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a b s t r a c t

In the present paper, we propose the Continuous Displacement for Fracture (CDF) method, a continuous
energy-based numerical approach to find mechanisms and crack patterns exhibited by 2Dmasonry struc-
tures subjected to given loads and settlements. The structure is modelled through the normal, rigid, no-
tension material, and the equilibrium problem is solved as the minimum of the total potential energy
(TPE). With the CDF method the solution is sought in the space of continuous functions. The CDF perfor-
mances are compared and illustrated against the PRD approach that finds the TPE minimum in the space
of small, piecewise-rigid displacements.
The CDF method is displacement-based approach, allowing for a direct control of the effects of founda-

tion settlements. Some problems are proposed to benchmark the methodology against both PRD and ana-
lytical solutions to also clearly illustrate its peculiarities. Finally, its use and potentials are benchmarked
and compared on a case study. CDF provides results in good agreement with both the PRD approach and
another more sophisticated model. The main outcome is that, although more computationally cumber-
some, CDF is mesh independent and perfectly captures a clear subdivision of the structural domain into
macro-regions behaving as rigid or quasi-rigid bodies.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The present paper focuses on the prediction of the fracture
mechanisms exhibited by masonry constructions subjected to
given load and kinematical data (i.e. settlements/distortions). Most
part of the building heritage all over the world is represented by
masonry structures. Although they represent the most ancient
and durable technology for housing or monumental buildings,
their mechanical behaviour is currently subjected to an in-deep
scientific investigation whose aim is to predict the mechanical
response to different actions and, consequently, to preserve them
as a clear manifestation of cultural heritage for the next
generations.

Accurate numerical strategies have been developed in recent
years to assess masonry structures using completely different
methods: non-associative, limit analysis-based approaches
[1,2,3,4,5,6], finite element method [7,8,9,10] and, recently, distinct
element method [11,12,13,14,15,16,17,18,19]. Nonetheless, in the
current scientific field, the correct modelling of the effects of settle-
ments on masonry structures is a critical issue and still a cutting
edge, open topic.

Indeed, settlements and distortions are the most elusive data
for the constructions of Civil Engineering. However, structures sub-
ject to internal and external unilateral constraints, such as the
masonry ones, are less critically sensitive to this issue rather than
over-determined structures subject to bilateral constraints (e.g.
steel and reinforced concrete structures). For detailed info concern-
ing unilateral constraints, the reader is referred to [20]. Structures
under unilateral constraints can indeed, at the same time, be stat-
ically overdetermined and admit zero-energy modes, thus natu-
rally and smoothly accommodating the effect of kinematical
data. Indeed, the effect of settlements on a structure made up of
stones or of masonry is often represented by a simple mechanism
involving a finite number of rigid blocks [21]. The first who noticed
this peculiar behaviour was Danyzy in 1732 [22] with some tests
reported by Frézier [23]. In recent years, many scholars have pro-
posed different strategies to predict the effect and assess the stabil-
ity of masonry undergoing foundation displacements, as in
[24,25,26,27,28,29,30]. Although the prediction of the effects of
given foundation displacements is a complex topic, identifying
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the exact foundation displacement profile producing an observed
crack pattern represents an even higher computational task.
Indeed, such an inverse-analysis, requiring a large number of dif-
ferent evaluations, is facilitated by tools allowing fast computa-
tional solving and whose results are as less as possible sensitive
to the values of the mechanical parameters.

With this in mind, in the present paper, we introduce and illus-
trate a new energy-based continuous approach to predict crack
patterns due to settlements. The masonry material is modelled
through the simplified model of Heyman [31], which can be
extended to continuum masonry structures on adopting the nor-
mal, rigid, no-tension (NRNT) material [32]. For NRNT continua,
the theorems of Limit Analysis are still valid as first shown by
Kooharian [33] and proved by Heyman [31]. Since then, many
papers proposing applications of Limit Analysis to masonry struc-
tures have appeared in the literature. Amongst them we recall
the work by Como [34], and more recently by Angelillo
[32,35,36], Angelillo et al [37,38,39], Block [40], Block et al
[41,42,43], Coccia [44,45], Fortunato et al [46], Gesualdo et al
[47,48], Huerta [49,50,51], Ochsendorf [52,53], Oliveri et al. [91],
and Zampieri [54].

The NRNT material is the most simplified model that can be
adopted to represent masonry structure mechanics. It does not
depend on anymechanical parameter as it is perfectly rigid in com-
pression and soft in tension. Nonetheless, the crude but stringent
Heyman’s material allows catching the essence of the behaviour
of most traditional masonry structures, at least of those having
the minimal quality of masonry [55] and subjected to a low-
stress level. However, the NRNT model does not catch sophisti-
cated features such as elastic–plastic interactions, crushing, hys-
teresis, damage and degradation (though these might be added
by refining the model, at the price of losing linearity). Moreover,
for highly stressed constructions, more correct simulation of the
sliding, shear-type behaviour can be accomplished by adding to
the NRNT model a limit on compressive stresses [56,57,58], and
introducing a flow rule for the corresponding inelastic strain rates.
Additionally, for frictional and cohesive-less contact behaviour of
the masonry material modelled using rigid blocks the reader is
referred to [1,2,3,30].

By adopting the NRNT model for the material and using a dis-
placement approach, we propose a minimum-energy criterion to
look for solutions of typical mixed boundary value problem (BVP)
for NRNT structures. Specifically, the energy criterion is based on
the minimum of the total potential energy (TPE), that was first
introduced to solve typical masonry mechanics problems in
[59,60] and later on also explored in [61,62] where the internal dis-
sipation over the interfaces were modelled assuming classic limit
analysis yield surfaces. In more sophisticated models for brittle
materials, the energy is the sum of the potential energy of the
applied loads and of the elastic (bulk) and interface (surface) ones,
the latter being the energy expended to activate a crack system on
a set of internal surfaces [63,64,65]. With the NRNT material, the
energy reduces to the potential energy of the external loads solely
[66]. Therefore, neglecting the elastic and interface energy, the cri-
terion we adopt is based on the minimisation of the total potential
energy of the external loads only.

The proposed minimum energy criterion [59] constitutes an
efficient orientation to model a wide range of masonry structures
as an alternative to more sophisticated numerical models
[67,68,69] requiring costly and often unfeasible experiments to
calibrate many numerical parameters and all too often needing a
precise knowledge of the construction details and loading histo-
ries. Particularly, the key point of the proposed approaches lies in
the absence of any mechanical parameter and, most importantly,
in the direct use of a displacement-based approach, more appropri-
ate when the aim is to handle as primal variable the displacements
2

to better model the fracture pattern effects due to non-
homogeneous kinematical boundary conditions.

A key aspect of the use of the NRNT material comes from the
possibility of taking into account both singular and continuous
strain and stress fields, even simultaneously.

To clearly and robustly highlight this aspect, a new continuous
numerical method to approximate the solution of the TPE-
minimum is proposed, illustrated and compared against analytical
solutions and other models clarifying its pros and cons. This
method, named Continuous Displacement for Fracture (CDF),
throughout the paper, is compared against the Piecewise Rigid Dis-
placement (PRD) method [70,71]. While with the PRD method, the
energy is minimized within the set of piecewise-rigid displace-
ments and the strains are purely singular, with the CDF method,
the search for the minimum is restricted to continuous displace-
ment fields, for which the strain is purely regular. The PRD struc-
tural discretisation entails a subdivision of the structural domain,
which can be thought of as an assembly of rigid blocks where frac-
tures can appear on the interface amongst blocks as concentrated
cracks. Conversely, the CDF approach is based on a classical finite
element (FE) mesh description of the structural domain where
the nodal displacements are continuous. In this case, the strain
cannot be singular, and fractures appear as smeared, even if narrow
bands (which may even cross single elements) where high strains
are present may be detected. The PRD approach has been success-
fully developed and pushed forward in the last years, even though
its numerical peculiarities for fully 2D elements (such as complex
wall systems with openings) has not been completely explored
yet. To this aim, this paper aims at also proposing a critical theoret-
ical study and comparison of these two opposite approaches also to
show how the NRNTmaterial model provides in two different ways
a good mechanical description of the response of masonry struc-
tures subjected to foundation displacements. We have to point
out that, even though here these two approaches are conceived
and illustrated with respect to settlement problems, they can be
applied to also solve other practical assessment problems, such
as load-bearing capacity or seismic stability analyses. However,
these last aspects are outside the scope of the present paper.

We will illustrate that the NRNT model, though representing a
crude approximation of the material behaviour, describes the most
relevant peculiarity of masonry, that is, the formation of rigid mac-
roblock regions, which is the preferred failure mode for real
masonry structures when subject to settlements (Fig. 1) or when
shaken by severe earthquakes. Nonetheless, this phenomenological
aspect stems from mechanical characteristics, such as toughness
and cohesion, which are not strictly inherent to the simplified
NRNT continuum model. So, it is interesting to see if rigid block
mechanisms can arise naturally in solving the minimum problem,
or if there is any legitimate way to force rigid block mechanisms
over diffuse cracking to catch that behaviour. Indeed, the main
motivation for using the PRD approximation lies in the fact that
real masonry structures exhibit such rigid block mechanisms,
when subject to settlements (Fig. 1) or to horizontal accelerations
due to earthquakes. And, in this sense, the PRD approach provides a
good starting modelling point as it assumes a priori the piecewise
rigidity of the domain. Conversely, with the CDF method, we
explore the possibility to catch this physical behaviour by restrict-
ing the minimum-energy search to continuous displacement fields.
However, simply using the CDF method does not automatically and
always guarantee a rigid macroblock partition of the domain as a
solution of the minimum problem. Indeed, as noted, bands of con-
centrated strains representing smeared cracks are allowed. We will
clearly show how providing the CDF method with the so-called
Safe Load Condition [72,73] a clear macroblock subdivision of
the structural domain can be captured regardless of the mesh



Fig. 1. The effect of soil settlements on the Deba bridge (Spain): a clear subdivision of the structural domain into rigid macroblocks can be seen.

Fig. 2. A 2D continuum occupying a region X of the Euclidean space. Load tractions
on @XN are represented by �s whilst prescribed boundary displacement on @XD by �u.
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adopted. Indeed, although computationally more cumbersome, the
key aspect in using the CDF approach is its mesh independence.

After briefly recalling the basic ingredients of PRD, the CDF
method is introduced. Some benchmark problems of increasing
complexity are proposed to compare the CDF approach against
both the PRD method and analytical solutions to clearly illustrate
its pros and cons. Finally, we benchmark the CDF approach on a
masonry façade analysed through a normal, elastic, no-tension
model in [57] to show and discuss their potentials and numerical
performances on a real case study, especially with respect to the
mesh-dependency issue.

2. Framing Heyman’s model into continuum mechanics

A 2D masonry structure is modelled as a continuum occupying
the region X of the Euclidean space E2. The stress tensor is denoted
T and the displacement of material points x belonging to X as u. On
adopting the small displacements assumption, the infinitesimal
strain tensor E is assumed as the measure of the deformation. Let
b represent the body forces on X, n the unit, outward normal to
the boundary @X which is partitioned into its constrained part
@XD, where given displacement �u are prescribed, and in its loaded
part @XN, on which surface tractions �s [74] are prescribed (see
Fig. 2). Moreover, in what follows we extensively use the term
latent strain, meaning the inelastic deformation needed to sustain
the unilateral constraint on stress.

2.1. The NRNT material

The Heyman model can be generalized to 2D continua by intro-
ducing unilateral material restrictions on the stress and convenient
assumptions on the corresponding latent strain. The normal, rigid,
no-tension (NRNT) material is defined by the following
restrictions:

T 2 Sym� ; E 2 Symþ ; T � E ¼ 0; ð1Þ
in which Sym�, Symþ are the mutually polar cones of negative and
positive semidefinite symmetric tensors. Restrictions (1) are equiv-
alent to the following conditions, called normality conditions:

T 2 Sym� ; T� T�ð Þ � E � 0 ; 8 T� 2 Sym�; ð2Þ
and, dually, to the so-called dual normality conditions:

E 2 Symþ ; E� E�ð Þ � T � 0 ; 8 E� 2 Symþ: ð3Þ
The restrictions defining the NRNT material, in the particular form

(2), are the essential ingredients for the validity of the theorems of
Limit Analysis [33,72,68,75]. The mathematics of unilateral materials
is rich and complex, since the inherent ambient function spaces for
NRNTmaterials are not classical Sobolev spaces. Nonetheless, for such
materials, one can admit that strain and stress are bounded measures
[76]. Therefore, they can be additively decomposed into the sum of
regular :Þr�

and singular :Þs�
parts, namely:

E ¼ Er þ Es ; T ¼ Tr þ Ts; ð4Þ
3

where the regular part :Þr�
is absolutely continuous with respect to the

area measure, that is, is a density per unit area, and :Þs�
is the singular

part. Typical singular strains are the line Dirac deltas, which, in the case
of strain, represent the effect of displacement jumps (concentrated
cracks) and, in the case of stress, the effect of some kind of jumps of
the stress vector (concentrated axial forces). Indeed, on admitting sin-
gular strains and stresses, it is possible to consider that both the dis-
placement u and the stress vector s can be discontinuous. The stress
vector is defined as the contact force transmitted across any internal
surface of unit normal n, and, in Cauchy’s sense, is related to the reg-
ular part of the stress through the relation s ¼ Trn. The jump of s
across a regular curve can be balanced by singular stresses Ts concen-
trated on the jump curve. Crushing phenomena or workmanship of bad
quality that can produce disarrangements in the block pattern [77], can
be modelled as eigenstrains �E, and even them can be singular, and
denoted �Es.

2.2. The boundary value problem

The equilibrium of a 2D masonry structure, modelled as a con-
tinuum composed of NRNT material subjected to loads and settle-
ments, can be formulated as a boundary value problem (BVP), in
the following form. "Find a displacement field u and the correspond-
ing strain E, and a stress field T such that

E ¼ 1
2

ruþruT� �
; E 2 Symþ ; u ¼ �u on @XD; ð5Þ

divTþ b ¼ 0 ; T 2 Sym� ; Tn ¼ �s on @XN; ð6Þ

T � E ¼ 0; } ð7Þ
b being the body forces and n the unit, outward normal to the

boundary @X partitioned into its constrained part @XD (on which
the displacement �u are given), and in its loaded part @XN (where
the surface tractions �s are prescribed) [74].

On introducing the set K of kinematically admissible displace-
ments, and the set H of statically admissible stresses
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K ¼ u 2 S = E ¼ 1
2

ruþruT� � 2 Symþ & u ¼ �u on @XD

� �
;

ð8Þ

H ¼ T 2 S
0
= divTþ b ¼ 0 ; T 2 Sym� ; Tn ¼ �s on @XN

n o
; ð9Þ

a solution of the BVP for masonry-like structures can be defined
as a triplet u�

;E u�ð Þ;T�� �
such that u� 2 K, T

� 2 H, and

T
� � E u�ð Þ ¼ 0. It is worth noting that in Eqs. (8, 9) S; S0 are two suit-

able function spaces which are not classical Sobolev spaces.

Remark 1. The key peculiarity of NRNT materials is that they allow
discontinuities both in the displacement vector field and in the stress
vector field. Specifically, this model allows describing concentrated
fractures as singular strains produced by displacement discontinuities
and to consider singular, compressive, uniaxial stresses within the
structural domain whose traces at the boundary are concentrated
compressive forces (of any slope). Particularly, whenever we model
internal stress states through lines of thrust [78] or thrust networks
[42],we are implicitly assuming singular stress fields. In any case, such
singular stress and strain fields can be seen as test functions needed to
define the admissible solution sets. Predicting the real stress/strain
state in detail is a difficult, and sometimes impossible, goal for most
buildings. In the present context, as in the Limit Analysis spirit, we use
admissible stress and strain fields to verify the possibility of equilib-
rium and to detect possible mechanisms j
Fig. 3. The infinite-dimensional space KPRD of piecewise rigid displacement with
support in the domain X represented in (a), is discretized considering a partition of
the whole domain into convex polygonal elements: in (b) an example of the
partition of the domain X with a grid of M elements is considered. The finite-
dimensional approximation generated by this partition is KM

PRD.
3. Two numerical, energy-based strategies to approximate the
solution of the BVP

Solving the BVP through a displacement approach consists in
the search for a displacement field u 2 K for which there exists
a stress field T 2 H such that T � E uð Þ ¼ 0. Therefore, the way we
use to find a displacement-based solution of the BVP is to minimise
the potential energy } uð Þ, that is:
} u

�� � ¼ min
u2K

} uð Þ: ð10Þ

For the NRNT material, } uð Þ reduces to the potential energy of
the external loads, and assuming small displacements and strains,
it is a linear functional of u. It is worth to point out that u� , i.e. the
minimiser of } uð Þ, is the BVP solution for NRNT materials, and that
its existence also guarantees the equilibrium of the loads imposed
on the structure. If the kinematical problem is compatible (i.e. if
the space K is not void), two results can be easily proved [59],
namely:

i. if the load is compatible (H–£) the linear functional } uð Þ is
bounded from below; and,

ii. a solution u�
;E u�ð Þ;T�� �

of the BVP corresponds to a weak
minimum of the } uð Þ.

Proving the sufficiency of condition (ii) under assumption (i),
that is the existence of the minimum for the functional } uð Þ in
the function space setting described above, is a complicated math-
ematical task which exceeds the scopes of the present paper. So
that we will heuristically accept the existence of the minimum.

In the next sections, we describe two different, displacement-
based, numerical methods to find a solution of the minimum prob-
lem (10), namely the PRD method and the CDF method. With PRD,
a method that was first introduced to solve typical masonry
mechanics problems in [59,60], one assumes as set of kinemati-
cally admissible displacements the set KPRD of piecewise-rigid dis-
placements, while with the second method, the search for a
4

solution is restricted to continuous functions. Specifically, with
the PRD method, the latent strain is purely singular, and the cracks
forming in the structure are simulated by gap ‘‘openings” between
adjacent rigid blocks. Conversely, the CDF method is based on an
‘‘opposite” idea, that is, the strain is assumed to be purely regular,
and cracks appear as smeared. We will show how applying these
two seemingly parallel numerical strategies to the same problems,
we can catch the typical response of masonry, that is, we can pre-
dict the rigid macroblock partition of the structural domain.

3.1. Piecewise rigid displacement (PRD) method: Rigid blocks

In this section, the PRD method is recalled. It consists of finding
an approximate solution of the problem (10) by restricting the
minimum-search in the set KPRD of piecewise rigid displacements.
KPRD is still an infinite-dimensional space and it is then discretised
by considering a finite partition Xið Þi2 1;2;::;Mf g; of the structural
domain X into M rigid polygonal elements (Fig. 3). The boundary
@Xi of the n-polygon Xi, is composed of n segments C, of length
l, whose extremities are symbolically denoted 0,1 and whose unit
normal and tangent vectors are n, t, respectively. We call interfaces
the segments C that are, either the common boundaries between
adjacent elements or part of the constrained boundary (i.e. those
C representing interfaces with the soil or with other interacting
structures). Let KM

PRD be the finite dimensional approximation of
KPRD generated by this partition. Therefore, the new, discretised,
minimum-energy problem becomes:

} uo
PRD

� � ¼ min
u2KM

PRD

} uð Þ: ð11Þ

We can represent a generic piecewise rigid displacement
u 2 KM

PRD in terms of the vector U of 3M components representing
the rigid body parameters of translation and rotation of the ele-
ments. Nevertheless, these parameters have to be constrained to
fulfil the assumption that the strain must be positive semidefinite.
For piecewise rigid displacements, the strain coincides with its sin-
gular part, namely:

E ¼ Es ¼ v d Cð Þ n� nþ 1
2
w d Cð Þ t� nþ n� tð Þ: ð12Þ

Within the present approximation, Es is concentrated along the
interfaces among blocks, that is along the segments C. Material
restrictions (2) can be translated as constraints on the displace-
ment jumps, namely:

v ¼ u½ � � n � 0; ð13Þ

w ¼ u½ � � t ¼ 0: ð14Þ
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Relations (13,14) ensure that tangential jumps (i.e. slidings) are not
allowed while positive orthogonal jumps (i.e detachmenst) are admis-
sible. Then the singular strain along the interface takes the form:

E ¼ v d Cð Þ n� n: ð15Þ
Definitely, conditions (13) and (14), stemming from the

assumption of normality, represent a condition of unilateral con-
tact with no-sliding among blocks. It is to be pointed out that as
we are looking at the incipient mechanism, the no-sliding condi-
tion represented by Eq. (14) has to be satisfied even the interface
exhibit a normal detachment.

The static counterpart of these kinematical constraints concerns
the stress vector s applied along C. Such a stress vector represents
the reaction associated to the constraints (13,14). The stress vector
s coincides with the given applied tractions �s where the boundary
of the blocks becomes the loaded part of the boundary. With

r ¼ s � n ; s ¼ s � t; ð16Þ
the normal r and tangential s stresses along C, the condition on s is

r 	 0: ð17Þ
Notice that the tangential component of s is not constrained

and can be applied along the straight interface C, even if r ¼ 0.
By calling N the total number of the interfaces C, and
v 0ð Þ; v 1ð Þ;w 0ð Þ;w 1ð Þ the normal and tangential components of
the relative displacements of the ends 0, 1 of any segment C,
restrictions (12) and (13) are equivalent to the 2N inequalities

v 0ð Þ � 0 ; v 1ð Þ � 0; ð18Þ
and the 2N equalities

w 0ð Þ ¼ 0 ; w 1ð Þ ¼ 0: ð19Þ
Eqs. (14) and (19) model the no-sliding condition. In our opinion,

shear cracks are important but not the most common in masonry
structures [31,21]. Particularly, when the structure is subjected to
foundation displacements, the more frequent are tensile cracks caus-
ing the formation of a rigid macroblock partition of the structure and
thus relative movements between these parts. Furthermore, good
masonry structures are constructed in such a way to avoid shearing
as evil because of a good arrangement of the blocks as pointed out by
Giuffré in [55]. Shear cracks can be sometimes seen locally either
because of the bad masonry design or in panels where the crushing
strength is locally exceeded. Restrictions (18), (19) can be easily
expressed in terms of U, in matrix forms:

AubU � 0; ð20Þ

AeqU ¼ 0: ð21Þ
where Au collects the unilateral restrictions and Ae the no-sliding
equations. The boundary conditions can be expressed as:

As;ubU � �Un ; As;eqU ¼ �Ut; ð22Þ
where matricesAs;ub andAs;eq enforce the prescribed displacements
on the boundary. For more details, the reader is referred to [59,70].
Relations (20–22) define the set KM

PRD of admissible displacement
fields. The minimum problem (11) which approximates the mini-
mum problem (10) is thus transformed into a linear programming
problem:

} Uo
PRD

� � ¼ minbU2KM
PRD

} Uð Þ; ð23Þ

with:

KM
PRD ¼ U 2 R3M=AubU � 0;AeqU ¼ 0;As;ubU � U

�
n;As;eqU ¼ U

�
t

n o
:

ð24Þ
5

Once the minimizer Uo
PRD has been obtained, one can easily con-

struct the deformed configuration of the structure on which the
relative displacements among the blocks play the role of fractures.
Generally, the moving part can be idealised as a kinematical-chain
controlled by the form of the given settlements and, in this sense, is
statically determined.

The minimization problem (23) transforms the original contin-
uum minimum problem (10) into a minimum problem for a struc-
ture composed of rigid parts, acted on by given loads and given
settlements and subjected to unilateral contact conditions along
the interfaces. Problem (23) is a standard linear finite-
dimensional minimisation problem, since } Uð Þis a linear function
of the 3M dimensional vector U and the constraints (24) are linear
relations. The existence of the solution of this approximate prob-
lem is trivially guaranteed if the original problem is bounded from
below. For a small number of variables, it can be solved exactly
with the simplex method [79], and for large problems, there exist
a number of well-known and efficient, approximate fast alterna-
tives based on the interior-point algorithm [80,81,82].

It is worth pointing out that KPRD is a particular subspace of
SBV functions [76]; its members are such that the corresponding
strain is purely singular. The singular strain is a concentrated strain
in the form of a set of line Dirac delta functions defined over the
skeleton of the mesh. Therefore, the crack pattern is identified by
the set composed by the interfaces having non-zero singular
strains, that is, by gap ‘‘openings” between adjacent rigid blocks
in the deformed configuration

3.2. Continuous displacement for fracture (CDF)

In this section, the CDFmethod is introduced. With this method,
based on an entirely different numerical strategy, the solution of
the minimum problem (10) is approximated by restricting the
search to the set of continuous, piecewise polynomial approxima-
tions of the displacement field generated by a quadrangular FE
mesh. In particular, a nine-node Lagrangian element [83,84] is con-
sidered (Remark 2). On assuming the continuity of the displace-
ment field at the nodes and along interfaces, the strain is regular,
and the NRNT material restrictions on strain have to be enforced
inside the elements. Again, the idea is to solve the BVP with a
displacement-based method approach through potential energy
minimization, taking the effect of settlements as non-
homogeneous boundary conditions directly into account.

In this case, the procedure is more complex as the material
restrictions are represented by non-linear conditions on the strain
that need to be translated in terms of displacements. As shown in
Section 1, the latent strain E has to belong to the positive semidef-
inite cone:

E 2 Symþ; ð25Þ
that, for 2D problems, is equivalent to the two following

inequalities:

trE � 0 ; detE � 0: ð26Þ
In the 2D Euclidean space and with respect to a fixed Cartesian

reference, the latent strain E tensor is represented by a 2 
 2
matrix:

E ¼ e11 e12
e21 e22

� �
: ð27Þ

Analytically, Eq. (25) can be written in terms of Cartesian com-
ponents, as:

e11e22 � e122 � 0 ; e11 þ e22 � 0 ð28Þ



Fig. 4. 3D graphical representation of non-linear condition E 2 Symþ in the space
e11; e22;

ffiffiffi
2

p
e12

	 

. The subspace E 2 Symþ is defined by the intersection of the subset

defined by the cone C : detE � 0 and the half-space defined by the linear inequality
trE � 0. Specifically, the vector v is orthogonal to the plane p : trE ¼ 0 and points
toward the half-space trE � 0. An admissible latent strain E is represented as a
vector.

Fig. 5. Two different linearisations of the non-linear material restriction on E using 6
orthogonal to the cone-axis is a circumference where p equally spaced points are select

Fig. 6. The infinite-dimensional space Kc of continuous displacements with support in X
quadrangular elements (b): the finite dimensional approximation generated by the fixed
second order Lagrangian element with 9-node is depicted.
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6

While relation (282) is linear, condition (281) is non-linear.
Nonetheless, once combined together they define a convex set.
Indeed, from a geometric standpoint, the condition detE � 0
defines a double cone in the Sym space while the additional condi-
tion trE � 0 selects one of the two cone parts, namely the set of
semidefinite positive symmetric tensors, which is also convex
(Fig. 4). In Fig. 4 these restrictions are graphically represented
referring to the 3D space Sym spanned by the dyadic orthonormal

basis e1 � e1 ; e2 � e2 ;
ffiffiffi
2

p
=2 e1 � e2 þ e2 � e1ð Þ

	
.

To keep the optimisation linear, the convex cone (28) is approx-
imated with a finite set of linear relations generated by a number p
of tangent planes. To this aim, we first select a set of points equally
spaced along a cross-section of the cone; at each point, the corre-
sponding tangent plane is obtained as the plane normal to the local
surface gradient. Thus, the set of all tangent planes represents an
outer envelope of the cone, as illustrated in Fig. 5. An increasing
number of points along the cross section produces a better fit of
the conical Symþ surface, as depicted in Fig. 5b.

Let X be the structural domain discretised with M quadrangular
elements, each one associated to a nine-node, Lagrangian element
(see Fig. 6). The total number of nodes generated by the adopted
shape functions is N. The optimal choice in terms of shape func-
tions, balancing accuracy and simplicity, turned out to be a classi-
cal conforming second order 9-node, Lagrangian quadrangular
element. In what follows, we refer to this special kind of element
and to its shape functions [83]. The partition Xið Þi2 1;2;::;Mf g into 9-
node rectangular elements, allows to express the displacement
field u as a function of the nodal displacements:
(a) or 16 (b) tangent planes. The cross-section of the cone obtained using a plane
ed to ‘‘generate” the linear outer envelope.

(a) is discretized considering a partition Xið Þi2 1;2;::;Mf g of the whole domain into e.g.
partition is called KN

c , where N is the number of nodes. In (c) a subdomain Xk and a



Fig. 7. Envelope of the cone with 6 tangent planes and surface gradient vectors at

the generating points. The condition Ek x
�
; y
�

� �
2 Symþ is discretized by using the

gradient vectors to construct the system of inequalities Ak x
�
; y
�

� �
Ûk � 0.
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u ¼ u Uð Þ; ð29Þ
with U ¼ U1;V1; ::;Ui;Vi; ::;UN;VNð Þ and in which Ui;Við Þ denotes the
displacement of the node i. With this discretisation, the minimum
problem (10) can be approximated through the following finite
dimensional one:

} uo
CDF

� � ¼ min
u2KN

C

} uð Þ; ð30Þ

where KN
C denotes the discretised set of kinematically admissible

displacement generated by the given FE mesh partition of the struc-
tural domain.

The displacement field in any finite element Xk can be
expressed as a function of the nodal displacement Uj;Vj

� �
as

uk ¼ ujXk
¼ f Uj;Vj

� �
; ð31Þ

where f accounts for the adopted Lagrangian shape functions. The
latent strain can thus be expressed as function of the nodal
displacements:

Ek ¼ EjXk
¼ Symruk: ð32Þ

The material restriction (25) are enforced at each Gauss node

whose coordinates are x
�
; y
�

� �
(see Fig. 7), as:

Ek x
�
;y
�

� �
2 Symþ: ð33Þ

Using the above-described linearisation scheme, conditions (33)
can be approximated with the following set of p inequalities:

Ak x
�
; y
�

� �
Uk � 0; ð34Þ

with Ak x
�
;y
�

� �
a matrix of p rows and Uk the vector collecting the

nodal displacements of the element k. Note that, combining (31)
and (32), the condition (33) is expressed in terms of nodal displace-
ments (34).
7

Inequalities (34) have to be written for all Gauss points of the
mesh. Once all these relations are collected, the material restriction
(24) can be expressed on the whole domain as:

AU � 0: ð35Þ
The non-homogeneous boundary conditions can be easily

expressed as:

BU ¼ Us: ð36Þ
where B is the extractor operator that selects the nodes on the con-
strained boundary, while Us collects the prescribed displacements.
Inequalities (54) together with boundary conditions (55) define
the set of admissible displacements:

KN
CDF ¼ U 2 R

2N = AU � 0 ; BU ¼ �U

 � ð37Þ

that represents the admissibility domain of the optimisation
problem, whose objective function is represented by the total
potential energy. Therefore, the minimum problem (10) can be dis-
cretised as:

} Uo
CDF

� � ¼ minbU2KN
CDF

} Uð Þ: ð38Þ

With the above approximation the structural problem is
reduced to the following minimum problem: ‘‘Find a nodal displace-
ment vector Uo

CDF which minimizes the potential energy } in KN
CDF”.

This minimum problem is still a linear programming problem since
the energy is linear and the material restrictions are reduced to be
linear inequalities. In the present case, once the minimiser Uo

CDF has
been obtained it is possible to construct the deformed shape of the
structure, and, as we will show, the best way to graphically show
the fracture field is to plot the corresponding rotation and strain
fields.

Remark 2. We must say that the type of element that can be
considered to approximate the displacement field is not completely
free. Indeed, linear or bilinear elements cannot properly work because
of their inability in reproducing simple uniaxial flexure, a mechanism
that is often required to simulate non-uniform cracks (i.e. cracks due
to relative rotation along a straight line). j
Remark 3. In real masonry structures, the appearance of piecewise
rigid mechanisms (associated to concentrated fractures) rather than
continuous mechanisms (entailing diffuse fractures), is often due, to
mechanical characteristics (e.g. cohesion, toughness and finite friction)
also depending on construction techniques. This mechanical aspects
are not taken into account by the NRNT model. Indeed, for NRNT mate-
rials, it is in general not possible to prefer concentrated cracks over dif-
fuse fractures. This circumstance is essentially due to the absence of
any energy-growth property on unbounded fracture strains. An
energy-growth property for displacement fields in BD Xð Þ is restored
by introducing the so-called Safe Load Condition as proved in
[72,73]. The safe load condition consists of adding an isotropic pres-
sure all over the loaded boundary. Without such confinement, the
energy is not coercive, meaning that the displacement can grow indef-
initely at zero energy price. In our model, this confinement is imposed
by adding, all over the loaded boundary, an artificial given uniform
pressure of very small magnitude, that is of the order of 10-2 to 10-3

of the mean compressive stress rm. The presence of such a negligible
(with respect to the given loads) value of isotropic pressure, also has
the effect of encouraging rigid block mechanisms over diffuse deforma-
tions. This trick is sufficient to provide the BVP with the Safe Load Con-
dition, to avoid zero-energy modes and to make rigid block
deformations/ concentrated cracks the preferred minimum-energy
mechanism.j



A. Iannuzzo, P. Block, M. Angelillo et al. Computers and Structures 257 (2021) 106645
4. Applications

In this section, we consider some specific problems of increas-
ing complexity to illustrate the CDF method and to compare its
results with the PRD method. The CDF numerical problem is imple-
mented in Wolfram Mathematica� [85]. The solution of the linear
programming problem is then obtained through specific Python
scripts by means of CPLEX Optimisation Software [86]. Conversely,
the PRD analyses are performed through compas_prd [70]. All anal-
yses were performed with an Intel� CoreTM i7-8850HQ. In all CDF
analyses, if not differently mentioned, we enforce the Safe Load
Condition (Remark 3) by considering a uniform isotropic pressure
equal to 10-3 of the mean compressive stress (Section 4.4.1). Lastly,
in all CDF analyses, the convex cone is approximated using 64
planes.
4.1. Lintel subjected to horizontal outward displacement

As first case, we look at a trivial but emblematic problem: the
lintel (plat-band) under vertical loads (Fig. 8a). The lintel of
Fig. 8a, supposed to be made of Heyman’s material (i.e. to be no-
tension but with infinite compressive strength), can resist to infi-
nite vertical loads. In reality, it thrusts horizontally, and this thrust
could make the abutments give way a little. Thus, the lintel accom-
modates its increased span by developing three fractures. These
cracks define two rigid macroblocks (Fig. 8b) hinged at three points
and forming a statically determined structure: a three-pinned arch.
To reproduce this behaviour with both the PRD and the CDF meth-
ods, we formulate the BVP for this body made of NRNT material,
uniformly loaded at the top edge, and subject to constraints at
the two lateral edges which spread horizontally by a given amount
d, as shown in Fig. 8a.
4.1.1. Analytical solution
In Fig. 8b, an analytical solution of the BVP of Fig. 8a, obtained

by admitting singular stress and strain fields, is presented. The
structural domain, considered as closed along the constrained
boundary, shows three concentrated strain fractures. The red
cross-hatching denotes the singular deformations Es along the
three fracture-lines. The blue, dash-dotted line represents the sup-
port of a singular stress field Ts in equilibriumwith the given loads:
this could be thought of as a 1D arch supporting the load with a
singular stress. The regular part of the stress is a vertical compres-
sive uniaxial stress field located above the arched line (transferring
the load from the upper boundary to the thrust line) and a zero-
stress below it. The uniaxial stress field is discontinuous across
the line of thrust and is balanced by a concentrated singular stress
having the curved line (a parabola) as its support. Both the dis-
Fig. 8. In (a): panel of NRNT material subjected to a uniform load applied along the top
the BVP of Fig. 8a obtained by using singular stress and strain fields. The red cross-hatch
dotted line represents the support of a singular stress field Ts in equilibrium with the
represent a possible solution of the BPV. (For interpretation of the references to colour
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placement and the stress fulfil the corresponding material restric-
tions (11) and (12). Furthermore, the fields depicted in Fig. 8b
satisfy the material restrictions (13), that is T � E ¼ 0. Therefore,
these stress and strain fields represent a possible solution of the
BVP.
4.1.2. PRD analysis
In this section, we apply the PRD approach to solve the BVP of

Fig. 8a. As reported in Fig. 9a, the panel is discretised into 160 rigid,
square elements. The uniform distributed load, represented with a
rectangular yellow strip, is the only force contribution to the total
potential energy. The two constrained left and right edges are sub-
jected to a given outward settlement d.

The non-homogeneous boundary conditions, expressing the
outward settlements, can be written in terms of the displacements
of the nodes lying on the constrained boundary. In particular, for
each of such nodes P one can write:

u Pð Þ � t ¼ 0; ð39Þ
u Pð Þ � n 	 d: ð40Þ
Specular relations have to be written for the left side. These

boundary relations combined with the internal ones, define the
subset KM

PRD (in which the optimal solution has to be found. The

total number of unknowns (i.e. the dimension of bU) is 540. The
number of internal equality and inequality conditions, defining
the subset KM

PRD #R540, is 1920. The solution Uo
PRD of the minimum

problem (23) is reached through the simplex method and the com-
putational time is about 0.03 s. A graphical representation of Uo

PRD

is reported in Fig. 9b. It can be observed that three hinges form and
the panel, initially a statically overdetermined structure with many
redundancies, transforms into an isostatic structure made of two
blocks and articulated through three hinges. The PRD solution
exactly coincides with the analytical solution reported in Fig. 8b.
4.1.3. CDF analysis
Here, the same problem is analysed using the CDF method. Two

different discretisations, as shown in Fig. 10, are considered to
illustrate the possible dependence of CDF on the mesh. With the
first one, we want to look for the solution by using an even number
of elements along the horizontal axis (Fig. 10a). Conversely, with
the second we seek the solution utilising a discretisation with an
odd number of elements (Fig. 10b). As we said above, we adopt
second-order Lagrangian elements: 60, nine-node square elements
in the first case, and 66, 9-nodes, rectangular elements in the other
case. The only load considered is again a uniformly distributed ver-
tical load acting along the top edge. The supports are supposed to
edge and to symmetric, outward, horizontal settlements. In (b): possible solution of
ing represents the singular deformations Es along the three fracture lines; the dash-
given loads. These two admissible fields satisfy the condition T � E ¼ 0 and, thus,
in this figure legend, the reader is referred to the web version of this article.)



Fig. 9. In (a): a NRNT lintel loaded on the top edge by a uniformly distributed load (yellow strip) and subjected, along the left and right edges, to given outward settlements, is
discretized into 160 square elements. In (b): graphical representation of the PRD solution Uo

PRD of the minimum-energy problem (23): the panel becomes an isostatic three-
pinned arch (pins depicted with red dots). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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spread outward as depicted in Fig. 10 and the non-homogeneous
boundary conditions are enforced through Eqs. (39) and (40).

The solution Uo
CDF of the minimum problem (38), reported in

Fig. 11, is reached in both cases using the interior-point method
in about 1.20 s. Particularly, Fig. 11a [Fig. 11b] shows the results
obtained using the discretisation of Fig. 10a [Fig. 10b]. In the sec-

ond row of Fig. 11, we report the contour plot of Ej j ¼ tr EET
	 
1=2

as a measure of the intensity of the strain field. Both analyses dis-
close large deformation gradients concentrated on a central strip.
In Fig. 11c, large strain gradients affect both the two vertical stripes
located on both sides of the middle line. Conversely, with the sec-
ond discretisation, the gradient of the latent strain concentrates
over the central elements only (Fig. 11d). In both analyses, most
of the structural domain exhibits zero-strain, meaning that these
parts are moving quasi-rigidly. In the third row of Fig. 11, the con-
tour plot of the skew-symmetric part of the displacement field (i.e.
the local rotation field) is reported. The rotation is exactly symmet-
ric and almost piecewise uniform. The uniformity of the rotation
field over most of the domain is a further indication of the small-
ness of the pure deformation.

4.1.4. Discussion
In the present section, we discuss and compare the approximate

solutions obtained with both methods. The PRD analysis returns
three fractures, and the initially overdetermined lintel becomes a
statically determined three-pinned arch (Fig. 9b). This mechanical
behaviour can be seen from the CDF results also. Indeed, as already
noted before, most part of the structure is behaving as rigid, and
both the gradient of strain and rotation fields are concentrated
along a middle vertical line. To highlight this behaviour and com-
pare the two methods, in Fig. 12 we report some additional graph-
ical results extracted by the two different CDF analyses. The first
row of Fig. 12 shows two diagrams of the stream plot of the dis-
placement field exhibited by the lintel as obtained with CDF by
Fig. 10. Two different discretisations of the NRNT panel of Fig. 8a. In (a) the domain is div
only load consists in a uniformly, distributed, vertical load applied at the top edge and is r
subjected to given outward displacements.
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using the two different meshes. The two-stream plots are very sim-
ilar and, as one expects, indicate a three-pinned arch mechanism,
which, in both cases, is pivoting about the two symmetric corner
points (0, 3) and (5, 3).

Moreover, in the second row of Fig. 12, the area where the strain
is non-zero (namely greater than 10-4 of the mean strain) is
depicted in white. This further indicates that the structure nucle-
ates essentially into two rigid bodies. In particular, this aspect is
also and more clearly highlighted in the last row of Fig. 12 where
positive rotations are depicted in red and negative ones in blue:
a neat subdivision of the domain into two blocks can be seen.
Finally, from the CDF method, we obtain essentially the same
results of the PRD analysis: the structure becomes a three-pinned
arch as two clear sub- macro-regions form and displace essentially
as rigid bodies. Indeed, these two rigid sub-regions show approxi-
mately constant rotation coupled with a negligible deformation.

4.2. The case of a slanted crack

Mesh dependency is a given fact for FE with strong discontinu-
ities [84]. A typical way out is to use remeshing. In the present sec-
tion, we propose a benchmark case to test the efficiency of the PRD
and CDF method with regard to this issue. We consider the case of
a panel of NRNT material, loaded and constrained as shown in
Fig. 13a. This is another non-homogeneous mixed problem, since
part of the boundary is loaded and the remaining constrained part
is displaced. Indeed a portion of the bottom constraint is subjected
to a given linear settlement as in Fig. 13a. A diagonal crack of the
form labelled with the bold slanted (Fig. 13c) is expected.

4.2.1. Analytical solution
Using singular strain and stress fields, a possible analytical solu-

tion of the mixed BVP (Fig. 13a) is represented in Fig. 13b, c.
Indeed, the stress field depicted in Fig. 13b is statically admissible,
the displacement field represented in Fig. 13c is kinematically
ided into 60 nine-node square elements while in (b) 66 elements are considered. The
epresents the only work term of the total potential energy. The left and right side are



Fig. 11. Graphical representation of the solution Uo
CDF of the minimum problem (38) for both the discretisations adopted: (a, b). In (c, d): contour plots of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr EET
	 
r

. In (e, f):
contour plots of the rotation fields.
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admissible, and they satisfy the condition T � E ¼ 0, i.e. Eq. (13). In
this sense, they represent a possible solution of the mixed BVP of
Fig. 13a.
4.2.2. PRD analysis
In this section, we apply the PRD method to solve the BVP of

Fig. 13a, assuming three different discretisations as in Fig. 14 to
illustrate how the solutions provided by the PRD approach can
approximate the analytical one depicted in Fig. 13c. The first dis-
cretisation (case1) is composed of 160 rigid, square blocks
(Fig. 14a); the second one (case2) is obtained partitioning each
rigid square block into 4 triangles, so it counts 480 triangle, rigid
elements (Fig. 14b); finally, the third discretisation (case3) is
defined using 1440 triangles to match the potential diagonal crack
we expect (Fig. 14c), that is the element interfaces run along the
expected fracture line. In all cases, the uniform distributed load
is represented by rectangular strips and part of the boundary is
fixed whilst part of the bottom edge is subjected to a given linear
settlement, as specified in Fig. 14.
10
The PRD solution of case1 returns a vertical crack, and is unable
to reproduce, even approximatively, the expected crack. The
numerical solution associated to case2 returns the crack pattern
shown in Fig. 14e. As one can see, the numerical solution approx-
imates the expected diagonal crack better. The exact solution is
reached when the PRD method is applied to case 3: it returns the
analytical one exactly. Moreover, depicting the rotation field using
different colours to map positive and negative rotations, it is pos-
sible to see how refining the original square-element discretisa-
tion, the diagonal crack is increasingly approximated even if in a
weak sense. Indeed, looking at Fig. 14h, even if the discretisation
is not the most appropriate, the solution tends to match the diag-
onal crack from a certain point onwards.

4.2.3. CDF analysis
In the present section, to illustrate the influence of the mesh

size, we propose the CDF analysis of the NRNT panel described in
Fig. 13a using two different discretisations: the first is composed
of 60 square, 9-node, Lagrangian elements (Fig. 15a), while the sec-
ond one discretises the panel into 240 square, 9-node, Lagrangian



Fig. 12. In (a, b): stream plots of the displacement field solving the CDF problems. In (c, d): the regions over which the deformation is essentially zero are depicted in blue,
while, the white denotes the areas of non-zero strains. Finally, in (e, f) the positive rotations are in blue while the negative ones are depicted in red. In both CDF analyses, the
structural domain nucleates into two rigid macroblocks behaving as a three-pinned arch. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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elements (Fig. 15b). The uniform load is applied along the top,
loaded part of the boundary.

The CDF solutions Uo
CDF of these minimum problems are

obtained through the interior point method in 0.91 s (Fig. 15a)
and 17.30 s (Fig. 15b), respectively. The corresponding displace-
ments are depicted in Fig. 16a-b. Looking at the displacements,
in both cases, it can be easily seen that the point {2.0, 0.0} repre-
sents the centre of rotation for the moving part of the panel. In
Fig. 16c-d, to represent the strain field E, we report the graph of
a measure of the deformation, namely the contour plot of

Ej j2 ¼ tr EET
	 


: the gradient of deformation is concentrated along

a narrow band located in the vicinity of a slanted line, whilst the
other elements are characterized by strains whose norm is close
to zero. The skew-symmetric part of the displacement field, repre-
senting the local rotation field, is depicted in Fig. 16e-f. It should be
noticed that the gradient of rotation is also essentially concen-
trated along a slanted line. These results are even more highlighted
if one looks at the results shown in Fig. 17, where the first row
shows the non-zero strain areas and, more importantly, the second
rows illustrates the trend of positive and negative rotations over
the whole domain. Particularly, Fig. 17c-d shows a clear subdivi-
sion of the structural domain into two parts, whose boundary iden-
tifies a slanted crack approaching exactly the rotation point {2.0,
0.0}. Furthermore, looking at the non-zero strain regions (Fig. 17-
a-b), a finer discretisation tends to narrow down the non-zero
11
strain are, and consequently, to better approximate the expected
slanted crack.
4.2.4. Discussion
The previous problem exemplifies the main shortcoming of the

PRD method: the solution is unable to converge to a concentrated
crack whose support is not parallel to the skeleton of the mesh.
Nonetheless, by refining the mesh, the solution shows a weak con-
vergence to the exact one. The inability to catch a diagonal crack
inherent to the PRD method, can be explained as follows. Let us
consider the problem of Fig. 13a and the coarse mesh of Fig. 18a.

A rigid block mechanism approximating a diagonal crack is
shown in Fig. 18b. Such an approximation of the diagonal crack
produces non-zero relative sliding among elements lying along
the zig-zag fracture line. Heyman’s model forbids sliding of two
adjacent elements, one upon another; then this piecewise rigid dis-
placement field, is not kinematically admissible. Therefore, we can-
not use zig-zag cracks to approximate slanted cracks. Different
strategies can be adopted to overcome this issue [87], and one of
them could come from a comparison with the CDF solution. As
the CDF method does not suffer from mesh dependency, it can be
used either as an alternative of the PRD method to model complex
structures or, in combination with it, as a useful remeshing strat-
egy to inform the PRD discretisation.



Fig. 13. Mixed BVP for a panel of NRNT material subjected to a given linear settlement (a). In (b,c): possible analytical solution of the BVP depicted in Fig. 13a, using a regular
stress field Tr (b) and a singular strain field Es (c) such that Tr � Es ¼ 0. The expected diagonal crack (c) is the support of the singular deformation Es labelled with the red-
crosshatch.

Fig. 14. PRD analysis of the NRNT panel of Fig. 13 using three different discretisations. Refining the original square-element discretisation, the diagonal crack is increasingly
approximated.

Fig. 15. The NRNT panel of Fig. 13 is discretised using two different meshes based on 9-node, Lagrangian elements: the first one looks for the solution of the mixed BVP with
60 squares (a), while the second one uses 240 squares (b).
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Fig. 16. CDF solutions of the panels shown in (Fig. 15). The first row shows the solution in terms of displacement fields (a, b). The second and third rows illustrate the measure
of the strain tensor as Ej j2 ¼ tr EET

	 

(c, d) and the rotation field (e, f) over the whole domain, respectively.
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Remark 4. If we look at the picture in Fig. 18a as an image of a real
structure made of square blocks, the deformation of Fig. 18b repre-
sents a reasonable outcome of the given settlement. Nonetheless, such
a mechanism can be thought of as a non-Heymanian mechanism as
defined by Bagi in [88]. Of course no real wall, even made of dry stones
without mortar, is constructed without any kind of interlocking,
therefore the deformation we see there, is actually not realistic. The
NRNT model represents a sort of qualitative homogenization of the
behaviour of masonry structures made of well-constructed masonry
elements. The assumption of no sliding, based on the way masonry is
constructed and interlocked, is essential for our minimum energy
scheme to work, and the reason of the discrepancy between what we
see in Fig. 16b and the predictions of our model resides in the size of
the representative volume element for our ‘‘homogenized” continuum,
which must be large compared to the size of the individual ‘‘real”
blocks. We must say that, when the structure is made of large blocks
one should admit sliding among blocks at some degree. This can be
done, preserving the minimum energy principles and the theorems of
Limit Analysis, by considering non-homogeneous interface conditions
(that is conditions of the type (12) (13) with a known term). The
13
meaning of this known term is to allow some clearance among blocks,
that is, a possible relative displacement in the ‘‘forbidden” direction of
a limited value. As long as these relative displacements are limited the
theorems of limit analysis and the minimum principles remain valid.
4.3. A simple masonry portal undergoing a vertical settlement

In this section, we illustrate the case of a simple NRNT-portal,
loaded on the top edge by a piecewise uniformly distributed load
p and subjected to a given vertical settlement of the right support
(Fig. 19a).

4.3.1. Analytical solution
Using singular strain and stress fields, an analytical solution of

the mixed BVP of Fig. 19a, can be constructed partitioning the
structure into three rigid pieces, as depicted in Fig. 19b. Looking
at this three-block discretisation, the displacement due to the ver-
tical settlement is represented by a three-hinge mechanism, and
depends univocally on the variable x defining the position of the



Fig. 17. In (a, b): the white-regions identify the area where the strain is non-zero (i.e. Ej j2 ¼ tr EET
	 


. In (c, d): positive and negative rotation are labelled in red and blue,
respectively. (c, d) shows a clear subdivision of the structural domain into two macroblocks behaving as rigid as the strain is almost constant over them. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. The NRNT panel of Fig. 13a discretized into 40 square elements (a). The approximation of a diagonal crack using square elements and the profiles of the horizontal
and vertical displacements of the moving block are reported (b). From them we see that any two adjacent blocks lying along the opening exhibit relative sliding (as shown
graphically for the two highlighted interface segments).
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central hinge (Fig. 19a). The corresponding strain field is purely
singular and fulfils Eq. (12). Specifically, the exact position x is
obtained by analytically minimizing the total potential energy:

x ¼
�a bþ lð Þ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a bþ lð Þ2 a bþ lð Þ2 þ h 2blþ l2 þ b2c

	 
	 
r
h bþ lð Þ ð41Þ

with c ¼ p2=p1. Looking at the geometry shown in Fig. 19, character-
ized by b = 1.75 m, l = 2.50 m, h = 3.00 m and a = 2.00 m, and assum-
ing c ¼ 1, the exact position of the central hinge is x=l ¼ 0:658.

A statically admissible stress field satisfying Eq. (11) consists of
a vertical uniaxial stress emanating from the top load and a singu-
lar stress concentrated on the curved line passing through the
14
three hinges as in Fig. 19b. Particularly, the support of the singular
stress field, being the curve tangent to the upper boundary of the
lintel (i.e., at the central hinge), is entirely contained within the
structural domain: in this sense it represents a pure compressive
admissible stress field. The strain and stress fields, as constructed,
satisfy the compatibility relation Eq. (13), that is, they represent a
possible analytical solution of the BVP.

In what follows, to illustrate the dependency on the mesh size
and the convergence of both approaches, we show the results
obtained with both numerical methods using two different
meshes. Specifically, the NRNT portal of Fig. 19a is discretised
using 360 and 1140 square elements, respectively (Fig. 20). The
NRNT portal is subjected to a uniformly distributed load (rectangu-
lar, yellow strip), and the right support is subjected to a given, uni-



Fig. 19. Mixed BVP for a simple portal of NRNT material loaded along the top surface and subjected to a given vertical settlement (a). An analytical solution of the BVP
depicted in Fig. 19a, considering a regular and singular stress field T and a purely singular strain field Es such that T � E ¼ 0, is reported in (b). Three hinges form and the
crosshatches represent singular deformations Es along three fracture lines.

q q

)b()a(

Fig. 20. Two different discretisations of the NRNT portal using 360 (a) and 1140 (b) square elements.

)b()a(

Fig. 21. PRD solutions obtained for the two discretisation of Fig. 20: in both cases, three hinges form and the moving part of the structure becomes isostatic.
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form, vertical settlement d. The non-homogeneous boundary con-
ditions affecting the right support are enforced as follows: denot-
ing l A;Bð Þ a boundary segment lying on the right support, whose
15
ends are A and B, the settling constraint of the right support can
be expressed through four restrictions:

uk Að Þ � t ¼ 0 uk Bð Þ � t ¼ 0; ð42Þ



Table 1
Computational time required to solve the CDF problems as function of the number of
planes used to approximate the latent strain cone Sym+.

Portal with 360 elements
(Fig. 22a)

Portal with 1440 elements
(Fig. 22b)

Constraints CPU time Constraints CPU time
[-] [s] [-] [s]

16 55,164 5.63 220,488 822.50
32 107,004 38.21 427,848 2342.21
64 210,684 100.71 842,652 5701.64

(a)

)c(

)e(

Fig. 22. In (a, b): CDF solutions in terms of displacement fields. In (c, d): contour p
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uk Að Þ � n � �d uk Bð Þ � n � �d; ð43Þ
t and n being the tangent and normal unit vectors along the

interface. Restrictions (42, 43) have to be written for each element
edge belonging to the right support.
4.3.2. PRD analysis
In this section, we propose the PRD analyses of the NRNT portal

of Fig. 19a considering the two different discretisations depicted in
Fig. 20. The PRD solutions of the minimum problems are reached
(b) 

)d(

)f(

lot of the field Ej j2 ¼ tr EET
	 


. In (e, f): rotation field over the whole domain.



Fig. 23. The two-story, masonry façade studied in [57]: geometry and loads (a); and, contour plot of the maximum plastic strain due to a uniform settlement affecting the
inner wall (b).

Fig. 24. In (a), the masonry façade of Fig. 23a subjected to a uniform foundation displacement affecting the inner wall. The structure, assumed as composed of NRNT material,
is discretized into 800 rigid blocks. In (b), the PRD solution. In (c) the interfaces showing jumps of the displacement field are labelled in red. In (d), the rigid macroblock
partition of the structural domain shows nine macroblocks accommodating the foundation displacement. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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δ δ

(a) (b)

Fig. 25. The masonry façade of Fig. 23a is discretised into 800, 9-node, quadrangular elements and two different FE meshes are considered: structured (a) and unstructured
(b).
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through the interior point method in 0.06 s and 0.33 s and are
reported in Fig. 21.
4.3.3. CDF analysis
In the present section, we illustrate the CDF results of the NRNT

portal of Fig. 19 using the two meshes shown in Fig. 20. Particu-
larly, each square element is associated to a 9-node, Lagrangian
element. In both cases, the only contribution to the TPE is due to
a piecewise uniformly distributed load, besides the use of uniform,
isotropic pressure. The CDF problems are solved using different
discretisations of the latent strain cone. Particularly, the cone is
discretised with 16, 32 and 64 planes. The CDF solutions of the
minimum problems are obtained with the interior point and are
reported in Table 1. In Fig. 22, the solutions corresponding to 16
planes are reported. The first row of Fig. 22 shows the displace-

ment fields. Fig. 22c-d report the contour plots of Ej j2 ¼ tr EET
	 


as a measure of the deformation, while Fig. 22e-f show the local
rotation fields (i.e. the skew-symmetric part of the displacement
field). A denser mesh tends to narrow the non-zero crack regions
down.
4.3.4. Discussion
Using the two discretisations, both the PRD and CDF analyses

return approximately the same qualitative mechanism. Indeed,
looking at the PRD analysis (Fig. 21), a three-hinge mechanism
forms and the moving part of the structure becomes statically
determined. The PRD mechanism is qualitatively similar to the
analytical solution (Fig. 19b). Particularly, looking at the central
hinge position, the PRD solution of the discretisation shown in
Fig. 21a returns x=l ¼ 0:70, while the solution of Fig. 21b returns
x=l ¼ 0:65. As one can see, by further refining the mesh, the solu-
tion approaches the analytical one (x=l ¼ 0:658). From Fig. 22a-b,
the CDF displacements identify the same mechanism obtained
with the PRD method. Moreover, looking at Fig. 22c-d, the defor-
mation gradient is concentrated along two vertical lines, whilst
the remaining portion of the structural domain is characterized
by strains whose norm is close to zero. It should be noticed that
the rotation gradient (Fig. 22e-f) is also essentially concentrated
along those two vertical lines and corresponds to a close approxi-
mation of the cracks depicted in Fig. 19b. Finer meshes allow to
narrow the CDF non-zero strain regions, and thus, to better approx-
imate the fracture pattern. Finally, comparing Fig. 21 and Fig. 22, a
good overall concordance amongst the CDF and the PRD solutions
can be also observed.
18
4.4. A masonry façade

In the present section, as a theoretical benchmark, we look at
the two-story masonry façade depicted in Fig. 23a. This example
is selected from [57], in which an extension of the classic normal,
elastic, no-tension (NENT) model was proposed and fully bench-
marked against both analytical solutions and experimental cases.
In [57] the façade was firstly studied in its undeformed configura-
tion and, then, two different analyses were performed: with the
first one, the authors assessed the stability under seismic actions;
and, with the second the effects in terms of cracks/stresses due
to a uniform foundation settlement affecting the inner pillar were
studied. In this section, we focus on the effect of the foundation
displacement only.

The geometry of the façade, the loads, and the boundary condi-
tions are represented in Fig. 23a. The structure has a uniform
orthogonal depth of 0.50 m and is made up of tuff having a mate-
rial density q = 1800 kg/m3. Above each opening, a wooden beam
with a thickness equal to 0.25 m is present. In the following sec-
tions, we address the study of the façade using both the PRD and
CDF method.

4.4.1. Numerical solution using a NENT material model
In this section, we briefly recall the results of the analysis per-

formed in [57]. The inner wall of the masonry façade is subjected
to a 6 cm, uniform, foundation displacement as shown in
Fig. 23a. In Fig. 23b the contour plot of the maximum plastic strain
is reported. Looking at that figure, one can notice that the structure
shows a peculiar kinematics: the central wall is following the foun-
dation settlement while the lateral walls are rotating outward
around their lower external vertices. Because of the presence of
the wooden beams above the openings, the lintels do not show
any internal fracture and the crack pattern suggests that they
rotate rigidly. By computing the mean stress tensor

rm ¼ 1
X

Z
@XN

t� x dSþ
Z
X

b� x dV
� �

; ð41Þ

it results that the only non-zero component of the mean stress
tensor is its vertical component, and, thus the mean stress is
rm ¼0.176 MPa.

4.4.2. PRD analysis
The masonry façade of Fig. 23a is here analysed modelling the

material as NRNT and the BVP is solved through the PRD method.
The structure is discretised into 800 square rigid blocks as shown



(a) (b) (c)

(d) (e) (f)

δ

(g) (h) (i)
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piso=10-2σm

piso=10-3σm

piso=10-3σm

piso=10-2σm

Fig. 26. CDF analyses of the masonry façade of Fig. 23a combining two mesh-discretisations (structured and unstructured) with two isotropic pressure values piso (i.e. 10
�2rm

and 10�3rm). Particularly, the first two rows correspond to the structured mesh, while the last two to the unstructured mesh. In all cases, the CDF results similar crack
patterns. In particular, the bottom part of the external, lateral walls are affected by diagonal cracks.
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Fig. 27. CDF analyses: the white-regions identify the area where the strain is non-zero (i.e. Ej j2 ¼ tr EET
	 


is positive).
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in Fig. 24a. The vertical loads are represented by rectangular, yel-
low strips while the self-weight of each block is considered
through equivalent, vertical, resultants applied at the centroid.
The external walls are considered fixed (i.e. subjected to homoge-
neous boundary constraints) while the vertical settlement affect-
ing the central wall is enforced using Eqs. (41, 42) with d ¼ 6 cm.
The BVP is graphically summarised in Fig. 24a. The PRD solution
is represented in Fig. 24b. It is worth noting that since the wooden
beams are not modelled, both the upper lintels are affected by an
internal vertical crack. Besides that, the overall kinematics of the
façade closely resembles the one obtained with the NENT model
and reported in Section 4.4.1. The solution is obtained with the
interior point method in 0.25 s (see Fig. 25).
4.4.3. CDF analysis
In this section, to illustrate the influence of both the mesh and

the isotropic pressure, we perform four different CDF analyses of
the masonry façade of Fig. 23a. Two different FE-discretisations
of the structure, both consisting of 800, nine-node, quadrangular
elements are considered (see Fig. 25). The first one is based on a
structured mesh constituted by 9-node Lagrangian FEs having
straight and aligned horizontal and vertical edges (Fig. 25a), while
the second one is based on an unstructured mesh as depicted in
Fig. 25b. Specifically, the unstructured mesh is obtained by ran-
domly moving the internal nodes of the structured mesh. Each
mesh is analysed considering two values of the isotropic pres-
surepiso, namely 10�2rm and 10�3rm.
20
As external loads, the action due to secondary structures is
taken into account reducing their uniform vertical loads to resul-
tants, which are then applied to the Gauss points of the FEs lying
on the bottom part of the rectangular stripes (Fig. 29); in the same
way, the self-weight is reduced to concentrated forces applied to
the Gauss points of each FE. The constrained boundary is consti-
tuted by the bases of the two external walls considered as fixed
and by the base of the internal wall that is subjected to a unilateral
vertical displacement d equal to 6 cm. Therefore, the external bases
are subjected to homogeneous boundary conditions, while on the
internal one the vertical foundation displacement is still enforced
using Eqs. (41, 42) as already assumed for the PRD analysis
(Section 4.4.2).

In Fig. 26 the results of the four CDF analyses combining the two
mesh-discretisations with the two isotropic pressure values are
reported. In all cases, the solutions are obtained with the interior
point method and the calculation time is in average about 60 s
(see Table 1).

Specifically, as done in the previous cases, the fractures, repre-
sented by the latent strain field E, are graphically showed in the

second column through the contour plot of Ej j2 ¼ tr EET
	 


. Even

in the present case, the gradient of deformation is concentrated
along some narrow bands, whilst the remaining portion of the
structural domain is characterized by strains whose norm is close
to zero. The rotation field (i.e. the skew-symmetric part of the dis-
placement field) corresponding to these four distinct analyses is
depicted along the third column of Fig. 26. The solution in terms
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Fig. 28. The CDF rigid macroblock partition can be clearly highlighted by labelling positive and negative rotations in red and blue, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 29. Effect of the isotropic pressure. An NRNT panel loaded on the top edge and whose base is fixed (a). In (b) the CDF solution without any isotropic pressure shows a non-
zero displacement filed whose contribution to the total potential energy is zero (b, c). As a small value of the isotropic pressure is assumed, the displacement becomes zero
everywhere, as expected (d).
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of rotation field is consistent with the solution in terms of frac-
tures/strains.

4.4.4. Comparison
Both the PRD and CDF analyses return solutions coherent and

consistent with a study proposed and benchmarked in [57], where
a NENT material was adopted. In particular, comparing the crack
patterns, the PRD and CDF solutions return qualitatively the same
fracture mechanism shown in [57] (the reader is referred to
Fig. 23b showing the contour plot of the maximum plastic strain).
In all cases, the mechanism is the same: the central wall is follow-
ing the foundation settlement while the lateral walls are rotating
outward around their lower external vertices. The only discrepancy
21
amongst both the PRD and CDF analyses and the one proposed in
[57] regards the fractures involving the upper lintels, as in [57]
the NENT model they were modelled as wooden beams.
5. Discussions

In the present section, we discuss the CDF peculiarities with
respect to the PRD method referring to the case study illustrated
in Section 4.4. Looking at the CDF analyses shown in Fig. 26, the
primary outcome is that the results are independent of both the
discretisation and the isotropic pressure. Indeed, either using a
structured mesh or a unstructured one, the CDF method returns



Fig. 30. In (a-c), PRD analysis of the masonry façade of Fig. 23a where the external walls are discretised using triangles. With this new discretisation, the outer walls show two
slanted cracks which were not present in the results reported in Fig. 24. In (d-e), a ground structure-like discretisation of the external walls: the crack pattern is the same
obtained with the CDF method.

Table 3
Computational burden for the PRD analyses.

Masonry Façade Elements Constraints CPU
time

[-] [-] [s]

Quad elements (Fig. 24) 800 5,984 0.25
Quad and triangles elements (Fig. 30a) 1,952 12,128 0.51
Ground structure-type discretisation

(Fig. 30d)
19,884 119,728 30.1
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the same crack pattern. Moreover, different, small values of the iso-
tropic pressure do not affect the results. Indeed, even with a very
small value of the isotropic pressure (10-3rm), the CDF solutions
(second and fourth row of Fig. 26) are in a good agreement with
the one obtained with the NENT model [57]. This aspect is further
highlighted in Fig. 27 and Fig. 28, where the structural macroblock
partition defined by the CDF analyses is clearly visible.

The use of a fictitious isotropic pressure directly comes from the
so-called Safe Load condition (Remark 3). Without such negligible
confinement, the energy is not coercive, meaning that the displace-
ment can grow indefinitely at zero energy price. In our model, this
kind of confinement is imposed by adding all over the loaded (i.e.
non-constrained) boundary a given uniform pressure of very small
magnitude compared to the working mean stress (its value is some
orders of magnitude less than the atmospheric pressure). Such fic-
titious confinement can be seen as an indirect way to allow for a
small cohesion into the material. Therefore, its use has also the
effect of encouraging rigid block mechanisms (i.e. concentrated
fractures) over diffuse deformations. In this sense, its use provides
the BVP with the Safe Load Condition. This aspect can be clearly
illustrated with the following example. Let us consider an NRNT
panel loaded on the top edge by a uniform distributed load and
whose horizontal lower edge is fixed (Fig. 29). The CDF analysis
returns the solution depicted in Fig. 29b (scaled up for the sake
Table 2
Computational time required to solve the CDF problems.

Masonry Façade Elements piso

[-] [-]

Structured 800 10�

Unstructured 800 10�

Structured 800 10�

Unstructured 800 10�
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of clarity). The external upper parts of the panel show an outward
displacement: the Gauss points of the blocks can freely move since
their contribution to the total potential energy is zero. And, this is
even more clear by looking at Fig. 29c. Once an isotropic pressure
along the external boundary is added as a small fraction of the
mean stress (10-3rm), the solution becomes precisely the one we
expect in a real wall (Fig. 29d), that is the displacement field is zero
everywhere.

The main difference among PRD and CDF approaches can be
appreciated looking at Fig. 24 and Fig. 27. All CDF analyses show
two specular, diagonal cracks on the lower parts of the external
Constraints CPU time
[-] [s]

3rm 468,132 56.45
3rm 468,132 90.25
2rm 468,132 52.72
2rm 468,132 82.32
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walls due to the walls’ outward rotation: this is a peculiar fracture
pattern for a non-fully-activated masonry wall [89]. However, the
PRD analyses do not show any diagonal crack on those external
walls. This aspect is the direct consequence of what illustrated in
Section 4.2, i.e. the mesh-dependency of the PRD approach. Indeed,
if we consider a different discretisation such as the one reported in
Fig. 30a, the PRD analysis returns the mechanism depicted in
Fig. 30b, which also shows two diagonal cracks affecting the outer
walls as highlighted in Fig. 30c. However, such diagonal cracks are
not aligned with the ones predicted by the CDF analyses. A way to
overcome the intrinsic mesh dependency of the PRD method is to
consider a ground structure-like discretisation of the walls as
shown in Fig. 30d. Additional numerical possibilities to overcome
the mesh dependency can be found in [62,90]. Specifically, the
masonry panels are discretised connecting all nodes lying on their
boundaries. In such a way, the PRD discretisation is enriched with a
large number of internal interfaces, and thus of possible crack
lines. The corresponding PRD results are reported in Fig. 30e-f: in
the present case, the crack pattern is similar to the CDF one.

Tables 2 and 3 show the computational time required to solve
the masonry façade problem using the CDF and the PRD method,
respectively. As the numbers of element are the same, all CDF
problems involve 468,132 linear constraints. This large number is
due to the fine level of discretisation of the semidefinite positive
strain cone (64 planes). The use of 32 or even 16 planes provides
still a good approximation of the strain cone, while reducing signif-
icantly the computational time (see Table 1). We point out that in
the case of the masonry façade, the computational time in average
required to solve the problem is much lower than the one needed
for the CDF analyses of the portals of Section 4.3.3. Under a numer-
ical perspective, the differences among the masonry façade and the
simple portal with the finer mesh (Fig. 22b) is the number of ele-
ments (almost doubled in the simple portal) and the self-weight
that was not considered in the CDF analyses of Section 4.3.3.

We point out again that for masonry-like unilateral materials
extensional deformations (i.e. fractures), are allowed at zero
energy price, and can be either regular or singular. Specifically,
extensional deformation can appear either as diffuse (smeared
cracks) or as concentrated (macroscopic cracks), and, on an energy
ground, there is not any reason to prefer one to another. For real
masonry structures, the fact that rigid block deformation seems
to be the preferred failure mode stems from mechanical character-
istics, such as toughness, interlocking, finite friction and cohesion.
These mechanical characteristics are not inherent to the simplified
NRNT continuum model. For this reason, once the CDF analysis is
coupled with a small value of the isotropic pressure, it can ade-
quately reproduce this phenomenological behaviour. Conversely,
this aspect is implicitly taken into account by the PRD method
because of the piecewise rigidity assumption on the displacement
field.
6. Conclusions

In the present paper, we proposed the Continuous Displace-
ment for Fracture (CDF) method, a new continuous energy-based
numerical approach for the analyses of masonry structures. The
structure is modelled through the NRNT material models, i.e. as a
continuum composed of unilateral material, perfectly rigid in com-
pression and soft in tension, suffering small strains. The solution of
the boundary value problem is obtained minimising the total
potential energy in the space of continuous displacements. Inde-
pendently of the adopted mesh, CDF allows to predict the fracture
pattern produced by a given set of load and kinematical data (e.g.
settlements, distortions). The CDF performances were illustrated
and compared in detail against both analytical solutions and an
23
opposite energy-based strategy, i.e. the PRD method that min-
imises the total potential energy in the space of small piecewise
rigid displacement fields.

The CDF approach is based on a classical finite element (FE)
mesh description of the structural domain where the nodal dis-
placements are continuous. In this case, strain cannot be singular
and fractures appear as smeared; narrow bands (which may even
cross single elements) where high strains are present can be
detected and, most importantly, such bands can also cross single
elements, meaning that they are not restricted to lie on the ele-
ment boundaries, as in common rigid block models.

As the PRD method, CDF uses displacements as primal
unknowns, and in this sense, it allows a direct control of the main
variables, particularly for problems regarding masonry structures
in which the cracks are induced by settlements. Moreover, as it is
energy-based, the CDF method offers a consistent and robust
way to solve the BVP through a Linear Programming problem,
allowing for an efficient and relatively fast computational solving.
Indeed, all CDF analyses were performed using a very fine discreti-
sation of the latent strain cone (i.e. 64 planes). To further reduce
the computational time and to still have an adequate cone approx-
imation, a lower number of planes can be used as shown in Sec-
tion 4.3.3 and in Table 1. As outcomes of the in-depth
comparison among the CDF and PRD methods, a few important dif-
ferences should be highlighted:

- the PRD method is a ‘‘natural” linear minimization problem; the
CDF method, to become a linear programming formulation,
requires a linearization of a quadratic condition;

- the CDF method is numerically more cumbersome because of
the large number of constraints coming from the above lin-
earization and because of the finer mesh required to approxi-
mate large displacement gradients;

- with the CDF method, the macro-block partition of the struc-
tural domain may be encouraged by applying, all over the
loaded boundary, a fictitious, small uniform pressure (Safe Load
condition). We showed that this value can be a small fraction of
the mean working, compressive stress, and it is two orders of
magnitude less than the atmospheric pressure;

- in some cases, numerical solutions obtained with the PRD
method cannot converge to exact cracks which are not parallel
to the skeleton of the mesh. Therefore, even if the gross subdi-
vision into macro-blocks predicted by the PRD method is usu-
ally consistent with the exact one (that is one corresponding
to a weak minimum of the energy), the fine details of the exact
interfaces among blocks are lost. A way to overcome the PRD
mesh dependency is to consider ground structure-type discreti-
sation as shown in Fig. 30d. Conversely, such fine details are
instead accurately detected by approximate solutions obtained
via the CDF method; and,

- in practical applications, the main critical issue of a fracture sur-
vey is identifying the precise cause of the disarrangements and
distortions, which are detectable on the surface of the construc-
tion. That is, performing an inverse-analysis to identify the par-
ticular form of foundation settlements producing the detected
crack pattern. In this respect, the PRD method, as it is much fas-
ter than CDF, constitutes the preferential approach for inverse
settlements induced crack problems as these analyses require
a huge number of numerical solutions to accurately reproduce
the detected fracture pattern [33].

The main outcome of using CDF to solve the BVP for NRNT
material is that it perfectly captures rigid macro-blockmechanisms
exhibited by masonry structures when subjected to severe external
environment changes. And, more importantly, CDF does not suffer
of mesh dependency in locating cracks. Therefore, CDF represents a
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robust computational, energy-, displacement-based tool to solve
typical problems for assessing masonry structures.
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