
when the prescribed displacement increases. For these reasons,
the PRD method constitutes an efficient and robust way to apply
the Heyman model in a broader scenario, not just considering clas-
sical stability analyses or small displacement fields, but also taking
into account finite displacements.

2. Methods

In this section, we present the piecewise rigid displacement
(PRD) method introducing its extension for large displacement
problems. Then, we shortly recall the DEM method and describe
the combined use of 3DEC with compas_dem.

Specifically, in Section 2.1, after recalling how the PRD method
frames the search for a solution of the boundary value problem
(BVP) for normal, rigid, no-tension (NRNT) materials in a linear
programming (LP) problem, we introduce the dual problem and
present the approach followed for coupling both LP problems to
solve the BVP in the presence of large foundation displacement.
In Section 2.2, the main features of compas_dem, used in combina-
tion with the software 3DEC for benchmarking the PRD analyses,
are shortly exposed. Both methods are implemented within the
COMPAS framework [52], specifically inside COMPAS Masonry
[53], as two distinct packages: compas_prd [54] and compas_dem
[55].

2.1. Piecewise rigid displacement approximation: PRD method

At the beginning of this section, we shortly recall the mathe-
matical framework of the PRD method: for more information, the
reader is referred to [42] and for PRD applications of the primal
problem to [39].

NRNT material. A 2D masonry structure is modelled as a con-
tinuum occupying the region Q of the Euclidean space &£2. The
stress tensor on Q is T, and b represents the body load field. Let
u(x) be the displacement field and E the corresponding infinitesi-
mal strain tensor. The vector n is the outward normal to the
boundary 9Q, partitioned into its constrained part 9Qp, where

the displacement field u(x) assumes the value u, and into its com-
plementary and loaded part 9Qy subjected to the applied load s

(Fig. 1).
aﬂN\>v h

vy 09

Fig. 1. A two-dimensional continuum occupying a region Q of the Euclidean space.
Load tractions on 0Qy are represented by s whilst prescribed boundary displace-
ment on 9Qp by u.
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The normal, rigid, no-tension (NRNT) material, representing an
extension of the Heyman’s model into continuum mechanics, is
based on the following constitutive relations:

TeSym, EeSym", T-E=0 (1)

where Sym~ and Sym™ are the mutual polar cones of semidefinite
negative and positive symmetric tensors. These three relations (1)
are the necessary assumptions for applying Limit Analysis to
masonry structures [40]| since they are equivalent to the well-
known normality conditions:

TeSym~, (T-T)-E>0, VI cSym . (2)

Boundary value problem. The Boundary Value Problem (BVP)
of a continuum composed of a NRNT material subjected to given

loads s and displacements u can be summarised with the following
relations:

E:%(Vu+VuT>, EcSym’, u=u on dQp, 3.1)
divT+b=0, TeSym, Tn=s on dQy, (3.2)
T-E=0. (3.3)

Thus, the search for a solution of the BVP can be reduced in find-
ing a triplet (u,E(u), T) that at the same time satisfies relations (3).
Since the strain tensor E and stress tensor T are essentially uncou-
pled, except for relation (3.3), it is convenient to introduce the fol-
lowing two sets, namely the set of kinematically admissible
displacements K and the set of statically admissible stress H:

1

K= {ueS/E:§<Vu+VuT> eSym"&u=u on aQD}, 4)

H:{TeS’/divT+b=0, TeSym, Tn=s on aQN}, (5)

where S and ' are two suitable functionals [56]. Following [42], we
call the kinematical problem (KP) the search for an element u € K,
whilst the equilibrium problem (EP) is the search for an element
T € H. Two elements, u € K and T € H, need to satisfy condition
(3.3) to be a solution of the BVP.

Displacement and stress jumps. For NRNT materials, since the
strain and stress fields are bounded measures [57-60], they can be
decomposed additively into the sum of a regular and a singular
part:

E-E+E, T=T+T. (6)

From now on, we will neglect the regular part of the strain:
even though this assumption does not stem directly from Hey-
man’s hypothesis, in all his work, Heyman never considered the
regular part of the latent strain. For a numerical method and its
applications where the regular part of the latent strain E' is consid-
ered, the reader is referred to [47]. The singular part T° is repre-
sented by 1D singular stress fields (e.g. thrust lines) while the
singular part of the latent strain E° by “displacement jumps” along
certain lines (e.g. hinges).

Let §(I") be the Dirac delta function having as support a regular
curve I', whose normal and tangential unit vectors are n and t. A
singular stress field along I" can be represented as:

T =Ps(Dtet, (7)
where P represents the magnitude of the concentrated stress and,
from Eq. (1), has to be non-positive. On the other hand, a singular

strain field E* along I" arises from displacement jumps [u] across
I', and thus takes the following form:
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E:vé(F)n@n+%w5(r)(t®n+n®t)7

where

v=[ul-n, w=u]-t,

9)
and sinceE € Sym™*, must satisfy these conditions:

v>0, w=0. (10)

Primal formulation: minimum of energy criterion. As proved
in [40], to solve the BVP problem for NRNT materials, even in the
presence of singular fields, an energy criterion can be adopted. Fur-
thermore, assuming only singular strain fields, the solution of the
BVP can be obtained as the minimum of the total potential energy
of the external loads in a subset Kpgp Of Sprp (i.e., the set of small
piecewise rigid displacements):

p(u) = min p(u), (11)

where

p(u):—/ §-uds—/ b - uda, (12)
205 o

and with

N —

Kprp = {u (S SpRD/E = (Vl.l + VUT) S Sym*&u = ﬁ on OQD}

(13)

the set of kinematically admissible displacements.

PRD method: discretisation of the minimum problem (11).
The PRD method represents a numerical procedure for discretising
and approximating the minimum problem (11) when the search
for a solution is restricted to the set Kprp. Let the continuum model
Q of Fig. 1 be discretised with M elements (Fig. 2):

(Qi)ie{l,..M}'

The boundary 9€; is the union of a finite number of straight
lines. A small, piecewise rigid displacement u € Spzp and defined
over the partition (14) can be represented as:

ifXEQ1

(14)

u

u:xeQ—<( u if xe® . (15)

uy if xeQy

in which uj is a small displacement field having & as support. It is
well known that each element of (15) is in a one-to-one correspon-
dence with a vector Ue R*M collecting the 3M rigid-body
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Lagrangian parameters (i.e., for each element of (14), two transla-
tions and the rotation around its centre of gravity), namely:

u=uU) with UeRM (16)

Using (16), the total potential energy of the external loads
becomes a linear function of U and can be expressed through a sca-
lar product:

p(U)=—c-U with c,UecRM (17)

where a suitable vector ¢ € R*™ represents the external loads as
reduced to two forces and the torque around the centre of gravity
of each block. Restrictions (10) need to be enforced on each internal
interface (i.e., the interface between two adjacent blocks) of the par-
tition (15) by writing the following relations:

v=[u-n>0, w=u-t=0, (18)

on both two endpoints of each internal interface of the partition
(15). Referring to Fig. 2b, the physical meaning of restrictions (18)
is that the only possible infinitesimal displacement jumps allowed
are represented by a complete detachment or by rotations around
A or B. Furthermore, they can be collected, using (17), in matrix
form:
AU >0, A‘eréltU =0. (19)
Similar relations have to be written on all the interfaces lying on
the constrained boundary in order to take into account both homo-
geneous and non-homogeneous conditions, and they are
AU > -8, AgétU = &%, (20)
where 82 [3%'] is a vector collecting the prescribed displacement u
along the normal [tangential] direction on the constrained bound-
ary. For more details on how to enforce the boundary conditions,
the reader is referred to [39]. Matrices (19) and (20) can be collected
as follows:

AubU > —0p, AeqU = —d, (21)
where Ay, [Aeq] collects vertically the matricesA'[A®] and A%
[AZ'], while 8, [8:] collects the zero vectors arising from (19')
[(19?)] and the potential non-zero vectors 8 [62] defining the
boundary conditions on the constrained part of the structural
domain. The set (13) of kinematically admissible displacements

becomes

Kprp = {U € R3M/AubU > —Sn,AeqU = —ﬁt}. (22)

If ¢ [¢¢] is the number of internal [constrained] interfaces, the
dimension of both Ay, and Aeq is 2(4i + /¢) x 3M. The minimum
problem (11) becomes an LP problem:

Rig, .
Ry

(a)

(b)

Fig. 2. A possible discretisation of the domain of Fig. 1 (a), and close up of two adjacent blocks (b).

4
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minimise — ¢-U

subject to ApU > —8,, AU = b, (P)

Ue M,

Remark 1. Boundary conditions represented by relations (20) are
enforced directly on the interfaces lying on the boundary. Another
possible way to write them is to consider external virtual blocks as
supports and then to assign prescribed values to the Lagrangian
parameters of these supports. In this way, these prescribed values
propagate directly to the constrained interface that now can be
thought of as “virtual internal interfaces” and thus can be handled
as common internal interfaces.

In particular, let Q, be the element representing the support

(Fig. 3), for the interface AB, originally lying on the boundary, con-
ditions (18) can be written as:

v:(ﬁkfui)-nzo, w:(ﬁkfui)-t:O, (23)

where u, represents the prescribed small rigid displacement of the
support. Relations (23) can be rewritten as

U-n>—U-n, —u-Nn=—u-t, (24)

and then collected in the same formal way represented by matrix
relations (20) where

& =u.-n, M=u, -t (25)

are the known terms. In our opinion, this represents the preferred
way to enforce boundary conditions and it will be used later in
the numerical applications.

Dual formulation: minimum of complementary energy. Let
consider the following linear programming problem:

minimise —f, -8, —f; - &

subject to Ajfn + A fi =c, (D)

f, <0,f, € R2+0),

it is easy to see that if f;, and f; are thought of as the dual variables
associated with the constraints (20) of the LP problem (P), the new
linear programming problem (D) is the dual of (P). Specifically, the
dual variables, represented by the vectors f,, and f; and belonging to
R+ are the forces dual to the unilateral (18') and bilateral (182)
constraints of the primal problem (P). Moreover, the normal forces

(a)
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f,, are constrained to be compressive, while the tangential forces f;
are unconstrained.

The matrix expression in (D) represents exactly the equilibrium
of the rigid blocks composing the partition (15); indeed, the equi-
librium relation is governed by the transpose of the kinematic
matrices of the problem (P) (see also [50]).

The objective function of (D) is the opposite of the work of the
dual forces over the generalised displacements. Specifically, the
work on the internal boundaries (interfaces between two adjacent
blocks) is always zero and only on the constrained boundary it
could be non-zero. For this reason, the objective function reduces
to the work of the emerging forces (singular stresses) on the con-
strained boundary over the prescribed boundary displacements,
namely: the complementary energy for an NRNT material (i.e.,
for this material the non-linear part vanishes).

It is worth to point out that, when there is a gap between two
adjacent blocks (i.e., the relative displacement is non-zero), the
corresponding force has to be zero since there is no contact. On
the contrary, if the forces on the boundary of the elements are
non-zero, the relative dual displacement has to be zero: in any
case, the objective function reduces to the complementary energy.

In this sense, the solution of the dual problem (D) allows finding
internal (between blocks) and external forces (on the constrained
boundary) in an assembly of rigid block acting unilaterally without
sliding. Furthermore, if the prescribed boundary displacements are
zero, the solution represents one of the possible admissible stress
states in equilibrium with the given loads [49]. Problem (D) is
the discretised form of the following problem: “Find a minimiser

T° €Hprp of the complementary energy:

oo(T) = — / S(T) - uds, (26)

aQp

where s(T) is the trace of the stress tensor on the constrained
boundary 0Qp and Hprp the space of the emerging stresses (i.e.,
Dirac delta distributions) at the boundary of each element of the
partition (15). In particular, the discretised set Hprp of admissible
stress states (a subset of Hpgp) is

Herp
= {f = [fo,fe] € RYHI /AL fL +ALfi=c, £, <0, foe szm}'
(27)

For more details about the emerging stresses and their use, and
why this generalisation is needed for NRNT materials, the reader is
referred to [42,40]. The first proof and an application of the use of
the minimum of the complementary energy for NRNT material can
be traced back in [3].

(b)

Fig. 3. To simulate external boundary conditions, virtual blocks (in grey) can be added as supports (a). The original constrained interface becomes a regular internal interface

(b).
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Approximation of large displacement fields. For NRNT mate-
rials, the natural way to numerically account for large displace-
ment fields (e.g. large support displacements) is to recursively
apply the PRD method on the deformed configuration in a step-
by-step procedure as a sequence of standard LP problems. To this
aim, as shown in [51], finite rigid displacement fields can be
approximated by considering small-displacement fields in a super-
imposition process. It is worth noting that in [51] the PRD was
applied just to select the initial rigid macroblock partition of the
domain which, after that, was considered fixed during the analysis.
To approximate large displacement fields, and thus potential open-
ings during the motion, relations (18), defining a perfect, continu-
ous contact on an interface between two adjacent blocks, have to
be properly rewritten to consider potential cracks.

Indeed, once the primal problem has been solved for the first

time, the original interface AB (Fig. 4a) can exhibit a displacement
jump (i.e. crack). For the sake of simplicity, let’s imagine the case
when a hinge forms (Fig. 4b): point B splits into two distinct points,
Bi and B;, and thus the blocks Q; and Q; are touching only in A. Let
dg be the measure of the gap between B; and B; and d; the corre-
sponding unit vector. Relations (18) still hold for A, namely:

va=[ul,-n>0, wa=[u,-t=0, (28)
but, only a unilateral relation ensuring a no-penetration condition
with an initial gap dg has to be written for B, that is:

Vg = [U]B . dB > —dB. (29)

Eq. (28) enforce the NRNT material restrictions on the deformed
configuration (as assumed in the past by several authors, see for
instance [4,32,35]), while Eq. (29) ensures that there is not a mate-
rial overlapping. In particular, once the primal and dual problems
have been solved for the first time, the geometry is updated using
the solution of the primal problem (P). For each step, on the new,
deformed geometry, all the contact restrictions defining the set
of admissible displacements are properly updated taking into
account the presence of crack through relations (28) and (29).
The external loads are re-evaluated on the deformed geometry
and, consequently, a new objective function of the primal problem
(P) is considered. With this approach, a new primal problem (P) is
formulated. It preserves the same form (P), while the dual problem
(D) is always obtained as the dual of the updated problem (P). It is
worth noting that during the motion, with the present formulation,
as it will be clearly shown in the applications, a fracture (e.g. hinge)
can close, restoring the continuity along with the original interface.
In particular, if during the motion Eq. (29) is satisfied as equality,
the NRNT material restriction will be restored and taken again into
account through relations represented by Eq. (28), that is through

A

n t-
>/
/

/
/

(a)

6
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relations (18) written on the update configuration. Thus, with the
present formulation since a hinge can open and close during the
motion, the mechanism can change according to the new boundary
conditions, and consequently, the internal forces are always com-
patible with the mechanism solving the primal. The procedure
takes place until the total potential energy governing the primal
problem is not bounded from below anymore: the structure
becomes unstable and collapses.

Remark 2. Despite force-based approaches, which can model
masonry as an assembly of rigid blocks [16,17] also considering
large displacement fields [19], the PRD method represents a
numerical displacement-based approach to solve the boundary
value problem for a continuum composed of NRNT material.
Indeed, the main idea behind the development of this numerical
method is to handle the displacements as primal data and to catch,
as a result of the analysis, the subdivision of the structural domain
into rigid macroblocks, in particular when settlements take place
or also when the structure is subjected to overloading or to severe
seismic actions [46]. In this sense, the PRD method is a
displacement-based approach which allows to computationally
apply standard limit analysis a la Heyman to generic masonry
structures without any a priori assumption on the mechanism and,
to directly handle as primal data the non-homogeneous boundary
conditions. Moreover, since the PRD approach allows to couple two
dual-energy criteria, that is the minimum of both total potential
energy and complementary energy, the dual variables are repre-
sented by the internal forces which are obtained always as dual
quantities of the relative displacements on the interfaces defined
by a given partition and arising from the piecewise displacement
field solving the primal problem. The extension of the PRD method
proposed in the current paper allows at the same time preserving
the NRNT material assumptions and framing the displacement
capacity analysis as a superimposition process of small-
displacement fields which results in a sequence of LP problems.
For this reason, the internal forces are in each step evaluated as the
dual quantities of the relative displacements, being in this sense
compatible with the crack pattern solving the primal problem.

2.2. Discrete element modelling and compas_dem

Discrete Element Modelling (DEM) is a method able to analyse
structures composed of multiple bodies. Cundall [61] first devel-
oped this approach at the beginning of the 1970s for modelling
granular materials, and in the last decades, it has also been applied
to masonry constructions [62-64]. In this paper, the DEM software
3DEC by Itasca [65] has been used. In DEM, the model is composed

(b)

Fig. 4. Two adjacent blocks in a perfect contact condition (a). Two blocks hinged around one corner (b).
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of separated blocks interacting with each other at the interfaces.
The blocks can be considered rigid or deformable, and Mohr-
Coulomb failure criteria can be used to model the joints:

T=ctan(Q)+c, (30)

where 7 is the shear strength, ¢ is the normal stress, ¢ is the friction
angle and c the cohesion.

Moreover, the blocks can move and deform independently with
respect to each other; they can get completely separate, and they
can form new contacts with other blocks during the analysis.

Since the blocks can be considered rigid and the contact inter-
faces with no tensile strength, this method is suitable for the inves-
tigation of the behaviour of unreinforced masonry structures. The
unilateral behaviour of masonry structures can be well-described,
and Heyman’s assumptions [2] can be approximated, making the
application of the Limit Analysis possible. Another advantage of
using rigid blocks interacting with no tensile strength is the reduc-
tion of the number of mechanical parameters required in the anal-
ysis. In this case, the analysis only requires the density of the
material, its friction angle and the joint stiffness, a parameter
specific to 3DEC to calculate the contact forces between the blocks.
If the tensile strength at the joints is neglected, also the cohesion in
the Mohr-Coulomb failure criteria does not need to be taken into
account. There is no need for other mechanical parameters, which,
especially for historic masonry structures, are based on uncer-
tainty, or they are impossible to predict. The motion of the blocks
in the DEM method is described by Newton’s second law and
solved numerically by the central difference method with respect
to a scalar parameter (e.g. time). The position of the blocks during
the calculation is updated step by step. Two different kinds of anal-
yses are possible, static and dynamic, and both solved with explicit
numerical algorithms.

The relation between blocks is described by the contact forces
between the blocks’ interfaces. Each contact force is a function of
the block displacement at that point, which in turn depends on
the values of the joint stiffness. Two values of the joint stiffness
have to be defined: the normal joint stiffness and shear joint stiff-
ness. These values control the elastic deformation of the block
assembly at the joints and are used by 3DEC to calculate the con-
tact forces between the blocks’ interfaces. Physically, the two joint
stiffnesses control, respectively, the penetration and the sliding
between blocks. Both phenomena should be avoided during the
simulation of unreinforced masonry structures as rigid blocks,
and for this reason, a high value for the joint stiffnesses should
be used. On the other hand, as shown by [9,13], the values of the
joint stiffness could be reduced to significantly decrease the calcu-
lation time without influencing the results of the analysis a lot. The
two joint-stiffness values of the joint stiffness are calculated
according to [10]:

Jin = E/hblockv .]ks = G/hblock (31)

where J,, is the normal joint stiffness, E is the Young’s modulus of
the material, and hyo is the block’s height. For the evaluation of
the joint shear stiffness, the E has been replaced by G (shear mod-
ulus) evaluated as:

G=E/2(1+v). (32)

where v is the Poisson’s coefficient considered equal to 0.2. With
this method, several aspects can be studied: displacement capacity,
collapse, three-dimensional behaviour, stability, the effects of dif-
ferent load cases (e.g. point load, linear, distributed, with gradient),
settlements, and any variation in the boundary conditions. A key
aspect of using the DEM method is the discretisation of the model.
To perform a three-dimensional analysis, the model needs to be dis-
cretised in a meaningful way, either using the actual stereotomy or
a representation of it. In this paper, the DEM analyses have been
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conducted using compas_dem [55]|, a Python-based, general-
purpose computational tool for working with assemblies that can
use the software 3DEC in the background extending its modelling
possibilities and the elaboration of the results. To achieve the objec-
tives of this paper related to the numerical modelling of cracks in
typical architectural elements of a Gothic cathedral, compas_dem
has been used to calculate the resultant contact forces at interfaces
between the blocks and to visualise the flow of forces.

At each vertex of the interfaces, 3DEC computes normal and
shear forces and visualises them as contour plot over the interface
(see, e.g. the contour plot of the normal stresses in Fig. 5b). By tak-
ing all interface forces provided by 3DEC, compas_dem computes
the normal and shear resultants on each interface (Fig. 5e) and
the interface resultant also (Fig. 5d), allowing, in this sense, a better
understanding of the mechanical behaviour. Thanks to this elabo-
ration and consequent visualisation, it is possible to clearly identify
the changes in the internal forces due to different boundary condi-
tions. Furthermore, the study of both flow of forces and point of
application of the resultants makes the opening of cracks in the
structure easily readable. Since the proposed analyses are planar,
we will show just the 2D projection of the 3DEC.

3. A benchmark case: pointed arch

In this section, we look, as a benchmark case, to the study of a
pointed arch on spreading support, referring to physical tests pre-
sented in [66] and briefly summarised in Section 3.1. A PRD analy-
sis of the same arch geometry using compas_prd [54] is shown in
Section 3.2. The results of the PRD analysis are further validated
with the ones obtained with compas_dem and 3DEC (Section 3.3).
The comparison in terms of crack pattern, internal singular stress
state and displacement capacity is reported and discussed in
Section 3.4.

The aim is twofold: firstly, use both the physical tests and the
3DEC results for benchmarking the PRD analysis and, secondly,
use this simple numerical example as a pilot case to introduce
the next application based on a cross-section of a Gothic cathedral.

3.1. Physical test

The benchmark case, here proposed, has been selected from
[66,67] where the behaviour of the Gothic arch had been inten-
sively and parametrically explored based on both analytical formu-
lations and test cases. Particularly, in the experimental campaign
in [66], several tests on pointed arches, constructed of cast con-
crete voussoirs with no mortar between the blocks, were carried
out paying particular attention to the effects of support displace-
ments in terms of both crack pattern and displacement capacity.
To describe the geometry of a pointed arch, we follow the same
notations used in [67] (Fig. 6a):

- Reirc is the radius of the circular arch measured to the centreline
of the arch;

- Rpoine is the radius of the pointed arch measured to the centre-
line of the arch;

- e eccentricity of the centre of the arch with respect to the axis of
symmetry;

- t is the thickness of the arch; and,

- o is the angle of embrace.

The geometry of the pointed arch, composed of 14 voussoirs
with mass density p = 1800 kg/m? and here proposed as a bench-
mark, is defined by the following values: Rg;,c =1 m, t/Rec = 0.12,
e/Reire =0and o = 150" and a span of 0.95 m. The arch was tested
by horizontally moving the right support outwards until collapse.
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(a)
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(b)

Fig. 5. Typical 3DEC analysis output of a circular arch subjected to horizontal, outward support movements: deformed configuration (a), contour plot of the normal stresses
(b). Visualisation of the interface forces provided by compas_dem: normal (red lines) and shear forces (blue lines) (c), resultant forces (in green) in (d). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Notations used in [67] and to parametrically describe the shape of a pointed arch (a); images from [66] of the physical test conducted on the pointed arch subjected to
the spreading of the right support whose geometry is defined by Rere =1 m, t/Reirc = 0.12, €/Reire =0 and o0 = 150" and a span of 0.95 m (b-d).

In Fig. 6b-d, the images of the physical tests catching the last steps
before collapse are reported. In particular, when the right support
started moving, a three-hinge mechanism formed (Fig. 6b) and it
remained fixed until the arch approached the maximum allowable
displacement: in this condition, the hinge on the right part moved
suddenly up to the crown (Fig. 6¢c-d), and a fourth hinge formed
(Fig. 6d) between the wooden base and the right support causing
the collapse. In [66], the maximum allowable displacement was
evaluated as the one corresponding to the situation depicted in
Fig. 6¢, and estimated as 245 mm. Furthermore, the author also

conducted a numerical analysis based on an equilibrium approach
predicting a maximum displacement of 290 mm.

3.2. PRD analysis

The same pointed arch shown in Section 3.1 is here modelled
and analysed with the PRD method using compas_prd. Two further
blocks are added as supports (highlighted in grey in Fig. 7a, see
Remark 1). Firstly, the pointed arch has been analysed in its unde-
formed configuration, considering homogeneous boundary condi-
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Initial configuration

(@)

(b)

Fig. 7. The pointed arch is discretised into 14 blocks and two further blocks (highlighted in grey) are added as supports: (a). Representation of the solutions of the primal (P)
and dual (D) problems for the initial, perfect configuration, that is when the arch is not subjected to foundation displacements: (b).

(@)

Fig. 8. The pointed arch, subjected to an outward displacement é of 1 mm. The solution of the primal problem (P) scaled up by a factor of 10 (a): only the interfaces where
cracks occur are labelled with bold black lines. The forces, solving the dual problem (D) are represented through their resultants: (b).

tions. In Fig. 7, the results of the primal and dual problems are
shown: no hinges form and the resultant forces are everywhere
lying within the structural geometry, representing a safe and one
of the admissible stress states. Both LP problems have been solved
with CVXPY [68] choosing MOSEK [69] as a solver. The total com-
putational time to initialise the model and to define and solve both
LP problems is about 0.03 s with an Intel® Core™ i7-8850H.

Then, the pointed arch has been analysed after imposing an out-
ward horizontal displacement on the right support. In Fig. 8, the
solutions of both primal (P) and dual (D) problems are depicted
considering an outward horizontal displacement 6 of 1 mm. Also
in this case, the computational time needed by compas_prd to ini-
tialise the model and to define and solve both problems is 0.028 s.
Specifically, the solution of the primal problem returns four sym-
metrical hinges, representing singular strain fields on the inter-
faces between adjacent blocks where cracks appear. The solution
of the dual problem returns forces between blocks which are
reduced to their resultants, as shown in Fig. 8b. These forces are
compatible with the cracks found with the primal problem: they
pass exactly through the centre of rotation defined by the hinges.
It is worth to point out that the thrusts on the supports are very
close to the internal points of the interface without touching them.

Then, the arch is analysed increasing the displacement of the
right support in steps of 1 mm until it collapses. Both the primal
problem (P) and the dual (D) are at/for each step written on the
deformed configuration. The total computational time needed for
the displacement capacity analysis to define and solve both prob-
lems is 5.514 s.

In Fig. 9, the solutions of both the LP problems are depicted on
the deformed configurations referring to six different steps. Partic-
ularly, just after the support displacement increases and reaches
the value of 2 mm (Fig. 9a), the right hinge near the crown
(Fig. 9b-c) closes while the left one remains open: the arch

becomes a three-hinge stable mechanism. The mechanism qualita-
tively remains the same until the displacement reaches the value
of 261 mm (Fig. 9c¢) when the hinge near to the right support
moves up: the arch is still stable in this configuration (Fig. 9d).
The maximum allowable displacement for which the structure is
still stable is 278 mm (Fig. 9e). When the support displacement
is 279 mm, the right hinge moves suddenly up and the arch
reaches an unstable configuration and starts collapsing (Fig. 9f).

Remark 3. The four-hinge mechanism of Fig. 8a is perfectly
symmetric and differs from the mechanisms (Fig. 6b) of the
physical tests. The reason is simple: because of the perfect and
symmetric geometry, both the mechanisms are equivalent, at the
same energy level, and thus both are possible solutions of the BVP.
Nonetheless, when the displacement increases (Fig. 9), one of the
two central hinges (Fig. 8a) closes and the other one remains open
(Fig. 9b).

3.3. DEM analysis

In this section, the displacement capacity analysis is carried out
on the same pointed arch using compas_dem with 3DEC as solver,
and applying an incremental displacement of 1 mm per step. The
value of the Young’s modulus adopted is 30GPa.

Since 3DEC allows to consider the friction angle of the material
as a parameter, three different analyses have been performed using
three different friction angles: 35, 50'and 90. In 3DEC, the displace-
ment is applied by assigning a velocity field to the supports. After
every step, the velocity was set to 0 and the calculation of the out-
of-balance forces was run for three seconds, to check if the struc-
ture was still in equilibrium in the deformed configuration. The
three analyses performed, assuming different values of the friction



A. lannuzzo et al.

§=2mm

8§ =261mm

(c)

8§ =278 mm

(e)

Computers and Structures 242 (2021) 106372
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(f)

Fig. 9. Solutions of both the linear and dual problems on the deformed configuration: geometric configurations, crack patterns and resultant forces for 6 =2 mm (a),
8 =150 mm (b), 6 =261 mm (c), s = 262 mm (d), 278 mm (e) and for the unstable configuration corresponding to 6 = 279 mm (d).

angle, showed the same behaviour in terms of cracks, forces and
displacement capacity. In what follows, we report and describe
the results obtained with a friction angle of 35. After the first step
(Fig. 10b), a three-hinge mechanism forms. It remains fixed
(Fig. 10c-d) until the displacement reaches the value of 259 mm
when the hinge near to the left support moves up (Fig. 10e). The
last step before the collapse, where 3DEC could still find an equilib-
rium state of the structure, is for a displacement of 274 mm
(Fig. 10f). The calculation with 3DEC, reducing the joint stiffnesses
by 10 to increase the solving time, takes about 4200 s, so over an
hour, with an Intel® Core™ i7-6820HQ.

3.4. Discussion

In this section, the PRD analysis is compared with the results of
the physical tests and with the ones obtained from 3DEC and elab-
orated with compas_dem. First, we have to point out that the exper-
imental tests differ from the theoretical model in some points. The
blocks considered in the numerical applications have perfect
geometry. Furthermore, in the PRD analysis, two blocks can exhibit
a relative rotation or a complete detachment but sliding phenom-
ena are not taken into account. On the other hand, real blocks are
affected by geometrical imperfections, which reflects into non-
smooth contacts over the interfaces. A first consequence of the
imperfections is that even though a physical test is designed on a
perfect ideal symmetric geometry, the actual geometry is never
symmetric. Secondly, due to the imperfections, the displacement
capacity can be slightly different between the numerical and the
physical tests [13].

The PRD analysis (Fig. 9) reproduced the same behaviour in
term of crack pattern and hinge positions, shown in the physical
test (Fig. 6). The ultimate stable displacement predicted with the
PRD analysis is 278 mm (Fig. 9e), while in the physical was esti-
mated as 245 mm corresponding to Fig. 6¢. In [66] the author pro-
posed a numerical displacement capacity analysis following a

10

continuous equilibrium approach on the deformed geometry pre-
dicting a maximum displacement of 290 mm: the PRD analysis is
less conservative since it is based on discretised geometry repre-
senting the actual one, and can predict the change in the
mechanism.

Referring to the 3DEC results, we have to point out that the
mechanism found is specular to the one obtained with compas_prd
and the one found during the physical test: even this solution is
admissible on a perfect and symmetric geometry (Remark 3).

Even if the mechanism is specular, starting from a very small
displacement (2 mm) both PRD and 3DEC provide the same quali-
tative three-hinges mechanism, which remains the same until the
displacement of the right support reaches the value of 259 mm.
From this value on, the left hinge in 3DEC starts moving up, while
this behaviour (the right hinge) happens in PRD starting from a
value of 262 mm. The displacement capacity predicted by the
PRD analysis is 278 mm, similar but a little bit larger than the
one obtained by 3DEC (274 mm).

Assuming the thrust on the supports as a measure of the inter-
nal stress states, in Fig. 11 the curves representing the plot of the
horizontal and vertical components of the thrust as a function of
the support displacement are depicted. These curves are non-
linear and coincident until a displacement of 259 mm. When the
hinges move up (259 mm for 3DEC and 262 for PRD) there is a
jump: in between these two values the slopes of the curves is
the same and from 262 mm on, all curves return to be coincident
until 274 mm (maximum allowable displacement predicted by
3DEC). The solution obtained with the DEM analysis is essentially
coincident with the one from PRD.

Remark 4. Looking at the curves (Fig. 11) related to the PRD
analyses, it should be pointed out that whenever a hinge forms or
moves in another position, the curves exhibit a jump. Particularly,
when the arch starts moving, three hinges form and the thrust (see,
for instance, the horizontal components of the thrust in Fig. 11)
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Fig. 10. 3DEC results of the displacement capacity analysis visualised through compas_dem: resultant contact forces on the undeformed configuration (a), crack pattern and
resultant forces for 6 = 1 mm (b), § = 50 mm (c), § = 150 mm (d), § = 259 mm (e), 6 = 274 mm (f).

suddenly drops. This is a peculiar behaviour of rigid blocks
structures with unilateral contacts, such as masonry structures:
they reach a new configuration, often statically determined, and
the forces between blocks vary to catch a new equilibrium state
(which is unique for the statically determined part of the
structure).

4. Gothic cathedral subject to a foundation displacement

The case study here presented regards the analysis of the cross-
section of a Gothic cathedral. The assessment of such complex
structures is a hard task since several structural elements are
working together and cannot be decoupled in the analysis. Further-
more, even though such cathedrals were built following geometric

Thrust: vertical components
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3DEC analysis: e
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rules rather than mechanical knowledge, they are still around
showing remarkable adaptability to different boundary conditions.
In the last decades, many studies have been conducted on the
structural behaviour of Gothic cathedrals considering distinct
structural aspects and using different approaches. In [70] and
[71], photoelasticity has been applied regarding different load
cases (e.g. wind loads) and to explain existing crack patterns. In
[72,73] the finite element method (FEM) has been adopted to anal-
yse the effect of dead, lateral and seismic loads, and the structural
behaviour during the construction phase. Both the photoelasticity
and FEM approaches cannot well reproduce the unilateral beha-
viour of the masonry as also stated in [74] or in [75] and in [1]
where limit analysis (LA) has been applied and recognised as one
of the most suitable methods for masonry structures. A common
way to approach through LA this problem is to use thrust line anal-

Thrust: horizontal components
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Fig. 11. Comparison between the results from the PRD analysis, using compas_prd, and 3DEC: vertical (a) and horizontal (b) components of the thrust on the supports.
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yses (TLAs), based on the slicing technique [76,77]. In [78], a kine-
matic approach has been used to assess the safety under wind
loads but selecting a small number of mechanisms in advance. In
[79], a study on the role of pinnacles of the Amiens cathedral has
been conducted using different approaches. These papers prove
that there is still a lack of a numerical model able to find cracks,
mechanisms and forces and which can also account for the effect
of (even large) foundation displacements. With the following
numerical case study, we want to show how the PRD method
can bridge this gap, applying limit analysis and selecting the solu-
tion from a space composed of co3M possible mechanisms (defined
by Eq. (14)).

In this section, using the PRD method, we perform a displace-
ment capacity analysis investigating the evolution of both the
crack pattern and the corresponding stress state within the struc-
ture. In particular, the aim is twofold: showing the abilities of the
PRD method in such analyses and showing the ductility of Gothic
structures under foundation displacements. The same analysis is
performed with 3DEC and the results are compared.

The structural cross-section considered is an approximation of
the cross-section of the Amiens Cathedral (Fig. 12). The objective
here is not aiming to assess it but to show an application based
on real proportions and structural elements of a Gothic structure.
Fig. 12 shows the plan and the 3D scheme taken from [80].

4.1. Model geometry and discretisation

The PRD analysis has been conducted using compas_prd, which
in its current implementation is designed for planar, 2.5D analysis,
that is: the analysis is planar but non-uniform, symmetrical
orthogonal depths can be considered. In Fig. 13a, the main dimen-
sions of the cross-section considered in the analysis are reported.
The structure is symmetric, the height of the central nave is
42.00 m, the height of the aisle is 19.00 m and the distance
between two consecutive cross-sections is 7.30 m.

We have to point out that since the analysis is planar, the cross
vaults on the central nave and on the aisles are modelled as
pointed arches with an orthogonal depth of 7.30 m, so the 3D beha-
viour of these vaults is neglected, but such an approximation
allows to take into account the effects due to the self-weight and
to the thrusts exerted. Furthermore, since the considered cross-
section is not external, the thrusts of the cross vaults are acting
in a vertical plane, making that approximation less distant from
the actual working state. In Fig. 13b, the dimensions of the depth
of the structural elements are reported.

Acquiring the actual stereotomy of a structure is all too often
impossible thus, discretising the structure into sub-elements (e.g.
blocks) is a complex task demanding a good knowledge of the
mechanical behaviour of such structures. The geometry of the
cross-section shown in Fig. 13a, has been discretised following rea-
sonable rules: the vertical elements have been cut using horizontal
planes whilst curved elements, such as the pointed arches and the
flying buttresses, with joints perpendicular to the curvature
(Remark 5). In Fig. 14a, the discretisation adopted for both the
PRD and 3DEC analyses is depicted: the structural geometry is par-
titioned into 276 rigid blocks and four further blocks are added as
supports. In Fig. 14b, a 3D view of the geometry, including the sup-
ports, is reported.

Remark 5. One of Heyman'’s hypothesis regards the no-sliding
condition. The reason why Heyman enunciated this assumption,
behind the need for proving the two basic theorems of limit
analysis, stays in the fact that master masons built structures
following rules to prevent sliding phenomena. These ancient rules,
coded with the term “regola dell’arte” [24], are based on a clever
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arrangement of the stones composing the structure. In particular,
in masonry walls, on the horizontal planes, the sliding is prevented
by high values of the compressive forces while, on the vertical
plane, where the compressive force is very low, by a particular
arrangement of the bricks through interlocking; furthermore, on
curved elements, the stones are arranged with joints orthogonal to
the curvature. It is worth noting that while the sliding between real
blocks is a negligible and thus a secondary effect for several 2D
structures (the ones conceived following particular construction
details), in general, mechanisms involving 3D curved structures
cannot form without overcoming friction, that is without sliding
between real blocks, which is needed to accommodate those
movements (the reader is referred to [9] or to [50] where a 3D
spiral stair is analysed through the PRD approach allowing for
small sliding effects). The Heyman theory can be framed as a
“metamodel” where the representative element is not the brick.
Furthermore, it is worth to point out that the word “stereotomy”
(from the greek Xtepeog “solid” e Topy “cut”) denotes a complex
“art”, but it is much more than an art: it is a science requiring a
deep knowledge and connection between three-dimensional
geometry and stone cutting to have a flow of forces as perpendic-
ular as possible to the joints [22].

4.2. PRD analysis

The Gothic cathedral of Fig. 14a is here analysed considering a
foundation displacement § below the third pillar (starting from
the left side). As external load, only the self-weight due to a uni-
form distribution of mass density (p = 1800 kg/m?) is considered.
After performing an analysis in the initial configuration, we
increase the displacement § in steps of 1 cm each until the struc-
ture collapses. The total computational time needed for this dis-
placement capacity analysis to define and solve both the primal
(P) and dual (D) problems is about 30 s with an Intel® Core™ i7-
8850H.

In Fig. 15, the solutions related to six different values of the dis-
placement field are shown: both the primal problem (P) and its
dual (D) are solved in the deformed configuration. The solution
of the primal problem returns the new configuration of the struc-
ture and the cracks, whilst the solution of the dual problem returns
internal and external forces (i.e. emerging singular stresses) in
equilibrium with the given external loads and acting on the bound-
ary of each element. Particularly, the tolerance assumed to detect a
crack (e.g. opening) is 0.01 cm: in Fig. 15 all interfaces exhibiting a
crack are identified with bold, black lines.

Furthermore, from Fig. 15, one can see that the forces are com-
patible with the crack pattern solving the primal problem: indeed,
if a hinge forms the force goes through the relative centre of rota-
tion. In Fig. 15a the forces in the initial configuration are depicted:
they are everywhere within the structural geometry, and they flow
down almost vertically along the central pillars. It is worth to point
out that, as in the spirit of the limit analysis, they represent only
one of the infinite admissible stress states. Starting from a value
of the displacement of 1 cm (Fig. 15b), the flow of forces changes
radically: a hinge forms in between the support and the third pillar
(the one affected by the foundation displacement) and the flow of
forces, at least for the right side of the cathedral, is less vertically
than before.

From Fig. 15c-f it can be seen that the mechanism is roughly the
same even though the location of the hinges change a little (see for
instance the two flying buttresses on the right side). Specifically,
the mechanism corresponding to 6 = 1 cm (Fig. 15b) remains the
same (e.g. Fig. 15c¢) until the displacement reaches the value of
59 cm: starting from this value the position of the hinges on the
flying buttresses change (Fig. 15d).
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Fig. 12. Draws of Amiens cathedral from [80]: plan (a) and three-dimensional scheme (b). The cross-section considered in the analysis is denoted by the red rectangle in (a)
while the blue rectangle in (a) highlights the structural elements depicted in (b). The depth between two consecutive cross-sections is 7.30 m. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Main dimensions of the cross-section (a) and orthogonal depth of the structural elements (b).
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(a)

Fig. 14. The cross-section shown in Fig. 13 has been partitioned into 276 rigid blocks and four blocks (in grey) have been added as supports (a). 3D view of the geometry (b).

A similar change occurs when the displacement reaches the
value of 146 cm: the mechanism switches from the one depicted
in Fig. 15e to the one reported in Fig. 15f, which corresponds to
the last stable configuration before the collapse. Therefore, the ulti-
mate allowable displacement is 180 c¢m, and the corresponding
crack pattern is depicted in Fig. 16a. Fig. 16b-c illustrate the evo-
lution of the collapse mechanism reached when the displacement
8 equals 181 cm: the central nave arch starts collapsing
(Fig. 16b), the third pillar moves a little on the left side and conse-
quently, the flying buttresses become unstable (Fig. 16c).

Moreover, looking at Fig. 15c-f, one can see that when the
structure is approaching the collapse, the flow of forces in the
upper part of the right buttress becomes more and more vertical,
suggesting that the flying buttresses are losing any chance to reach
an equilibrium state due to the increasing, relative outward dis-
placements of their boundaries. In this situation, the total potential
energy, that is the objective function of the primal problem, is not
bounded from below anymore as shown in Fig. 17a.

In the next Sections 4.4 and 5, we report the values of the
thrusts exerted by the main structural elements and the values
of the displacement of some control points (CPs) located over the
structure. For the location of the CPs, for the structural elements
considered and for the sign of the thrusts, the reader is referred
to Fig. 17b.

4.3. DEM analysis

Here, the same displacement capacity analysis of the Gothic
cathedral model is performed with 3DEC assuming the same incre-
mental vertical displacement § in steps of 1 cm as done for the PRD
analysis, and a friction angle equals to 35°. In the initial configura-
tion under zero given displacements, the flow of forces appears
everywhere within the structure (Fig. 18a). As soon as the displace-
ment & below the third pillar starts, hinges and cracks start form-
ing, and the flow of forces changes accordingly (Fig. 18b). The
crack pattern evolves (Fig. 18c-e) as in the analysis with com-
pas_prd, showing the formation of a hinge at the base of the third
pillar and hinges in the flying buttresses. The positions of the
hinges in the flying buttresses slightly change when & is 82 cm
and when & is 125 cm. The maximum allowable displacement is
177 cm, since the collapse happened for & equals to 178 cm, start-
ing from the central nave vault (Fig. 18f). The calculation with
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(b)

3DEC takes about 10800 s, about 3 h, with an Intel® Core™ i7-
6820HQ without reducing the joint stiffnesses.

4.4. Comparison

In this section, the results of the PRD displacement capacity
analysis performed on the Gothic cathedral model are shortly com-
pared with the ones obtained with 3DEC and elaborated with
compas_dem.

The displacement capacity with the PRD method is 180 cm,
almost equal to the 177 cm obtained with the DEM analysis. Even
the evolution of the mechanisms and of the crack pattern is similar.
The only slight differences are related to when the changes in the
mechanisms occur. In particular, the detected collapse mechanism
is exactly the same starting from the central nave arch and then
involving the flying buttresses. In Fig. 19, the curves represent
the vertical and horizontal components of the thrust exerted on
the supports evaluated with both methods.

The solution in terms of thrusts is similar with some slight dif-
ferences. The global trend is the same: all the curves have the same
slopes. Moreover, the value of the thrust on the third and fourth
pillars are very similar, while some differences are recognisable
only on the values concerning the first and second pillars. It is
interesting to see that these two pillars are not involved in the
mechanism, and thus the left part of the structure remains stati-
cally indeterminate. In that part, the results obtained with the
PRD analysis represent, as in the spirit of limit analysis, just one
of the infinite admissible stress states.

Furthermore, it has been shown that the computational time
needed by the PRD analyses is of a few seconds also to perform a
complete displacement capacity analysis. This depends on the fact
that the minimum energy criteria are framed as LP problems, and
currently, there are many available algorithms (such as the
interior-point ones) which can allow fast computational solving
even in presence of very large problems. In Table 1, the time
needed to initialize the PRD model, to solve a single PRD analysis
and to perform an entire PRD displacement capacity analysis is
reported and as well as the one required by 3DEC. Referring to
the PRD analyses, the LP problems have been solved with CVXPY
[68] choosing MOSEK [69] as a solver with an Intel® Core™ i7-
8850H. The 3DEC analyses, based on explicit dynamics, have been
conducted with an Intel® Core™ i7-6820HQ. Looking at the 3rd and
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Fig. 16. The ultimate allowable displacement is 180 cm (a). For 6 = 181 cm the central nave arch equals becomes unstable (b), the third pillar moves on the left side suddenly

and the flying buttresses lose any chance to reach a new equilibrium state (c).

Trend of Total Potential Energy
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(b) Pillar 3 Pillar 4

Pillar 1 Pillar 2

Fig. 17. In (a) the plot of the total potential energy (TPE) as a function of the value of the vertical displacement: when the structure becomes unstable (6 = 181 cm) the
energy is not bounded from below anymore. (b): arrows defining positive values of the thrusts exerted by some structural elements: central nave arch (red), upper flying
buttress (orange), lower flying buttress (green), aisle arch (yellow); localisation of control points (CPs). (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

4th columns of Table 1, the net time required for solving just the LP
problems corresponds to the difference among the 4th and 3rd col-
umns. Moreover, during the PRD displacement capacity analyses,
the model does not need to be initialised anymore, since as
exposed in Section 2.2, the LP problems are simply updated. It
can be seen that the time required, when compared to 3DEC, is
much less. Since in both cases, the PRD analyses are in good agree-
ment with the results obtained with 3DEC, the fast computational
solving opens up the possibility, not just to perform small-
displacement inverse analyses [40], but also to take into account,
when needed, large-displacement inverse analyses.

Remark 6. Looking at both the PRD and 3DEC analyses, it can be
observed that the third pillar of the Gothic cathedral is moving
downward monolithically until the collapse. Moreover, the pillar,
hinged on its left-bottom part, shows a slight, increasing rotation
around that corner, but its configuration is stable until the upper

16

part of the cathedral starts collapsing. Specifically, looking at the
PRD displacement capacity analysis, the fact that the third pillar
behaves as monolithic is just a result of the analysis. If different
forces/boundary conditions would have been present, the analysis
could have returned e.g. a different location of the hinge/hinges or
a loss of its local stability. Indeed, to illustrate how the PRD
approach can catch different behaviour due to various boundary
conditions, in what follows we propose a PRD displacement
capacity analysis of the cross-section of the Gothic cathedral
coupling the effect of the vertical settlement with the rotation of
the support. In particular, we assume that in each step the support
of the third pillar is subjected to a vertical displacement of 0.01 m
and a counterclockwise rotation of 0.001 rad around its centroid.
The PRD displacement capacity analysis returns a maximum
allowable displacement equal to 60 cm. The computational time
required for each step of this new analysis is the same needed by
the previous analysis (see Table 1) being the matrices defining the
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Fig. 18. Representation of the 3DEC solutions through compas_dem for the initial undeformed configuration (a), s =1 cm (b), § =30 c¢cm (¢), § =90 cm (d), s = 150 cm (e)

and for the unstable configuration corresponding to 6 = 178 cm (f).

LP problems the same. Even in this case, the analysis has been
benchmarked with 3DEC through the use of compas_dem and, the
maximum displacement obtained is 58 cm.

The results in terms of displacements, cracks and internal stress
states obtained from the PRD analysis and corresponding to three
different boundary conditions are reported in Fig. 20a-c. As main
outcome of this analysis, it can be noted that the mechanism
changes and the third pillars shows a horizontal hinge and thus
is not behaving monolithically anymore. In particular, Fig. 20c
illustrates the last stable configuration obtained via the PRD anal-
ysis, while Fig. 20d shows the last stable configuration obtained via
compas_dem, corresponding to a vertical foundation displacement
equal to 58 cm: the detected collapse mechanism is exactly the
same. Looking at the horizontal and vertical thrust exerted by
the third pillar, Fig. 20e depicts the comparison amongst the PRD
and 3DEC. It shows a good agreement between both approaches.

From a numerical perspective, this further investigation shows
how the PRD approach can easily handle different boundary condi-
tions. From a mechanical perspective, if the vertical settlement is
coupled with a rotation, the mechanical behaviour of the structure
changes. Indeed, in this case, the additional boundary condition
influences the behaviour of the structure for small foundation dis-
placements (e.g. the initial mechanism can be completely differ-
ent) and the stability fors finite displacements (the maximum
allowable displacement in this last analysis is lower).

The PRD approach can be applied to different mechanical prob-
lems and with different boundary conditions. One of the key fea-
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tures is that, as stated in the Introduction, it does not require
any a priori assumption on mechanisms since fractures and forces
are the results of the optimisation problems and depend only on
the chosen discretisation (the reader is referred to [39,40,46,48]
or for further benchmarks to [39]). Indeed, the space of the mech-
anism is defined by the number M of the element of the structural
partition. Specifically, using the PRD method, the solution is
selected in a space composed of oo®™ possible mechanisms: in
the case of the Gothic arch, the dimension is 14 while in the case
of the Gothic cathedral the dimension is 276. The mechanism solv-
ing the minimum problems depends on the load and on the bound-
ary conditions. In this sense, thanks to the two variational
formulations on which is based, it represents a displacement-
based approach that performs limit analysis a la Heyman selecting
the mechanism solving the primal problem among a wide spec-
trum of admissible mechanisms and thus does not depend on a
particular, apriori choice of the qualitative crack patterns. For this
reason, it can be applied to masonry structures such as the ones
reported in [5,6,30,33] by accurately identifying in each specific
case, as a function of the construction details (Remark 5), the
resisting structural model. E.g., if the aim is to assess masonry arch
bridges, a conservative approach commonly adopted when stan-
dard Limit Analysis methods are applied to look for the load-
bearing capacity or seismic assessment, is to model the structure
through arches over piers and to opportunely take into account
the backfill/spandrels through proper load distributions or addi-
tional resisting structures (for more details, the reader is referred
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Fig. 19. Thrust on the supports obtained with the PRD and 3DEC analyses: vertical (a) and horizontal (b) components dimensionless with respect to the total weight of the

structure.
Table 1
Computational time required for PRD and 3DEC analyses. 6"r> and 6205 represent the maximum allowable displacements for PRD and 3DEC analyses, respectively.
Elements Step Initialise PRD model PRD single analysis PRD displ. cap. analysis OPRD 3DEC displ. cap. analysis 532§(C
[-] [em]  [s] [s] [s] [em]  [s] [cm]
Gothic arch 14 0.1 0.004 0.028 5.514 27,8 4200 27,4
Gothic cathedral 276 1 0.205 0.369 28.958 180 10800 177

to [81] and references therein). In this light, the PRD approach
offers practitioners and scholars one more option which can inte-
grate other models in the assessment of historic masonry struc-
tures, particularly when subjected to foundation displacements.

5. Discussion

In this section, referring to the Gothic cathedral application, we
discuss the results obtained with the PRD method in-depth to
show how it provides a new computational way for applying Limit
Analysis on complex and generic planar masonry structures sub-
jected to large foundation displacements. In Section 4.2, a PRD
analysis, coupling the primal (P) and dual (D) problems, of a two-
dimensional section of a Gothic cathedral, based on the gross
dimensions of Amiens, has been performed. Firstly, the cathedral
has been analysed in the initial (perfect) configuration to assess
if the structure is stable or not, and then, in the deformed configu-
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ration obtained in a step-by-step procedure by prescribing an
increasing foundation displacement below the third pillar until
the structure reaches an unstable configuration (Fig. 15). In Sec-
tion 4.4, the results have been compared with the one obtained
with 3DEC, showing good agreement in terms of crack patterns,
mechanisms and resultant forces.

The solution in the reference configuration (Fig. 15a) shows that
the cathedral is stable since the total potential energy correspond-
ing to the solution of the primal problem (P) is bounded from
below and the dual problem (D) provides an internal stress state
lying everywhere within the geometry. It is worth to point out that,
as in the spirit of Limit Analysis, they represent only one of the infi-
nite admissible stress states, as indeed the complementary energy
is constant and equals zero. After assessing the initial stability, a
displacement capacity analysis has been performed and the maxi-
mum allowable displacement is estimated as 180 cm: when 3§ is
equal to 181 cm the total potential energy is not bounded from
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Fig. 20. In (a-c), PRD displacement capacity analysis of the cross-section of the Gothic cathedral subjected to settlement and rotation: geometric configurations, cracks
pattern (interfaces labelled in bold black) and resultant forces for § =2 cm (a), 6 =30 c¢cm (b) and for the maximum allowable displacement 6 = 60 cm (c). In (d),
configuration and internal stress state obtained from 3DEC and corresponding to the maximum allowable displacement § = 58 cm. In (e), comparison among the PRD and
3DEC analyses: trend of the vertical (T,) and horizontal (Ty) thrust (dimensionless with respect to the total weight of the structure) exerted by the third pillar.

below anymore (Fig. 17a) and the structure exhibits a zero-energy
mode mechanism (Fig. 16b-c). It is worth to point out that the
trend of the total potential energy provides a precise and accurate
criterion to define the collapse state of the structure.
Furthermore, just after a small foundation settlement (6 = 1 cm),
a mechanism involving a part of the structure forms, and it remains
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qualitative the same up to collapse takes place (Fig. 15). It is worth
pointing out that the PRD method allows catching a typical beha-
viour of masonry structures [2]: the masonry structures are, in
their initial and perfect (no cracks) configuration (e.g. Fig. 15a),
statically indeterminate, but when they undergo a little foundation
displacement (Fig. 15b), they accommodate this change with a
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rigid macro-block partition of the structure and the moving part of
the structure, defined by this partition, becomes statically deter-
mined. In our case, the moving part is the right side of the cathe-
dral while its left side remains statically indeterminate (Fig. 21).
This is also highlighted by the trend of the horizontal components
of the thrust on the first and on the second pillar (Fig. 19b). For
these pillars, the space of the dual problem is not a singleton,
and for this reason, the curves representing the horizontal thrusts
show many little jumps in each step. Instead, the horizontal thrusts
exerted by the third and fourth pillars are smooth (except for some
discrete jumps), showing that the solution space of admissible
stress state (for the right part) is very tight. This suggests that the
right part of the structure is statically determinate.

We show in Fig. 21 the six mechanisms used by the cathedral to
accommodate the increasing foundation displacement until it col-
lapses: the rigid macro-block partition (defined by a small number
of rigid macro-blocks) can be easily recognised. This behaviour can
also be seen from Fig. 22a, where the streamlines of the displace-
ment field of the centroids of each block are plotted: most of the
structure does not displace, whilst the part close to the third pillar
is moving down accommodating the new boundary conditions
with a quasi-smooth rigid displacement. This quasi-smooth rigid
displacement can be recognisable from Fig. 22b where the vertical
and horizontal displacements of the CPs defined in Fig. 17b are
reported. Moreover, when the displacement reached the critical
value of 181 cm, the horizontal displacement of CP2 moves up

§=1cm

§=127cm

(d)

8§ =49cm

(e)
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suddenly denoting that the central nave arch starts collapsing
before the other elements.

In Fig. 23 the vertical and horizontal components of thrusts
exerted by the structural elements identified in Fig. 17b are plot-
ted: as expected the left and right horizontal components are the
same.

Globally, the curves represented in Fig. 19 (the ones related to
the PRD results) and in Fig. 23 show six jumps. Without consider-
ing the initial jump, occurring when the structure starts moving
down (6 =1 cm) and the thrusts of the whole structure and of
some elements drop down or increase suddenly, there are other
five jumps. These jumps occur whether the mechanism switches
from one configuration to another or if the internal stress state
changes suddenly. In Fig. 24 the four changes are highlighted.
The first jump, corresponding to a displacement § in between
4 cm and 5 cm, occurs when the thrust line in the aisle arch switch
suddenly from the configuration depicted in Fig. 24a to the one
depicted in Fig. 24b. The second jump (19cm < § < 20cm) occurs
when the thrust line in the central nave arch switch suddenly from
the configuration depicted in Fig. 24c to the one in Fig. 24d. After
some steps (6 = 49 cm) a hinge compatible with the new location
of the thrust line opens up on the left side of the central nave arch
(Fig. 21b). This represents one of the peculiarities of the PRD
approach: the forces can touch the boundary but a hinge forms if
and only if the boundary conditions allow for a new configuration.
Only if the structure (locally or globally) is collapsing (e.g. under

8 =63cm

bs

!
() 8

Fig. 21. The six different configurations defining the evolution of the mechanism until the structure collapses. Stable mechanism: (a-e), collapse mechanism: (f). The internal
interfaces labelled in black are the ones affected by cracks. The crack pattern changes when the foundation displacement increases: new hinges open up while others close.
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Fig. 22. Streamlines of the displacement field of the centroids of the blocks: red circles are used to denote the position of the centroids. Most of the structure is not moving,
and the mechanism affects just the part close to the third pillar (a). Displacements of the control points (CPs) defined in Fig. 17b (b). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

increasing loads) hinges can form without changes in the boundary
conditions. It is worth to point out that there are no jumps con-
nected to § =49 cm because the change in the arch thrust has
already occurred. The remaining three jumps are strictly connected
not just to a change of the internal stress state but to a change of
the stress state determined by the formation of a new mechanism,
that is: the third jump (49 cm < 6 <53 cm) and the fifth jump
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(143 cm < 6 < 145 cm) occur when the location of the hinges on
the flying buttresses moves down as depicted in Fig. 24e-f and i-
1 respectively, while the fourth jump (125 cm <6 <127 cm)
occurs when the crack pattern of the aisle arch changes
(Fig. 24g-h). The changes in the mechanisms can also be recog-
nised in the displacement of the CPs from Fig. 22: particularly,
the ones regarding the flying buttresses affect only the displace-
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Fig. 23. Thrusts (dimensionless with respect to the element weight) exerted by the four structural elements depicted in Fig. 17b: central nave arch (a), aisle arch (b), upper (c)

and lower (d) flying buttresses.
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Fig. 24. Change of the internal stress state in the central nave arch: (a-b). Changes of the location of the hinges in the flying buttresses (c-d, g-h) and in the aisle arch (e-f).
The resultant forces with their application points as well as the hinges (labelled in bold black) are depicted to visualise these changes more clearly.

ment of the CPs of the upper part of the structure (i.e. from CP1 to
CP5) while the one regarding the change in the mechanism of the
aisle arch can be seen only on the CP6 curve.

6. Conclusion

An extension of the PRD method to take into account the effects
of large foundation displacements on the stability of masonry
structures has been proposed. This extension allows coupling in a
step-by-step procedure the original primal problem, proposed by
the first author in [39] and with other co-authors in [40], with a
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new dual problem proposed for a continuum in [3] and formulated
as an LP problem in [49]. The primal problem concerns the minimi-
sation of the total potential energy, and its solution is represented
by cracks (or mechanisms). In contrast, the dual problem regards
the minimum of the complementary energy, and its solution
allows finding internal and external forces in equilibrium with
the external loads and compatible with the crack pattern. The pro-
posed numerical approach allows to preserve the NRNT material
restrictions on the deformed configuration and to frame the dis-
placement capacity analysis as a sequence of LP problems written
on the updated configuration in such a way that new hinges can
form while old cracks can close: in the first case, the force goes
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through the relative centre of rotation while in the second it is back
to lie within the interface.

First, the simple case of a pointed arch has been proposed to
compare the PRD displacement capacity analysis with the results
obtained from physical tests and a DEM analysis done with com-
pas_dem using 3DEC in the background as solver: a very good
agreement in terms of cracks evolution, mechanisms, forces and
displacement capacity has been found (Section 3.4).

After benchmarking the PRD method, a complex numerical
application based on the cross-section of a Gothic cathedral has
been proposed for showing the main peculiarities of the PRD
approach. Even in this case the PRD analysis has been bench-
marked with 3DEC, showing a good agreement in terms of dis-
placement capacity, stress states and evolution of mechanisms
(Section 4.4). The first outcome of the proposed approach is that
the PRD method catches the typical behaviour of masonry struc-
tures: they are resilient to (even non-small) changes in the bound-
ary conditions showing a considerable ductility (or flexibility) in
terms of displacement capacity (i.e. 180 cm for the cathedral).
Since hinges can open up or close, they accommodate large foun-
dation displacements with an evolution of the crack pattern defin-
ing different mechanisms. Moreover, as shown, the PRD approach
provides not merely the evolution of the mechanism, but it couples
the mechanism with the internal stress state until the structure
collapses. Moreover, we show how an energy criterion regarding
the total potential energy can be adopted to define the collapse
state of a structure accurately. Even though the PRD method pro-
vides a clear visualisation of the mechanism and of the location
of the hinges, we showed how the analysis of the thrust exerted
by some structural elements or the displacement of some control
points provide a criterion for understanding the changes in the
mechanism and in the internal stress state. Some further theoreti-
cal features caught out by the PRD method and perfectly fitting the
spirit of Limit Analysis, should be highlighted:

- the PRD method allows assessing if the initial configuration is
stable or not and the dual formulation can be still applied (the
complementary energy is zero) providing one of the infinite
internal stress states [49], so without having to apply a
displacement;

starting from the initial (perfect) configuration, when a small
settlement occurs, a mechanism forms and the internal stress
state change suddenly getting compatible with the location of
the hinges;

the relation between forces and fractures is reversed, and it is
framed more naturally: a hinge opens up if and only if the force
is touching the corner, and the displacement (caused by that
opening) is compatible with the boundary condition (this does
not regard the cases when the structure is not stable under
given loads);

since the problem is framed as a sequence of LP problems, the
solution can be evaluated in a few seconds: the entire displace-
ment capacity analysis performed on the approximate cross-
section of Amiens cathedral takes less than 20 s; and,

looking at Table 1, the fast computational solving provided by
the PRD approach opens up the possibility of performing not
just small-displacement inverse analyses [40] but also to con-
sider large-displacement, inverse analyses, particularly when
the foundation displacements or the size of the cracks cannot
be considered small when compared to the overall size of the
structure (the reader is referred to [40]).

In this sense, by adopting a displacement approach, the PRD
method constitutes a fast computational application of Limit Anal-
ysis to masonry structures. An issue of the PRD approach is that it
cannot take into account sliding directly; this feature (or “limita-
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tion”) comes from one of the Heyman’s assumption. However,
we showed how, with an appropriate discretisation of the geome-
try (following the concept of stereotomy and of “regola dell’arte™)
the solutions are in perfect concordance with the ones obtained
through DEM analyses, at least for friction angles greater than
35°, so for a reasonable value for the representative volume of
masonry material.
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