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ABSTRACT CCS CONCEPTS

Synthesis of shapes that are guaranteed to be physically produced
by Robotic 3D printing of concrete, needs research attention. This is
necessitated by the rapid development of the hardware, commercial
availability of and interest in concrete printing. Further the need is
amplified by the lack of easy-to-implement-and-use shape-design
tools. Together, they provide the context of the proposed work.

A necessary feature for geometries to be ‘printable’ is that each
consecutive layer onto which material is deposited should change
gradually such that it has sufficient overlap with the preceding
layer (spatial coherence of print paths). The computational han-
dling of these aspects have been introduced by Bhooshan et al.
2018 including the use of a time evolving scalar-field to represent
the shape to be designed - the so-called Function Representation
(FRep). This paper significantly extends the previous work by (a)
fully parametrising the shape description for 3D printing of concrete
by decomposing the shape as a combination of shape interpola-
tion (Morph) and affine interpolation (Slerp), and (b) replacing the
linear, cross-fading interpolation scheme resulting in physically
problematic artefacts with a scheme that produces smooth, spatially
coherent outcomes.

An easy-to-implement software application has been prototyped.
It couples the shape description with a guiding heuristic to design
topologically complex, physically plausible shapes with relative
ease. The coupling significantly reduces the effort and expertise
needed to produce shapes that are printable whilst also providing
intuitive, visual feedback to designers. This is particularly useful in
the current context where computer simulation of the stability of
the layers during printing is actively being developed, experimen-
tal in nature and still computationally expensive. The presented
approach does not, however, automatically guarantee printable
outputs. The shape description and outputs may, nonetheless, be
readily used as good candidates for further optimisation to guaran-
tee print readiness.
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1 MASONRY, 3D PRINTING AND
SCALAR-FIELD INTERPOLATIONS

Robotic 3D printing of shapes in concrete proceeds by depositing
layer-by-layer wet concrete that hardens over time, yielding the
physical artefact. This is analogous to formwork-free masonry con-
struction. Bhooshan et al. 2018 articulate this analogy particularly
in terms of methods of geometry creation, equilibrium analyses and
construction sequencing (in stable sections). Furthermore, the work
also established the need to explore more suitable shape-design
methods given the rapid evolution of concrete-printing hardware
and material technologies. Lastly, it also addressed the benefits and
the computational handling of explicitly representing and enabling
designer manipulation of the printing trajectories along which the
robot deposits material — the so-called print paths.

This ‘forward design’ paradigm is novel in its use for fabrication-
process-aware shape representation. It contrasts with the currently
ubiquitous ‘inverse design’ method of ‘slicing’ process-agnostic 3D
shapes, usually represented using Boundary Representation (BRep)
schemes, into 2D print layers (Figure 1 a,b). Furthermore, the slicing
is typically done by intersecting the input shape with parallel cut-
ting planes. The inverse paradigm can additionally include optimi-
sation routines to modify the input shape to meet several optimality
criteria including guarantees to be printable. This is occasionally
used in shape-design for desktop-scale, plastic printing [Cacace et
al. 2017]. The inverse paradigm, as applied to concrete printing,
requires significant domain expertise in both shape creation and
concrete printing, apart from routinely leading to difficult-to-solve
problems such as the lack of spatial coherence between consecutive
print layers (Figure 1). Lack of spatial coherence is also a proxy for
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Figure 1: Inverse paradigm: A user-provided mesh (a), typically modelled agnostic to printing constraints, is ’sliced’ to derive
print paths (b) by intersecting horizontal cutting planes with the input mesh. . The dashed red circle highlights the problem-
atic parts for printing due to a lack of spatial coherence (b) causing infeasible, unsupported overhangs between subsequent

layers(c).

other problems such as extreme inclination and cantilever of the
layers in cross section (Figure 1 b,c).

In contrast, the proposed work follows a process-aware, forward-
design paradigm. It focusses on automatically synthesising print
layers with spatial coherence, based on user-provided boundary
conditions of start and end print paths and print planes (Figures 2,
3, 4). Importantly, the proposed shape-design method significantly
reduces domain expertise needed to create topologically complex,
nearly-print-ready shapes. It also provides visual feedback with
regard to constraints of concrete printing due to the explicit repre-
sentation of the print paths and the implementation of a guidance
heuristic. Lastly, it is easy to implement and extend. The outputs
of the proposed method of shape-design, though not automatically
guaranteed to be printable, serve as a good starting point to guide
towards printable outcomes due to in-built spatial coherence of the
generated print paths.

Specifically, Bhooshan et al. 2018 exemplify the advantages of
using an evolving scalar-field representation scheme — the so-called
Function Representation (FRep) and its zero contours to represent
the print paths and thus the 3D shape. Furthermore, they also
highlight the limitations of linear, cross-fading interpolation of
scalar-fields, such as abrupt transitions and lack of spatial coher-
ence between consecutive print layers. This paper significantly
extends the previous work by adding shape-design aspects that are
simultaneously designer-friendly and improve printability of the
designed shapes. In particular, it focusses on developing appropri-
ate scalar-field interpolation schemes, adapting ideas from the field
of Optimal Mass Transport.

1.1 Key contributions

The motivation of the research is to address the lacunae in inter-
active, designer-friendly shape-design tools that provide practical
and didactic understanding of the physical viability of shapes for
concrete 3D printing and other layered construction techniques

such as corbelling and pitched-brick vaulting [Bhooshan et al. 2018].
The work presented here focuses on parametric shape description
and providing guidance with respect to printability, i.e. that the
printed layers will not collapse during printing or the wet phase of
concrete. Currently, there is a lack of such tools.

The key innovation is fully parameterising shape description for
3D printing by decomposing the shape as a combination of shape
interpolations between start and end cross sections (Morph) and
affine interpolation between corresponding start and end planes
(Slerp). The principal contribution is thus a task-appropriate shape-
interpolation scheme adapted from the Displacement Interpolation
[Bonneel et al. 2011] and Optimal Mass Transport [Papadakis 2015].
We also couple the shape description with a guiding heuristic to
design novel, topologically complex, physically plausible shapes
without requiring extensive domain expertise in shape-design for
3D printing. All the outcomes were produced using a proof-of-
concept, stand-alone shape-design application that couples tightly
with downstream applications that process shapes for robotic
printing.

2 PRIOR WORK

As mentioned previously, Bhooshan et al. 2018 introduced two key
ideas — analogy of concrete printing to masonry design and con-
struction and the use of FRep. The masonry analogy is particularly
important because the currently ubiquitous parallel-slicing para-
digm in 3D printing share s its features and limitations with brick
corbelling where by each layer of material partially overhangs the
previous to produce shapes. The proposed work aims to extend the
analogy to pitched-brick masonry which employs evolving non-
parallel courses, and thus the range of viable shapes. Resonance
of some of these aspects can be found in recent work [Carneau et
al. 2020]. Specifically in the context of shape-design, however, the
following are the important precedent research.
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2.1 Shape-design for Pitch brick masonry

Wendland 2007 studied the design of historic masonry structures,
particularly the so-called pitched-brick vaults that did not use sup-
portive formwork during the laying of the bricks. Specifically, he
showed that they are compound structures made up of simpler
primitives of geometry, which in turn consist of bricks laid along
self-supporting arched courses. Both the laying of bricks and lack
of supportive formwork is strikingly similar to 3D printing along
print paths. Thus, a primitive of shape-design for 3D printing could
similarly be composed of i) two cross-sectional curves with their
respective planes of orientation and ii) interpolated, in-between
curve shapes and their respective interpolated planes. Thus, the
work by Wendland is an important precedent to the Morph & Slerp
formulation introduced in this paper. It is worth noting that in
Wendland’s reconstruction, and generally, in masonry structures,
the two curves are usually of the same topology, and that interpo-
lation is thus trivial.

2.2 Optimal Mass transport

Optimal Mass Transport has its historic roots in a problem formu-
lated and addressed by Gaspard Monge — the famous Earthmovers
problem of minimising the amount of work needed to move earth
from its sources to sinks where they are needed. In image pro-
cessing, optimal transport is the geodesic between two images.
Papadakis 2015 provides a comprehensive treatment of the topic.

Optimal Transport has found many uses in recent times, par-
ticularly in image processing [Papadakis et al. 2014], geometry
processing (Solomon et al. 2015) and machine learning [Peyré and
Cuturi 2019]. To the best of our knowledge, its use in 3D printing
and the design of printable shapes has not been explored. Both the
displacement and geodesic perspectives are relevant to our task
and work — moving a source FRep to a target FRep in a spatially
coherent fashion.

2.3 Spatially coherent scalar-field interpolation
using mass transport

Mass Transport is optimal if it preserves total mass to be transported
from one location to another and minimises total work needed to
do so. In the context of shape-design using FRep, however, the
optimality is not strictly necessary and instead another property is
useful: the spatial coherence between subsequent temporal states
of the transport. Therefore, Optimal Transport is often called Dis-
placement Interpolation. There are two main methods to compute
Displacement Interpolation: i) a Eulerian formulation that is based
on mass-preserving computational fluid dynamics [Papadakis et
al. 2014] (Figure 2) and ii) a discrete Lagrangian formulation that
moves mass-carrying points from source to target locations (Figure
3).

Bonneel et al. 2011 show the earliest use of the Lagrangian Mass
Transport to compute the interpolation between two given bidirec-
tional reflectance distribution function (BRDF) maps — a common
intermediate image object needed in rendering pipelines to create
computationally generated images. In that context, they note the
advantages of using the Lagrangian model including computational
speed and parameter control. Our work and paper particularly
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adapts the ideas and some of the code from this important prece-
dent work [Bonneel et al. 2011; Bonneel 2018; “Network Simplex.”
2009].

3 MORPH AND SLERP SHAPE DESCRIPTION

Our two part, FRep-based description of the shape to be 3D printed
consists of i) start and end scalar-fields and their respective orien-
tation planes and ii) interpolated in-between scalar-fields (Morph)
and their respective interpolated planes (Slerp).

3.1 Morph: Shape Interpolation

As mentioned previously, Bonneel et al. 2011 developed a La-
grangian formulation to compute the interpolation between two
BRDF images — in other words, an interpolation between two con-
tinuous functions. Their pipeline consists of i) decomposing the two
continuous functions into their respective radial basis functions
(RBFs) by adequately sampling the functions, ii) computing the
Optimal Transport between all paired RBFs represented as mass
points with a radius of influence (Figure 4 a,b) iii) advecting the
mass points along the geodesic paths between paired mass points
(Figure 4 c), and, finally, iv) reconstructing the interpolated function
(the interpolated BRDF image) from the advected RBFs.

In our current framework to shape-design for 3D printing using
FRep, we adapted the RBF-based Lagrangian optimal-transport
framework as follows:

a) Start with two user-defined RBFs thus omitting the first and
last step (Figure 4 a,b). The RBFs are represented as mass
points with a radius of influence. The length of straight-line
or curved paths between each pair of mass points represents
the cost of moving a unit mass between the centres. In terms
of shape-design, they represent the paths along which the
shape will evolve (Figure 4 d, Figure 6 (a,b), Figure 11 c).

b) Retain the mass-transport and advection steps to compute
the interpolated RBFs. We use the zero contours of the inter-
polated, time-evolving RBFs to represent consecutive print
layers. Thus, the stack of n zero-contours represents the
overall shape of the 3D object 5 b). The number n provides
intuitive user control over the ‘resolution’ or thickness of the
print layers. These curves are transformed to their respective
interpolated planes (5 c). The resulting 3D shape (Figure 5
d) is thus a combination of shape and plane interpolation
between given end states.

¢) Add parameters to control the rate of displacement of the
individual mass points of the source RBF, as they move from
source locations to computed target locations. This allows
the calibration of rate of interpolation such that two consec-
utive zero contours have sufficient overlap i.e. have spatial
coherence (See section 4).

d) Add control curve handles to define the paths from sources
to sinks. This allows for more user control of the resulting
3D shape (Figure 6). In particular, they allow for control
over how the generated shape looks in the top-view or cross-
sectional view (Figure 6 b,c). We use procedurally generate
these control curves by ‘walking’ between source and tar-
get mass points of a user-provided graph (Figure 6 a) and
computing the so-called Dijkstra shortest paths (Figure 6 b);
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Figure 2: Fluid-dynamics-based, Eulerian optimal transport: (a) The fluid-dynamics formulation of Optimal Trans-
port[Papadakis et al. 2014] and corresponding C++ code [Bonneel 2013] was used to produce this interpolation sequence
of morphing top-left image to bottom-right image; (b) corresponding zero contours with start (red), end profile(blue) and
interpolated zero-contours(grey), (c) resulting 3D shape obtained by stacking the consecutive zero contours.

(a) (b) (c)

(d)

Figure 3: Radial Basis Function (RBF) based, Lagragian optimal transport: (a,d) Source and target RBF-based scalar-field; (b,c)
intermediate, interpolated RBF and scalar-field state; The Displacement Interpolation algorithm and corresponding C++ code
was adapted to produce this interpolation sequence [Bonneel et al. 2011; Bonneel 2018;“Network Simplex.” 2009] (e) resultant

3D shape achieved by stacking the consecutive zero contours.

3.2 Slerp: Plane Interpolation

The second part of our shape description for 3D printing consists of
interpolating the start and end orientation planes. The zero-contour
curves of the interpolated scalar-fields from the previous step are
transformed to these interpolated planes. In effect, these interpo-
lated planes represent the planes of the print paths and material
deposition. This is analogous to the titled planes of brick courses in
pitched-brick masonry. We can use any affine interpolation scheme
for this purpose. We describe two well-established schemes used
in computer animation: curved motion paths and the associated
Frenet-Serret moving frames (Figure 7 b-left) and Spherical Inter-
polation (Figure 7 b-right)

3.3 Motion paths and Frenet-Serret frames

A user-friendly method to generate the interpolated planes between
user-provided start and end planes would be to extract in-between
planes from a user-provided Bezier curve connecting the centers
of the two planes. The Bezier curve can be drawn such that the
start and end tangents of the curve are aligned with the normal
of the start and end planes. In practice, the start and end planes
are extracted from the drawn curve. The so-called Frenet-Serret
moving frame consisting of the tangent, normal and binormal at
each point along the curve can provide the in-between orientation
planes.

In particular, we can use a curve based on the path of the resultant
of the flow of forces in the final structure, which will improve the
structural alignment of the print paths normal to the expected
force transmission across the layers (Figure 7 c). This is structurally
beneficial once the 3D print hardens.
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(a) (b)

(d)

Figure 4: Planar Inputs: (a,b) Starting and end scalar-fields and corresponding zero-contours (red) produced by respective Ra-
dial Basis Functions (RBFs) (dashed). (c) User-provided start and end print planes (red) and optionally a curve connecting them
(d) In-plane Euclidean paths between centres of all pairs of RBFs of starting and end scalar-fields. Alternatively, segmented
paths may be generated from a graph connecting the centers (Figure 6).

(a)

Figure 5: Morph & Slerp: (a,b) Morph operation — blending two topological circles in the starting scalar-field to one in the end,
(c,d) Slerp operation. (a) Displacement interpolation between start and end scalar-fields. (b) Zero-contours extracted in-plane
and in-place, from various intermediate states of the evolving scalar-field shown in (a). (c) Moving frames (black) extracted
from a curve connecting the start and end planes (red). (d) Resulting 3D shape achieved by transforming each in-plane curve

(b) unto respective planes in (c).

3.4 Spherical Linear Interpolation

A robust, numerically stable, compact and well-established way to
represent orientation in 3D space is using quaternions. A natural
interpolation that extends from this choice, is the so-called Spher-
ical Linear Interpolation scheme [Shoemake 1985]. This single-
parameter interpolation is useful to produce an initial set of in-
terpolated planes for user manipulation and also for procedural
optimisation.

3.5 Affine transformation and spatial
coherence
One of the consequences and an easy visual check of the spatial

coherence of the zero-contours obtained from the Morph operation
(Section 3.1) is the smooth gradation of the size of the bounding

boxes of each of the contours (Figure 8a). Given such smoothness,
the contours can individually be scaled to fit a unit square without
loss of spatial coherence (Figure 8). This feature is useful when
designing tubular shapes and to constrain the external boundary
of the shape within a unit square (Figure 8 d,e and Figure 11).

4 PARAMETER CHOICE

Given the two-part, Morph & Slerp shape description, the intrinsic
parameters that control the overall shape are:

a) RBFs defining start and end scalar-fields and corresponding
centres / mass points;

b) individual rates of displacement of centres of source RBF
towards target RBFs; and
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(d)

Figure 6: Displacement trajectories: (a) User-provided graph connecting centers of source RBF (black circles) and sink RBF
(black dots); (b) a family of segmented curve handles generated by walking between source (black circles) and target mass
points (pink dashed circles) marked on graph in (a) and computing the so-called Dijkstra paths; (c) smoothed version of the
family of curves shown in (b). It can be noted that the zero-contours of the shape (blue) evolve along the control curves in
both (b) and (c); (d,e) resulting 3D shapes corresponding to (b) and (c) respectively, with the smooth family(c) producing more
gentle curvature and inclination in the print layers, hence more amenable to printing with wet concrete. Thus control handles

similar to (c) is recommended.

(a) (b)

(c)

Figure 7: Plane interpolation: (a) Intermediate profile curves (blue) obtained by interpolating between start (red) and end
(black) profiles using the Morph operation (Section 3.1); (b-left) Frenet-Serret moving frames extracted from a curve (red)
and (b-right) spherical linear interpolation of frames between start and end frames (red); (c) resulting 3D shapes obtained by
transforming (a) unto each family of planes (b-left and b-right) and subsequently thickening the curves.

c) orientation quaternions of each individual plane - if these
quaternions come from Slerp, every interpolated plane will
produce a control parameter; If a Bezier curve controls them,
the location of the control points of the curve become the
parameters.

In a typical example, there can be 50 centres and thus 50 dis-
placement rates, and if the stack is of 100 layers say, we can have a
100-segment curve. Thus, finding a printable shape is the equivalent
of finding 150 parameters. These parameters can be found either
by heuristically guided user-manipulation or through procedural
optimisation. In this work, we focus on the former.

4.1 Guiding heuristic

3D printing in concrete has two important material and process
aspects to be considered: i) the stability of the printed layers during
printing, and ii) failure of the material upon non-axial loading after
the print is hardened. The former is the primary concern for the
shape-design process. Currently, there are no available tools to com-
pute the buckling stability of the print layers, with the exception of
recent work [Ghent and Concre3DLab 2019; Wu 2020]. We use the
corbelled-masonry analogy [Bhooshan et al. 2018] and provide a
simple, geometric heuristic as guidance - the extent of overlap be-
tween print paths lying on consecutive print planes (i.e. consecutive
print layers) with each path having a fixed, lateral in-plane width
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(d) (e)

Figure 8: Affine Transformation: (a) Zero-contours of interpolated scalar-field (blue) obtained from the Morph operation (Sec-
tion 3.1). The smooth gradation of bounding boxes of each consecutive zero contour (black squares) is a consequence of the
spatial coherence of the zero-contours. (b) Each of the zero-contours of (a) individually scaled to fit a unit square. (c) Inter-
polated planes using the Slerp operation (Section 3.2); (d) resulting 3D shape obtained by affine transformation of each (a)
unto (c). (e) resulting 3D shape obtained by affine transformation of each (b) unto (c).This shows the use-case of scaling all
zero-contours to fit within a unit square and generating tubular shapes (see Section 3.5).

)

N

layer 1

2

Y unsupported ’ / 0
S S layero

. print-width

overlap

(a)

(b) ()

Figure 9: Guiding heuristic: (a) Typical check for spatial coherence between two consecutive print layers; (b) zoom-in of (a)
and an example of two consecutive layers exhibiting partial lack of spatial coherence between them (dashed red circles). Layer
1(blue) is to be printed on top of layer 0 (black) and thus needs sufficient overlap interface (red) to be adequately supported.
When curves are not fully coherent, layer 1 can become partially or entirely unsupported (inset); (c) zoom-in of (a) and an
example of two consecutive layers exhibiting good spatial coherence between themselves and thus adequate overlap (red line

in inset) and overhang within bounds.

(so-called print width) relating to the size of the printing nozzle. If
a minimum overlap is not met — usually half the print width - it
implies that the portion of the print-path is unsupported and thus
likely to fall through. A minimum (but not sufficient) criterion for
successful completion is that a minimum overlap is consistently
met everywhere across each pair of consecutive layers (Figure 9).
This heuristic is aligned with visual inspection practices of expe-
rienced 3D printing professionals and similar to the well-known
corbelled-brick heuristic in the masonry trade where a one-third
of the length upper brick can overhang the lower brick — in other
words one third of the upper brick can be cantilevered.

The heuristic is easy to compute and thus computationally
tractable to be used within an optimisation routine. Importantly, it
is also intuitive from a design perspective. Thus, the heuristic can

help users to manipulate the shape parameters to improve print-
ability. This heuristic attempts to geometrically capture very many
material and mechanical parameters that influence the stability of
the layers during printing [Suiker 2018; Wangler et al. 2016]. Thus,
the heuristic, whilst not guaranteeing successful printing, does pro-
vide significant visual feedback to designers and an easy check for
minimum (not sufficient) criterion for a successful print. This is
particularly useful in the current context where computer simula-
tion of the stability of the layers during printing is rapidly evolving,
but still experimental in nature and computationally expensive.

5 RESULTS

The highly sensitive combination of material and process param-
eters means that in practice, for all but the simplest extrusions, it
is simpler and more reliable to physically validate the shape. This
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Figure 10: Stand-alone applications: (left) Proof-of-concept, stand-alone computer application to synthesise shapes for robotic
3D printing using the proposed method; (right) application for downstream processing of geometry for manufacturing used

(courtesy of Incremental 3D GmbH).

(b) < &)

(a) (c)

(e) > ®

Figure 11: Branching topology and inclined print paths example: The proposed shape description only requires (a) graph with
location of start and end mass-points (pink and black dashed circles respectively), and start and end planes (b) to automatically
produce spatially coherent, gradually inclined print paths of a topologically complex shape (e) (see Section 3). (c,d) Intermedi-
ate zero-contours created from inputs (a,b) (See Section 3.5). It would require considerable expertise in both BRep based shape
modelling and ‘slicing’ to produce (e) using currently ubiquitous methods (see Section 1); (f) 3D shape obtained by thickening

the (blue) curves in (e);

requires that the design-to-production pipeline is as streamlined
as possible. The proposed shape description is well aligned with
the downstream requirements of print paths and print-plane nor-
mals for end-effector orientation (Figure 10right). As such, there
is nominal downstream processing to turn the generated shape
into a physical artefact. Further, two fully encapsulated software
applications are sufficient to complete the design-to-production
pipeline (Figure 10). The proposed, lightweight shape description
enables the two applications to communicate via text-based file
formats.

The creation of topologically complex shapes and intricate shape
features requires significant domain expertise and experience in the
current ‘slicing’ paradigm (Section 1). This requirement is signifi-
cantly reduced with the proposed paradigm (Figure 11and Figure 12).

Lastly, the bulbous curvature of the cross-sectional curves (undulat-
ing profile) (Figure 12), are a feature of the RBF-based formulation of
mass transport used in the research (Section 2.2). Smooth curves are
possible with the fluid-dynamics formulation mentioned previously
(Figure 13). It can be noted again that the specific optimal transport
formulation to be used (Fluid/Eulerian or RBF/Lagragian) does not
change the Morph & Slerp shape description or the functioning of
the tool.

6 LIMITATIONS AND OUTLOOK

The immediate outlook of the research relates to some of the limi-
tations of the current work and to the yet-to-be explored branches
leading from the main thrust of the work so far:
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Figure 12: Lagrangian Optimal mass transport example: (L-R) Top-down, top and bottom-up offline rendered views of an
example geometry produced using the Morph & Slerp shape description. The displacement interpolation scheme used in this
paper makes it easy to create spatially coherent blends between cross sectional curves with different topology such as in this
example — four circles of the bottom profile are morphed into two touching circles on the top cross section. The bulbous curves
are a feature of the RBF-based formulation (see Section 2.2).

(a) (b) (c) (d)

Figure 13: Eulerian Optimal mass transport examples. (a-d) Offline rendered images of example geometries with spatially-
coherent blends between pairs of profiles curves, produced with relative ease using the Morph & Slerp shape description;
These examples highlight the possibility of having smooth curve profiles if we use the fluid-dynamics-based formulation of
optimal transport (see Section 2.2) instead of the bulbous curves that are a feature of the RBF-based formulation used in Figure
12. The M&S shape description can admit either of the two formulations of optimal transport.

e Currently, the input scalar-fields and the interpolated fields
are restricted to RBFs. However, we intend to explore the
recovery of a continuous function from interpolated RBFs
using convolution methods, as noted previously. In addition,
we note that if the final step of recovering a continuous
function from point samples were required, quick convolu-
tion methods can be used [Fuchs 2020]. It can be noted that
these bulbous features can be smoothed out using a weighted

The intention is to capture the description of such print paths
within the local coordinate frame of the orientation planes.

e We also intend to explore optimal mass transport with re-
laxed optimality criteria as they will still yield spatially co-
herent print paths whilst improving the computational speed
of the interpolation scheme.

e An interesting future avenue of exploration would be to cal-
ibrate the shape description for other layered constructions,

averaging post-processing step also.

e The proposed shape description can be combined with skele-
tal graphs to generate compound shapes consisting of mul-
tiple coordinated Morph & Slerp parts. This will extend
previously explored processing of funicular skeletons for
materialisation via 3D printing [Bhooshan et al. 2018].

o Currently, print paths are restricted to planar paths. Physi-
cally, non-planar print paths are feasible to a limited extent.

particularly pitched-brick vaulting.

7 CONCLUSION

In conclusion, the initial results of the research are promising and
suggest several immediate avenues of progress. The proposed shape
description method takes a foundational step towards addressing
the current lack of shape-design tools that are designer friendly in
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the edit-and-observe, didactic sense. The research will benefit from
calibration against physical printed results.
The immediate next steps stem from the following features of
the proposed shape description:
1. It is intuitive, compatible with visual inspection and reason-
ing.
2. It provides users with control handles to generate a variety
of topologically complex shapes features with simple input.
3. It is lightweight in terms of computational storage, with two
RBF-based scalar-fields and two quaternions being sufficient
to describe all the print paths of a generated shape, often
with complex topology.
4. Tt is fully parametric; Thus, compatible to collate and com-
pactly organise a large shape library, similar to image li-
braries.

The last two features in particular may be useful for machine-
learning applications that need compact and easy-to-process repre-
sentations. In particular, shape-to-vector type shape classification
applications and applications that optimise process parameters of
3D printing could benefit.

Taken together with the proposed outlook, the proposed Morph
& Slerp shape description provides the necessary foundation to
build interactive and didactic applications to promote design for
both the rapidly evolving robotic 3D printing of concrete and other
historic layered construction techniques such as masonry vaulting.

REFERENCES

Bhooshan, Shajay, Tom Van Mele, and Philippe Block. 2018. “Equilibrium-Aware Shape
Design for Concrete Printing” In Humanizing Digital Reality, edited by K De Rycke
et al., 493-508. Paris: Springer Singapore. https://doi.org/10.1007/978-981-10-6611-
5_42.

Shajay Bhooshan et al.

Bhooshan, Shajay, Johannes Ladinig, Tom Van Mele, and Philippe Block. 2018. “Func-
tion Representation for Robotic 3D Printed Concrete.” In Robotic Fabrication in
Architecture, Art and Design, 98-109. Springer.

Bonneel, Nicolas. 2018. “Fast Network Simplex for Optimal Transport.” https://github.
com/nbonneel/network_simplex

Bonneel, Nicolas. 2013. “Optimal Transport with Proximal Splitting”” https://perso.liris.
cnrs.fr/nicolas.bonneel/FastTransport/.

Bonneel, Nicolas, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich. 2011.
“Displacement Interpolation Using Lagrangian Mass Transport.” In Proceedings of
the 2011 SIGGRAPH Asia Conference, 1-12.

Cacace, Simone, Emiliano Cristiani, and Leonardo Rocchi. 2017. “A Level Set Based
Method for Fixing Overhangs in 3D Printing.” Applied Mathematical Modelling 44:
446-55.

Carneau, Paul, Romain Mesnil, Nicolas Roussel, and Olivier Baverel. 2020. “Additive
Manufacturing of Cantilever-From Masonry to Concrete 3D Printing” Automation
in Construction 116: 103184.

Fuchs, Mathias. 2020. “Quick Convolution” https://github.com/Mathias-Fuchs/
quickconvolution.

Ghent, Concre3DLab. 2019. Numerical Simulation of 3D Concrete Printing. https:
//www.youtube.com/watch?v=5NVR]JTvCJxc.

“Network Simplex.” 2009. http://lemon.cs.elte.hu/pub/doc/latest- svn/a00783.html.

Papadakis, Nicolas. 2015. “Optimal Transport for Image Processing.”

Papadakis, Nicolas, Gabriel Peyré, and Edouard Oudet. 2014. “Optimal Transport with
Proximal Splitting.” SIAM Journal on Imaging Sciences 7 (1): 212-38.

Peyré, Gabriel, and Marco Cuturi. 2019. “Computational Optimal Transport” Founda-
tions and Trends®in Machine Learning 11 (5-6): 355-607.

Shoemake, Ken. 1985. “Animating Rotation with Quaternion Curves.” In Proceedings
of the 12th Annual Conference on Computer Graphics and Interactive Techniques,
245-54.

Suiker, A S J. 2018. “Mechanical Performance of Wall Structures in 3D Printing Pro-
cesses: Theory, Design Tools and Experiments.” International Journal of Mechanical
Sciences 137: 145-70.

Wangler, Timothy, Ena Lloret, Lex Reiter, Norman Hack, Fabio Gramazio, Matthias
Kohler, Mathias Bernhard, Benjamin Dillenburger, Jonas Buchli, and Nicolas Roussel.
2016. “Digital Concrete: Opportunities and Challenges” RILEM Technical Letters 1:
67-75.

Wendland, David. 2007. “Traditional Vault Construction without Formwork: Masonry
Pattern and Vault Shape in the Historical Technical Literature and in Experimental
Studies.” International Journal of Architectural Heritage 1 (4): 311-65.

Wu, Shaun. 2020. “Buckling Simulation in Karamba3D.” 2020. https://www.karamba3d.
com/projects/buckling-simulation-for-3d-printing-in-fresh-concrete/.


https://doi.org/10.1007/978-981-10-6611-5_42.
https://doi.org/10.1007/978-981-10-6611-5_42.
https://github.com/nbonneel/network_simplex
https://github.com/nbonneel/network_simplex
https://perso.liris.cnrs.fr/nicolas.bonneel/FastTransport/
https://perso.liris.cnrs.fr/nicolas.bonneel/FastTransport/
https://github.com/Mathias-Fuchs/quickconvolution
https://github.com/Mathias-Fuchs/quickconvolution
https://www.youtube.com/watch?v=5NVRJTvCJxc
https://www.youtube.com/watch?v=5NVRJTvCJxc
http://lemon.cs.elte.hu/pub/doc/latest-svn/a00783.html
https://www.karamba3d.com/projects/buckling-simulation-for-3d-printing-in-fresh-concrete/.
https://www.karamba3d.com/projects/buckling-simulation-for-3d-printing-in-fresh-concrete/.

	Abstract
	1 Masonry, 3D printing and Scalar-field interpolations
	1.1 Key contributions

	2 Prior work
	2.1 Shape-design for Pitch brick masonry
	2.2 Optimal Mass transport
	2.3 Spatially coherent scalar-field interpolation using mass transport

	3 Morph and Slerp shape description
	3.1 Morph: Shape Interpolation
	3.2 Slerp: Plane Interpolation
	3.3 Motion paths and Frenet-Serret frames
	3.4 Spherical Linear Interpolation
	3.5 Affine transformation and spatial coherence

	4 Parameter choice
	4.1 Guiding heuristic

	5 Results
	6 Limitations and outlook
	7 Conclusion
	References

